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Aging leads to numerous transitions in brain physiology including synaptic dysfunction and disturbances in cognition andmemory.
With a few clinically relevant drugs, a substantial portion of aging population at risk for age-related neurodegenerative disorders
require nutritional intervention. Dietary intake of polyphenols is known to attenuate oxidative stress and reduce the risk for
related neurodegenerative diseases such as Alzheimer’s disease (AD), stroke, multiple sclerosis (MS), Parkinson’s disease (PD), and
Huntington’s disease (HD). Polyphenols exhibit strong potential to address the etiology of neurological disorders as they attenuate
their complex physiology by modulating several therapeutic targets at once. Firstly, we review the advances in the therapeutic role
of polyphenols in cell and animal models of AD, PD, MS, and HD and activation of drug targets for controlling pathological
manifestations. Secondly, we present principle pathways in which polyphenol intake translates into therapeutic outcomes. In
particular, signaling pathways like PPAR, Nrf2, STAT, HIF, andMAPK along with modulation of immune response by polyphenols
are discussed. Although current polyphenol researches have limited impact on clinical practice, they have strong evidence and
testable hypothesis to contribute clinical advances and drug discovery towards age-related neurological disorders.

1. Introduction

Neurodegenerative disorders such as Alzheimer’s disease
(AD), stroke, and Parkinson’s disease (PD) represent a major
clinical problem in the developed countries [1, 2] and are
major economic burdens for health care systems [3]. Dietary
[4], genetic, andmolecular factors [5] are important determi-
nants in progression and intervention of neurodegenerative
diseases. AD is a common cause of dementia and mortality
in the United States. Total numbers of reported deaths due to
AD have increased in past years, and it is among 10 leading
causes of deaths in the United States [6]. Amyloid-𝛽 (A𝛽)
peptides derived from amyloid precursor protein (APP) via
𝛾-secretase and 𝛽-secretase cleavage are hallmarks of AD
[7]. Cellular prion protein (PrP(C)) [8] and oxidative stress
[9] mediate A𝛽 neurotoxicity, and the latter contributes to
neuronal death by lowering intracellular glutathione. Along
with A𝛽, tau protein alteration in neuronal microtubules
also contributes to the pathology of AD [10]. Abnormal
phosphorylation and aggregation of tau protein leads to

neural dysfunction and leads to pathological events which
cause neuronal dysfunction in AD [11]. Failed clearance of
A𝛽 aggregates resulting from impaired autophagy may also
contribute to AD [12]. AD is also characterized by elevated
peripheral blood cytokine concentrations for interleukin-
(IL-) 6, tumor necrosis factor alpha (TNF-𝛼), IL-1𝛽, trans-
forming growth factor beta (TGF-𝛽), IL-12, and IL-18 sugges-
tive of a pro-inflammatory response in AD pathology [13].

Multiple sclerosis (MS) is another neurodegenerative dis-
ease characterized by chronic inflammation accompanied by
demyelination of neurons in brain [14]. MS is characterized
by symptoms like mood disorder, fatigue, vision changes,
muscle weakness, and motor changes [15]. Chemokines like
IL-17, chemokine (C-C motif) ligand 17 (CCL17), and CCL20
are suggested as major mediators in MS neuroinflammation
and pathology [16].

Stroke is the third leading cause of mortality, loss of
cognitive functions, and heavy socioeconomic burden in the
United States [17]. Similar to MS, stroke or cerebral ischemia
is a pathological condition accompanied by inflammation
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and immune system disease [18]. One minute of cerebral
ischemia is estimated to destroy approximately 2 million
neurons and 14 million synapses [19]. Like AD and MS,
inflammatory cytokines including TNF-𝛼 and IL-1 and IL-6
play modulatory role in stroke pathology [20]. Transcription
factor, nuclear factor kappa B (NF𝜅B), is an important
regulator in pathology of inflammation and neuronal cell
survival, as its activation leads to cell death in cerebral
ischemia [21].

PD is a progressive neurodegenerative disease; its familial
forms are characterized by mutations of six genes including
clinically important ATP13A3 resulting in cognitive impair-
ment and depression [22]. Some PD cases also involve
changes in micro-RNA and 𝛼-synuclein level in patients
[23]. Like other neurodegenerative diseases, PD also involves
elevated levels of proinflammatory cytokines monocyte
chemoattractant protein-1 (MCP-1), CCL-5, macrophage
inflammatory protein-1𝛼 (MIP-1𝛼), IL-8, interferon-gamma
(IFN𝛾), IL-1𝛽, and TNF𝛼 [24]. After examining cytokines
in 52 PD patients, researchers [25] suggested involvement of
TNF-𝛼 in production and maintenance of nonmotor symp-
toms.Mitochondrial dysfunction also plays an important role
in pathogenesis of PD [26] similar to AD [27], MS [28], and
stroke (CI) [29].

