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Quantifying the pathological features of flexor tendon pulleys is essential for grading the trigger finger since it provides clinicians
with objective evidence derived from microscopic images. Although manual grading is time consuming and dependent on the
observer experience, there is a lack of image processing methods for automatically extracting pulley pathological features. In
this paper, we design and develop a color-based image segmentation system to extract the color and shape features from pulley
microscopic images. Two parameters which are the size ratio of abnormal tissue regions and the number ratio of abnormal nuclei are
estimated as the pathological progression indices. The automatic quantification results show clear discrimination among different
levels of diseased pulley specimens which are prone to misjudgments for human visual inspection. The proposed system provides
a reliable and automatic way to obtain pathological parameters instead of manual evaluation which is with intra- and interoperator
variability. Experiments with 290 microscopic images from 29 pulley specimens show good correspondence with pathologist
expectations.Hence, the proposed systemhas great potential for assisting clinical experts in routine histopathological examinations.

1. Introduction

Trigger finger is a common medical condition which occurs
when the sheath of finger flexor tendon thickens, causing un-
smooth glide of the tendon.The affected finger usually yields
pains, intermittent snapping (triggering), or actual locking
(during flexion or extension) resulting in patient difficulty [1].
Although more than one potential cause has been described,
the etiology of the trigger finger remains idiopathic [2]. In
order to understand the real causes and risk factors of trigger
finger, microscopic evaluation for various degrees of patho-
logical change hence becomes a critical issue.

The pathologicalmechanism in the flexor sheath has been
reported as the fibrocartilaginous metaplasia (or chondroid

metaplasia) of its “A1” pulley based on the histopathological
analysis [3]. In a normal pulley, there is a dense, regular, and
connective tissue that is composed of collagenous fibers in
compact and parallel bundles. Generally, histopathological
specimens of collagenous fibers appear eosinophilic and pink
in color under hematoxylin and eosin (H&E) stain.Moreover,
it can be observed from microscopic images that the fibrob-
lasts of a normal pulley possess long rod-like nuclei between
the longitudinal bundles. On the other hand, the pulley of a
trigger finger usually demonstrates the phenomenon of fibro-
cartilaginous metaplasia (or chondroid metaplasia), which is
characterizedby thepresenceof chondrocytes (cartilage cells).
The affected fibers thus contain round nuclei and sulfate
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proteoglycans appearing in blue/purple color under the H&E
stain [4].

A good interpretation of microscopic image depends on
the level of abnormality observed froma combination of good
visual evaluation and theoretical knowledge by pathologists
[5]. Such qualitative evaluation of pathological changes re-
mains the most common approach to grade trigger finger.
However, due to intra- and interobserver variability, the accu-
racy of the grading results is decreased and the reproducibility
of the experiment is difficult to ensure.Moreover, some quan-
tities, such as the amount of nuclei, are impractical to obtain
by visually examining the entiremicroslide.These limitations
increase the probability of making an inappropriate decision
for follow-up therapy. The aim of this paper is to define two
parameters that reflect the above-mentioned color and shape
features of pulley specimens and develop an image analysis
system for automatic and objective microscopic evaluation of
the pulley pathological changes.

Microscopic image analysis methods have been actively
investigated because they provide the most direct informa-
tion for evaluating morphological or functional changes of
tissues of interest at the microscopic level. Tabesh et al. [6]
proposed an automatic prostate cancer classification system
to analyze the microscopy of the prostate cancer tissues with
color features in the R, G, and B channels of the acquired
images. However, as the acquired images are nonuniformly
illuminated, their simple thresholding method is not directly
applicable in our case. Wu et al. [7] proposed a live cell image
segmentation method to directly segment the cell regions
using gray level. However, in our case, the pink areas which
represent the normal tissues and the purple areas which
represent the diseased tissues show very close gray level in
the acquired images. Only using the gray level information
in separating the abnormal from normal tissues on the pulley
microscopic image would likely give erroneous results. The
Canny edge detector is also a popular way to detect the border
of cells [8]. However, in our case, the Canny operator detects
not only the borders of nuclei but also the borders of dark
blue and noise areas. As we are only interested in the borders
of nuclei, too many irrelevant edges detected by the Canny
operator tend tomake the postprocessing process tedious and
increase the likelihood of detection errors.