Huntington’s disease (HD) is another neurological dis-
order causing cognitive impairment, accompanied by oxida-
tive stress and mitochondrial dysfunction. It results from
increased number of CAG triplet nucleotide repeats and
expanded polyglutamine region of huntingtin protein [30].
HD pathology leads to elevated levels of chemokines like
eotaxin-3, MIP-1𝛽, eotaxin, MCP-1, and MCP-4 [31].

The pathophysiology of neurological disorders is also
accompanied by alterations in electrical activity of neurons at
cellular level. The voltage gated ion channels are required for
action potential generation and its propagation in neurons,
and their dysfunction contributes to pathology of neurode-
generative diseases. The brain electrical activity is signifi-
cantly changed in AD and dementia leading to impaired ver-
balmemory and cognitive skills [32].TheKv3 subfamily of K+
channel subunits, which possess ability of fast repolarization
of action potential [33], are compromised and slowed down in
AD [34]. The upregulation of the K(v)1.3 potassium channel
also plays important role in immunopathogenesis of multiple
sclerosis and presents therapeutic option by blocking Kv
channels [35]. As sodium channels (Nav1.8,Nav1.5) play an
important role in electrical activity of neurons, their over-
loading is thus an importantmediator in axonal degeneration
inMS [36, 37]. Such electric disturbances are also found in PD
[38] which impose energy burden by Ca2+ entry through L
type voltage-dependent channels [39]. Similarly, sodium and
potassium channel abnormalities are proposed to contribute
to HD pathogenesis [40, 41].

There are a few clinically relevantmedicines and therapies
available for AD, HD, MS, PD, and stroke. A few clinically
active, yet expensive, options such as acetylcholinesterase
inhibitors, interferon 𝛽-1a, levodopa, tetrabenazine, and tis-
sue type plasminogen activator (tPA) are available for AD
[42],MS [43], PD [44], HD [45], and stroke [46], respectively.
In wake of these pathologies and limited clinical treatments,

alternative and preventive therapeutics are required which
can control the occurrence and progression of neurodegen-
erative diseases. All the neurodegenerative diseases discussed
above have the common features of pathogenesis which
include cytokine changes, genetic alterations, immunomod-
ulation, inflammation, mitochondrial dysfunction, oxidative
stress, prions, and protein dysfunction. Recent research has
shown that dietary polyphenols target the pathological man-
ifestations of neurological disorders with their ability to cross
blood-brain barrier [47] as they control neuronal disease
pathogenesis at a molecular and symptomatic level by target-
ing these common features of neurodegeneration pathology.
Polyphenols are naturally occurring phytochemicals found
in fruits and vegetables, exhibiting strong neuroprotective
properties [48]. Important dietary sources of polyphenols
include apples, berries, cocoa, herbs, redwines, seeds, onions,
and tea [49]. Dietary polyphenols have also been implicated
in prevention of oxidative damage and LDL oxidation [50–
52]. This review briefly outlines the pharmacological role of
polyphenols in preventing neurodegenerative diseases based
on the most recent scientific literature (Figure 1).

2. Polyphenols and
Pharmacological Properties

2.1. Alzheimer’s Disease and Dementia. Polyphenols exhibit
neuroprotective properties including therapeutic action in
AD and dementia. Green and white tea extracts have been
shown to inhibit acetylcholinesterase which indicates their
potential in treatment of age-related disorders such as AD
[53]. Green tea polyphenols protect primary rat cortical
neurons against A𝛽-induced cytotoxicity [54]. In mouse
model studies [55], polyphenols of grapes improved cognitive
functions in mouse model of AD. As well, epicatechin
metabolite 3󸀠-O-methyl-epicatechin-5-O-𝛽-glucuronide had
improved synaptic transmission through cyclic adenosine
monophosphate (cAMP) response element binding protein.
In transgenic mice model studies, grape seed polymeric
polyphenol extract has been shown to inhibit oligomerization
of A𝛽 peptides and contributed to reduction in cognitive
impairments in transgenic mice [56]. A similar study showed
that polyphenols of grapes exhibited potential in neutralizing
abnormal folding of tau proteins [57]. Earlier studies using
animal models [58, 59] also confirm anti-A𝛽 action of grape
seed polyphenols.

Resveratrol, a polyphenol abundant in grapes and red
wines, inhibited A𝛽 42 fibril formation [60] and protected
from A𝛽 neurotoxicity by inhibiting inducible nitric oxide
synthase inhibition [61]. Resveratrol, with possibly high
bioavailability in lipid core nanocapsules, exhibited thera-
peutic action in AD [62]. Flavonoid fisetin and its analogues
also inhibited A𝛽 fibril formation and have emerged as new
drug candidates for AD treatment [63]. Morin (2󸀠,3,4󸀠,5,7-
pentahydroxyflavone) has shown to prevent neuronal cell
death by protecting neurons against tau hyperphosphory-
lation induced by A𝛽 [64]. Similarly, in transgenic mouse
model studies [65], tannic acid has displayed the attenuation
of A𝛽 deposition by decreasing cleavage of 𝛽-carboxyl termi-
nal amyloid precursor protein (APP) fragment and controlled
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Figure 1: Neuroprotection by polyphenols against neurological disorders.

neural inflammation. A flavonoid, 7,8-dihydroxyflavone, has
been shown to improve cognitive abilities in 5XFAD trans-
genic mouse model of AD by activation of tyrosine receptor
kinase B leading to reduction in 𝛽-secretase enzyme levels
and amyloid beta (A𝛽) synthesis [66]. Similarly, liquiritigenin
improved memory in Tg2576 mice model of AD, as it
attenuated astrocytosis and decreased the Notch-2 expres-
sion as the latter can contribute to neuronal decay [67].
Unlike resveratrol, quercetin and rutin not only inhibited A𝛽
formation but also disaggregated A𝛽 fibrils in AD studies
[68]. Both compounds also prevented scopolamine-induced
amnesia in animal model systems [69]; however, resveratrol
did not reverse scopolamine-induced deficit [70]. Rutin has
been found to control oxidative stress, malondialdehyde, and
glutathione disulfide formation in SH-SY5Y neuroblastoma
cells. Rutin has also attenuated the inflammatory cascade by
decreasing cytokines like TNF-𝛼 and IL-1𝛽 [71]. Ferulic acid,
a phenolic acid, has also exhibited higher neuroprotection
against A𝛽 toxicity than quercetin [72]. Recent research find-
ings have shown that polyphenols have therapeutic relevance
in both cell and animal model studies.The ability of polyphe-
nols to improve synaptic transmission by elevating cAMP,
target multiple signaling pathways, and reduce A𝛽 toxicity
suggests their therapeutic utility for age-related disorders like
AD and dementia.

2.2. Multiple Sclerosis. Multiple sclerosis is a neurodegenera-
tive disease characterized by autoimmune-mediated demyeli-
nation in the CNS resulting in paralysis and cognitive deficits.

MS therapies can reduce inflammation and downregulate
immune function [73]. Resveratrol, a silent mating type
information regulation 2 homolog1 (SIRT1) activator, has
exhibited prevention of neural loss without immunosuppres-
sion in experimental autoimmune encephalomyelitis (EAE)
model of MS [74]. Pharmaceutical grade formulation of
resveratrol SRT501 was found to attenuate neural damage
in EAE through SIRT1 activation [75]. Cell culture studies
[76] have also shown SIRT1-mediated neuroprotection by
resveratrol. Quercetinwas found to control immune response
via modulation of IL-1𝛽 and TNF-𝛼 and reduced the pro-
liferation of peripheral blood mononuclear cells isolated
from multiple sclerosis patients [77]. Epigallocatechin-3-
gallate (EGCG) exhibited neuroprotective effects by mod-
ulating neuroinflammation and attenuating neural damage
[78]. Quercetin [79], apple polyphenols [80], myricetin, and
piceatannol [81] have also activated SIRT1, thus exhibiting
potential in MS treatment. Earlier studies have also shown
[82] that flavonoids limit demyelination in MS suggesting
their potential against neuro-inflammation and related dis-
orders. Preclinical data has shown that polyphenols exhibit
potential to block neural inflammation and damage by
activation of SIRT1 pathway alongwithmodulation of inflam-
matory cytokines. The potential of polyphenols on limiting
demyelination makes them prospective therapeutics in age-
related MS and amyotrophic lateral sclerosis (ALS).