In this paper, we propose an image analysis system to
automatically quantify the pathological features of pulleys
with trigger finger on microscopic images. Two parameters,
which are the size ratio of abnormal tissue regions (parame-
ter 1) and the number ratio of abnormal nuclei (parameter 2),
are designed to reflect the severity of diseased tissues based
on the pathologist suggestions. Figure 1 shows the flowchart
of the proposed method. First, the proposed system applies
a color normalization to efficiently reduce the influence of
nonuniform color distribution among the captured images.
Then, the system adopts a three-stepped color segmentation
process to extract normal and abnormal tissue regions from
the hue-saturation-intensity (HSI) color space of the color-
normalized image in order to calculate parameter 1. In
addition, we design an active double thresholding algorithm
to segment the nuclei and utilize a rule-based classifier based
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Figure 1: Flowchart of the proposed system.

on nuclei shape properties to identify normal and abnormal
nuclei for calculating parameter 2. Experiments demonstrate
high correspondence between the automatically estimated
parameters and the qualitative judgments of a pathologist.

2. Materials

Themicroscopic images of specimens in this study were pro-
vided by the laboratories in National Cheng Kung University
Hospital and in Ton Yen General Hospital. The pathological
pulley tissue specimens were obtained from the patients who
were clinically diagnosed with trigger finger disease by or-
thopedists D. S. Yang and T. H. Yang. For pathological exam-
ination, all of the specimens followed the procedures of fix-
ation in formalin, procession in graded alcohols and xylene,
embedding in paraffin, cutting of sections with a microtome,
and being stained with hematoxyline-eosin (H&E). The mi-
crotome was preset for a 5𝜇m in thickness.

In these specimens, the normal pulley showed a dense
regular fibrotic tissue. The collagenous fibers were arranged
in compact, parallel bundles. Between the bundles were rows
of modified fibroblasts with elongated spindle-shaped nuclei.
Thepathologic pulley tissue presented fibrocartilagemetapla-
sia. It was composed of irregular connective tissue with fibro-
cartilaginous metaplasia (or chondroid metaplasia). In the
H&E stained slides, the nuclei were dark blue in color and the
collagenous fibers were pink in color. The fibrocartilaginous
metaplastic (or chondroid metaplastic) tissue demonstrated
more chondromyxoid materials (including hyaluronic acid,
chondroitin sulfate, and proteoglycan) and showed blue or
purple colors. Furthermore, nuclei of cartilage-like cells were
round in shape. The prepared slides were first observed and
graded according to the severity of myxoid metaplasia by
pathologist H. B. Yang under a light microscope (Olympus,
BX50). These specimens were also analyzed by the proposed
system based on the above-mentioned color and shape
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Figure 2: Color normalization. (a) and (c) are two original images from different specimens; (b) and (d) are results of (a) and (c) after
performing color normalization, respectively.

features. The automatic evaluation results were then com-
pared with the manually graded results.

3. Methods

3.1. Color Normalization. The color normalization method
is used to resolve the problem of nonuniform distribution
in color and illumination of the acquired images, which are
caused by the different staining and imaging conditions of the
microscopic slices. As shown in Figures 2(a) and 2(c), color
distributions of the two acquired images are quite different
from each other. Color normalization will help to map these
different microscopic images to a common image type with
similar color distribution.

The color normalization method provided by Reinhard
et al. [9] is adopted in this study. Initially, we must choose
some standard images (target images) from the source image
dataset with the following characteristics: the contrast ratio
is high and the color of nuclei is dark blue. In other words,
these standard images can show high contrast and can be
used to categorize the various tissue types.We then normalize
the input (or source) image to the color distribution of target
images.

We transform the images from𝑅𝐺𝐵 color space into 𝐿𝑀𝑆
color space by the following equation:

[

[

𝐿

𝑀

𝑆

]

]

= [

[
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]

]

[

[

𝑅

𝐺

𝐵

]

]

. (1)

Because the data in this color space are oftenquite skewed,
Reinhard et al. reduced skew error by converting the data to
a logarithmic space by using (2):

𝐿

= log 𝐿, 𝑀


= log𝑀, 𝑆


= log 𝑆. (2)