2.3. Ischemic Stroke. Various epidemiological studies suggest
that diet rich in polyphenols can extend neuroprotection
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and lower the risk and severity of stroke, the third lead-
ing cause of mortality [83]. Experimental evidence using
rodent and cellular models also indicates neuroprotective
potential of dietary polyphenols in cerebral ischemia. Green
tea polyphenol, EGCG, has exhibited neuroprotective action
by downregulation of matrix metalloproteinases (MMP) in
mice model of cerebral ischemia [84]. Green tea polyphenols
have also been found to protect neurons against hypoxia-
induced ischemic injury by controlling inflammation cascade
and attenuating decline in transmembrane potential [85].
Quercetin has been found to attenuate ischemic injury by
controlling acid-sensing ion channel led calcium dysregula-
tion and lipid peroxidation in neurons [86]. Another study
with similar experimentation has supported neuroprotective
role of quercetin, based on its ability to block sodium
channels [87]. Quercetin with similar antioxidant therapy
to green tea polyphenols has reduced the level of MMP-
9 and attenuated blood-brain barrier disruption in cerebral
ischemia (CI) studies [88]. Researchers have also hypothe-
sized neuroprotective action of quercetin in CI to be based on
its inhibitory action against MMP [89]. Rutin has been found
to control neural damage in CI through downregulation of
p53, a proteinwhich leads to necrosis in stroke [90]. It has also
shown the attenuation of glutathione peroxidase, glutathione
reductase, and inflammatory cytokines in rodent model of
ischemic stroke [91]. In addition, resveratrol has been found
to extend protection against ischemic injury by improving
brain energy metabolism and controlling oxidative stress
during ischemia injury in animal model studies [92], along
with the modulation of release of multiple therapeutic
neurotransmitters and neuromodulators during ischemic
injury [93]. The flavonoid fisetin has shown neuroprotective
action during cerebral ischemia as it stopped infiltration
of macrophages and dendritic cells into ischemic hemi-
sphere, thus controlling neural inflammation and damage
[94]. Another flavonoid baicalin has been shown to reduce
ischemic stroke damage by targeting multiple therapeutic
targets like MMP-9 [95], caspase-3, oxidative stress [96],
and p38 mitogen-activated protein kinase (MAPK) [97] and
by downregulating toll-like receptor (TLR2/4) pathway [98].
The experimental data reveals that polyphenols may prevent,
attenuate, or slow down, via multiple mechanisms, the course
of stroke and age-related neural disorders. Since the risk for
stroke increases with age, consumption of polyphenol rich
diet seems to be an important preventive strategy.

2.4. Parkinson’s Disease (PD). PD is a neurodegenerative
disease accompanied by inflammation and oxidative stress
resulting in loss of dopaminergic neurons in the substan-
tia nigra [137]. Polyphenols with their ability to attenuate
oxidative stress and inflammation present therapeutic option
in neurodegenerative disease. Resveratrol has been shown
to inhibit the loss of dopaminergic neurons in rat model
of PD [76]. Resveratrol has also been shown to reduce
neural inflammation in PD by lowering mRNA levels of
cyclooxygenase-2 (COX-2) and TNF-𝛼 mRNA in the sub-
stantia nigra [100] along with attenuation of oxidative stress,
lipid peroxidation, and protein carbonyl (PC) in rat model
of PD [138]. Oxyresveratrol has demonstrated attenuation

of neural damage in SH-SY5Y cells by elevating levels of
SIRT1 and downregulating expression of caspase-3, c-Jun N-
terminal kinase (JNK), and c-Jun transcription factors [139].
Ferulic acid, like oxyresveratrol, has demonstrated neuro-
protective effect via downregulation of JNK pathway [140].
Quercetin administration to neurons attenuated 1-methyl-
4-phenylpyridinium (MMP) evoked microglia activation,
which is a precursor for PD pathogenesis [124]. Studies have
also shown that quercetin promises neuroprotection in PD
mice model by stimulating glutathione peroxidase (GPx),
superoxide dismutase (SOD), Na(+), and K(+)-ATPase [141].
Quercetin suppressed cell death in PD cell model while
its metabolite quercetin-3-O-𝛽-glucuronide, due to its low
absorption, did not affect cell viability [142]. Another study
showed that conversion of quercetin metabolites to its agly-
cone in neural cells is essential for neuroprotective activity
[143].These studies had shown consistent results as compared
to a contradictory report [144] which showed that quercetin
had no neuroprotective role in PD cells and ratmodels. Other
polyphenols such as baicalein [145], kaempferol [146], caffeic
acid [147], and EGCG [148] have been shown to extend neu-
roprotection in PD studies. Similarly, polyphenolic extracts
from various plants have also exhibited pharmacological role
in PD studies. For instance, polyphenols-rich mulberry fruit
extracts have shown antioxidant and antiapoptotic effect in
SH-SY5Y cells by modulating caspase-3, B-cell lymphoma
(Bcl-2), and BCL2-associated X protein (Bax) [149].