Moreover, Ruderman et al. [10] suggested a transforma-
tion from 𝐿


𝑀

𝑆
 to 𝑙𝛼𝛽 through (3). It is because 𝑙𝛼𝛽 are

the three orthogonal axes decomposed from 𝐿𝑀𝑆 by using
principle component analysis into the three most maximal
directions (𝑙𝛼𝛽) decorrelating the 𝐿𝑀𝑆 axes. In the exper-
iments, the resulting color distribution of different tissues is
more widely separated in 𝑙𝛼𝛽 color space than in the original
𝑅𝐺𝐵 color space:
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We then calculate the mean and the standard deviation
values of 𝑙, 𝛼 and 𝛽 for all target images and obtain the
averaged mean and averaged standard deviation which are
denoted as 𝜇𝑙

𝑡
, 𝜇𝛼
𝑡
, and 𝜇𝛽

𝑡
, and 𝜎𝑙

𝑡
, 𝜎𝛼
𝑡
, and 𝜎𝛽

𝑡
, respectively.

These average mean and standard deviation values are calcu-
lated once and then used for the normalization of every input
image. For each input image, we have to calculate the mean
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Figure 3: Color segmentation for Figure 2(a) (part 1). (a) The hue component of Figure 2(b); (b) the Otsu thresholding result of (a); (c)
overlap the G channel to the white areas of (b); (d) the result of segmentation on (c), where white areas represent empty background and
black areas represent tissue foreground.
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The normalization of an input image is performed by
calculating the new color values 𝑙, 𝛼 and 𝛽 for each pixel
by the following equations:
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Finally, we transform the resulting image in 𝑙𝛼𝛽 color
space back to 𝑅𝐺𝐵 color space by using (5):
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Figures 2(b) and 2(d) show the normalization results of
Figures 2(a) and 2(c), respectively. The color distributions of
the normalized images are comparable to those of the target
images. All input images from different batches of specimens
can be processed by this procedure for color normalization.

3.2. HSI Model Transformation and Three-Stepped Color Seg-
mentation. Before color segmentation,we transform the nor-
malized image into the 𝐻𝑆𝐼 color space by using (6) [11, 12].
Currently, the pink part and major part of the purple areas in
the normalized image are lower in hue value, and the back-
ground and some small parts of the purple areas in the nor-
malized image have higher hue values. Figure 3(a) shows the
hue component of Figure 2(b):

𝐻 = {
𝜃 if 𝐵 ≤ 𝐺
360 − 𝜃 if 𝐵 > 𝐺,

𝜃 = cos−1
{

{

{

(1/2) [(𝑅 − 𝐺) + (𝑅 − 𝐵)]

[(𝑅 − 𝐺)
2
+ (𝑅 − 𝐵) (𝐺 − 𝐵)]

1/2

}

}

}

.

(6)

Based on the hue distribution, we apply the automatic
thresholding method proposed by Otsu [13] to obtain the
first binary image as shown in Figure 3(b), which is rough-
ly divided into foreground and background. In Otsu’s
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Figure 4: Color segmentation for Figure 2(a) (part 2). (a) Blue is the empty background and the other hue component areas are tissue
foreground; (b) the segmented result, where blue represents background, white represents abnormal tissue, and black represents normal
tissue; (c) rank filtering result; (d) boundaries of abnormal tissue regions mapped onto the normalized image.

thresholding, the optimal threshold 𝑘∗, which separates two
classes, is obtained by using optimization:

arg max
𝑘
∗
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2

𝐵
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are the probabilities of class occurrences

and the mean levels of the two classes, respectively.The black
areas represent the pink andmost of the purple tissue areas as
the foreground and the white areas cover some small parts of
the purple tissue areas and the empty background. In other
words, some purple areas may be faultily classified into the
background. To make the foreground include all the purple
tissues, we have to extract the remaining purple part from
the background areas. The obtained background areas are
used as the mask to map onto the G channel of normalized
image, which is shown in Figure 3(c), and the second Otsu
thresholding on the G channel is then applied to obtain
the remaining purple areas. We then get the second binary
image as in Figure 3(d), where the white area represents the
real background and the black area represents the complete
foreground of pink and purple tissue areas.

After obtaining the foreground, we then have to sepa-
rate the abnormal tissue from the normal tissue areas. In
Figure 4(a), we label the background areas obtained in the
previous step in blue and overlap onto the original hue

component image in Figure 3(a). As mentioned before, the
normal tissue areas show lower hue values and the abnormal
areas have higher hue, so we can use the Otsu thresholding
again to divide these two areas. The segmented result is
shown in Figure 4(b), where the blue areas represent the
background, the black areas represent the normal tissues,
and the white areas represent the abnormal tissues. As the
segmentation results are fragmented in the boundaries, we
apply the rank filter to remove fragmented regions. We
calculate the pixel numbers of each color in Figure 4(b) with
a 9 × 9 mask and then assign the color with the highest
count to the central pixel of mask; the result is shown in
Figure 4(c). Figure 4(d) shows the boundaries of abnormal
tissues mapped onto the normalized image.

3.3. Active Double Thresholding and Nuclei Classification.
Another characteristic to evaluate the level of pathological
change is the ratio of round nuclei which belongs to the
abnormal cells.We can use this ratio, instead of the area ratio,
to characterize tissue condition when the staining colors are
faded or if specimens are degraded after a long preservation
time.

After color normalization, we find that the R channel
of the normalized image is more suitable for nuclei seg-
mentation due to its high contrast of nuclei as in Figure 5(a).
(In this section, we demonstrate the procedures of nuclei
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Figure 5: Nuclei classification for Figure 2(d). (a) The R channel of Figure 2(d); (b) the result after double thresholding; (c) the classification
result, where red represents the normal nuclei and green represents the abnormal nuclei; (d) overlap the nucleus edges onto the original
image.

classification with another normalized image shown in
Figure 2(d).) Therefore, we use the double thresholding
scheme [14] to segment the nucleus areas. The intensity of
nuclei is nearly the darkest of the whole R channel image.
As the intensity distributions of images are different, we thus
apply an active thresholding scheme to satisfy all images.
First, for each input R channel image, we take the average of
the ten lowest intensity values as the lowest intensity value
of the image. Second, we add two empirical values 30 and
45 to this lowest value and use them as the two values for
double thresholding.The lower threshold value is used as the
seed and the higher threshold value is the restriction of region
growing. After we apply the double thresholding scheme, the
white areas of the resulting image represent the segmentation
of nuclei and the segmentation result of nuclei is shown in
Figure 5(b).

Now we can classify the segmented nuclei into three
categories according to their shapes. The normal nuclei are
usually long and rod-like, and the abnormal nuclei are usually
round in shape. However, the connected area with multinu-
clei, which is regarded as the third category, is irregular in
shape and classified as abnormal because only the abnormal
nuclei will grow and connect each other into a cluster.

To classify these nuclei, we then calculate the area size,
the circularity index, and the maximum and the minimum
distances between the centroid and boundary points for each
nucleus area. We then classify the nucleus as normal and

rod-like if the circularity index is less than 0.95, the ratio of
maximum to minimum distance is greater than 3, and the
area is less than 2,000 pixels. All other areas are then classified
as abnormal nuclei. In addition, we also define the area as a
single abnormal round nucleus if the area is less than 2,000
pixels.

After defining all the single abnormal round nuclei, we
then calculate the average area of these nuclei. The average
area is then used to calculate how many nuclei are in a con-
nected multinuclei area. Figure 5(c) shows the classification
results where red presents the normal nuclei, green presents
the abnormal nuclei.The nucleus edges were overlapped onto
the original image as shown in Figure 5(d).

4. Results and Discussion

4.1. Specimen Preparation. In this study, we collected abnor-
mal and normal specimens from trigger finger patients and
nondiseased cadavers, respectively. All the specimens used
in the experiments were graded into four severity stages as
H (High), M (Middle), L (Low), and N (Normal) in trigger
finger disease by the pathologist (Dr. Hsiao-Bai Yang). The
numbers of collected specimens were 10 with H stage, 10 with
M stage, 6 with L stage, and 3 with N stage, respectively (29
specimens in total). From each specimen, 49 images in the
size of 2560 × 1920 were acquired by using our previously
developed autofocusing system [15]. As some of the 49 images
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Table 1: The size ratio of abnormal tissue regions (parameter 1).

Specimen no. Normal (pixel2) Abnormal (pixel2) Ratio
H-1 31791895 12495997 0.282
H-2 30894213 10986876 0.262
H-3 31869804 11038359 0.257
H-4 32511973 11026116 0.253
H-5 33797170 10267132 0.233
H-6 31635397 11474053 0.266
H-7 31451368 11224479 0.263
H-8 32950410 11695269 0.262
H-9 34067450 10887277 0.242
H-10 27747278 10290969 0.271
Mean ± SD 0.259 ± 0.014

M-1 35698059 7946874 0.182
M-2 34326147 8515580 0.199
M-3 35324719 8461582 0.193
M-4 33284256 7671304 0.187
M-5 34422738 9418395 0.215
M-6 34315916 9170559 0.211
M-7 33027627 9072248 0.215
M-8 34051300 7529957 0.181
M-9 35167293 8706583 0.198
M-10 32745438 8083811 0.198
Mean ± SD 0.198 ± 0.013

L-1 40491940 5972857 0.129
L-2 43877544 2773360 0.059
L-3 36923582 6077911 0.141
L-4 37539086 4417329 0.105
L-5 34975123 7460192 0.176
L-6 36623101 5244448 0.125
Mean ± SD 0.123 ± 0.039

N-1 40904631 5482052 0.118
N-2 32792539 3323970 0.092
N-3 32724101 4340358 0.117
Mean ± SD 0.109 ± 0.054

contained a large area of background and irrelevant tissues
(e.g., microvasculature), such images provided less image
evidence of pulley tissues and were not suitable for evaluating
the proposed pathological parameters. Consequently, the
same pathologist of our research group was asked to exclude
the unsuitable images based on her expertise on tissue
pathology. Then, a random selection process was performed
to acquire 10 images from the remaining images for the
subsequent quantitative analysis.

4.2. Pathological Indices. The proposed microscopic image
analysis system was designed to obtain two pathological pa-
rameters. The size ratio of abnormal tissue regions is pa-
rameter 1 which can be calculated by using (8). In (8), the
area of normal tissue regions represents the sum of pink
(or blue for abnormal) areas from the 10 selected images
of each specimen. Table 1 presents the resulting parameter
1 s for different specimens obtained by using the proposed
color segmentation procedure.Thenumber ratio of abnormal

Table 2: The number ratio of abnormal nuclei (parameter 2).

Specimen no. Normal Abnormal Ratio
H-1 271 660 0.709
H-2 481 1088 0.693
H-3 244 529 0.684
H-4 117 385 0.767
H-5 289 1098 0.792
H-6 721 1653 0.696
H-7 292 655 0.692
H-8 165 817 0.832
H-9 446 1013 0.694
H-10 59 151 0.719
Mean ± SD 0.728 ± 0.051

M-1 382 687 0.643
M-2 318 591 0.650
M-3 192 360 0.652
M-4 131 187 0.588
M-5 308 652 0.679
M-6 173 343 0.665
M-7 335 456 0.576
M-8 726 1311 0.644
M-9 382 647 0.629
M-10 379 795 0.677
Mean ± SD 0.640 ± 0.034

L-1 824 771 0.483
L-2 1080 1210 0.528
L-3 520 636 0.550
L-4 404 477 0.541
L-5 862 1165 0.575
L-6 123 259 0.678
Mean ± SD 0.559 ± 0.066

N-1 473 247 0.343
N-2 310 205 0.398
N-3 292 308 0.513
Mean ± SD 0.418 ± 0.074

nuclei is parameter 2 and can be calculated by using (9).
In (9), the number of normal (or abnormal) nuclei is the
total number of normal (or abnormal) nuclei obtained from
the 10 selected images of each specimen by using the rule-
based classifier. Table 2 shows the resulting parameter 2 s for
different specimens:

The size ratio of abnormal tissue regions

=
Area of abnormal tissue regions

Area of abnormal tissue regions + Area of normal tissue regions
(8)

The number ratio of abnormal nuclei

=
Number of abnormal nuclei

Number of abnormal nuclei + Number of normal nuclei
.

(9)

Based on the pathological staging, the resulting pa-
rameters in Table 1 show clear deviations among the three
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Table 3: 𝑃 values between different serious stages.

Group pair Parameter 1 Parameter 2
High versus middle 0.000 0.000
Middle versus low 0.004 0.028

(H,M, andL) stages.There are significant differences between
the mean values of adjacent stages. Using the average of
two mean values for two adjacent stages, we can obtain two
threshold values to perform simple discrimination between
the three severity stages. Consequently, there are no errors
in H and M stages and only one misclassification from L to
M stage from all the collected specimens of our experiments.
In Table 2, the number ratio of abnormal nuclei also shows
similar characteristics with good deviations among the three
stages. Simple discrimination among the three severity stages
is performed the same way as in Table 1. There are no
classification errors in the H stage, 2 misclassifications from
M to L stage, and 1 misclassification from L to M stage.
However, the three misclassifications with parameter 2 have
no intersections with the one with parameter 1. This implies
that the discrimination between three severity stages can
be correctly performed with the weighted combination of
parameters 1 and 2. Since we only have a limited number
of specimens presently, a more complicated classification
mechanism is left for research withmore sufficient specimens
in the future. The pathological parameters of N stage are
measured with only 3 specimens and also presented in
Tables 1 and 2. The mean values of the two parameters are
all smaller than the ones of L stage. Because stages L and
N are less severe, the resulting measurements reflect the
clinical expectation. Figures 6 and 7 show the boxplots [16]
for the three severity stages with parameter 1 and parameter
2, respectively. For each box in the figure, the central mark is
themedian, the edges of box are the 25th and 75th percentiles,
the whiskers extend to the most extreme data points, and
outliers are plotted individually. The boxplots also reflect the
clustering ability of the two parameters similar to the above-
mentioned simple discrimination examples.

In addition, statistical analysis was performed by Stu-
dent’s 𝑡-test and the 𝑃 values between different severity stages
were calculated (as shown in Table 3). If the 𝑃 value is less
than 0.05, the two groups are considered to have significant
differences and can be easily divided. For parameter 1, the
𝑃 values for group pairs H versus M and M versus L are
0.000 and 0.004, respectively. For parameter 2, the 𝑃 values
for group pairs H versus M and M versus L are 0.000
and 0.028, respectively. As all statistical tests are significant
(less than 0.05), it is suggested that both parameters can be
used as pathological indices for grading the severity stages
effectively.

4.3. System Performance

4.3.1. Parameter Setting. The values of the system parameters
used in active double thresholding (in Section 3.3) could
be a factor influencing the stability of automated image
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Figure 6: Boxplot for the three severity stages with parameter 1.
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Figure 7: Boxplot for the three severity stages with parameter 2.

analysis. Thus, we employed the color normalization step to
effectively reduce the influences caused by different imaging
and staining conditions. After color normalization, the sys-
tem parameters can be determined based on the intensity
contrast between pulley tissue and surrounding regions on
the normalized images. When applying the same parameter
values throughout the entire experiment with 290 images, the
proposed system was capable of achieving accurate measure-
ment results.

On the other hand, the system parameters used in nuclei
classification were determined and tuned by the pathologists
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based on their pathological knowledge and clinical experi-
ences. Our experimental results showed that the system is
capable of making correct discriminations between the dis-
ease stages based on the ratio of abnormal nuclei by using the
same set of system parameters. All the 290 images from the
29 specimens were analyzed consistently. If some more com-
plicated parameters are designed for tissue measurement in
the future, more complex classifiers can be helpful to deter-
mine these system parameters.

4.3.2. Computational Time. The system was developed on an
Intel Core i5 2.8GHz PC with 3.5 GB memory. For an image
of 2560 × 1920 pixels, the average computational time of color
normalization, color segmentation, and nuclei classification
was approximately 5, 12, and 10 seconds, respectively.

5. Conclusions

In this paper, we have developed an automatic image analysis
system to evaluate the severity of trigger finger disease from
the microscopic pulley images. Two pathological parameters
are designed and can be computed automatically and effi-
ciently.The quantitativemeasurements are stable andwithout
intra- and interoperator variability of manual measurements.
Twenty-nine pulley specimens are evaluated with the same
image analysis setting in the experiments. The experimental
results show that the twoparametermeasures have gooddevi-
ations among the three pathological stages and can be used
to discriminate the severity stages with simple discrimination
mechanism.Thus, the proposed image analysis system clearly
provides an efficient and reliable way inmeasuring the patho-
logical progression of trigger finger disease. The quantitative
parameters are objective and can also be extended for other
kinds of pathological specimens. In the future, we will recruit
more cases in the validation of trigger finger disease and also
explore new opportunities for other clinic applications.
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