2.5. Huntington’s Disease. CAG triplet nucleotide repeats
and expanded polyglutamine region of huntingtin protein
form basis of HD [30]. Polyphenols hold pharmacologi-
cal relevance, as they are associated with numerous bene-
fits including antiaging, anti-inflammatory, and anticancer
effects. Resveratrol has been found to exhibit positive effects
in transgenic mouse model of HD via SIRT1 activation
of peroxisome proliferative activated receptor, gamma, and
coactivator 1 alpha (PGC-1𝛼) signaling pathway [76]. Stud-
ies have further demonstrated the Ras-extracellular signal-
regulated kinase activation by resveratrol and fisetin as the
basis for neuroprotection in models of HD [150]. Likewise,
hesperidin and naringenin, abundant in citrus fruits, induced
neuroprotection in rats possibly via nitric oxide synthase
(NOS) inhibition [151]. Curcumin has been shown to con-
trol Huntington aggregates and improve various transgene-
dependent parameters, thereby promising therapeutic action
in HD [152]. Grape and green tea polyphenols have also
exhibited potential for treating/preventingHDdisease patho-
genesis [153, 154]. The overall preclinical data suggests that
polyphenols extend strong neuroprotection through genetic
and immunological modulation, thus promising clinical pre-
vention or delay of neurological disorders like PD and HD.

3. Polyphenols and Oxidative Stress

A large body of literature supports the antioxidant potential
of polyphenols against oxidative stress. Resveratrol is a potent
antioxidant in vitro [155] and in vivo as it attenuates oxidative
stress in both animal [156] and various cell model studies



Oxidative Medicine and Cellular Longevity 5

[157]. Resveratrol has been shown to extend antioxidant effect
by reducing the production of reactive oxygen species (ROS)
and superoxide ions [158]. Similarly, quercetin has also shown
protection against oxidative stress and related disorders [159].
In a variety of cell and disease models, quercetin has been
shown to engage in various signaling pathways to attenuate
oxidative stress and exhibit pharmacological properties [51,
114]. Polyphenol-rich green tea and its principal constituent
EGCG were found to ameliorate oxidative stress in various
studies [160, 161]. Other polyphenols such as puerarin [162],
baicalin [163], and phloridzin [136] also attenuated oxidative
stress in various disease models. Apart from in vitro and in
vivo evidence, sufficient clinical evidence also suggests the
antioxidant potential of polyphenols. A clinical study [164]
showed that polyphenol-rich diet reduced LDL oxidation and
modulated cluster of differentiation 40-ligand (CD40L) gene
expression, thus controlling atherogenesis and inflammation
in humans. Polyphenol-rich fruit extracts have been shown
to control free radicals and ROS. Polyphenol-rich bilberry
juice was found to decrease oxidative stress and inflam-
matory markers in humans [165]. A 13-year long clinical
study indicated that higher intake of antioxidant polyphenols
including flavonoids and phenolic acids helps in improving
memory and has potential for inhibiting brain aging [166].
Antioxidant-rich polyphenol supplementation as beverage
has also been found to decrease plasma total homocysteine,
thus contributing to attenuation of AD pathology [167]. It
can be concluded that polyphenols are strong antioxidants
in vitro and in vivo in both animal models and humans.
Clinical translation of polyphenols as antioxidant therapy is
a promising approach to attenuate oxidative damage due to
aging and age-related disorders.

4. Polyphenols and Signal
Transduction Pathways

4.1. Akt/P13K/mTOR Pathway. Resveratrol has exhibited
neuroprotection against brain ischemia through P13K/Akt
pathway by downregulating the expression of glycogen
synthase kinase 3 (GSK-3𝛽) and cAMP response element
binding (CREB) proteins [99]. Resveratrol increased cAMP
and modulated Akt pathway in cell model studies [144].
Baicalein also protects against ischemia through P13K/Akt
pathway [126]. The scientific evidence suggests therapeutic
intervention by polyphenols via P13K/Akt pathway (Table 1).

4.2. NF𝜅B Pathway. NF𝜅B is an important mediator in infla-
mmatory process and contributes to A𝛽 toxicity. Flavonoids
and other dietary polyphenols have shown neuroprotec-
tive effects in neuronal ischemia through NF𝜅B pathway.
Flavonoids, including kaempferol, quercetin, acacetin, api-
genin, and luteolin, inhibit A𝛽1-40 and A𝛽1-42 via NF𝜅B
pathway downregulation [101]. Similarly, soybean isoflavone
had reversedmemory impairment in rats through decrease in
NF𝜅B expression [102]. Other flavonoids such as resveratrol
and baicalin inhibit A𝛽-induced neural inflammation via
a mechanism involving downregulation of NF𝜅B signaling
pathway [103, 168]. Activation of NF𝜅B is an important event

Table 1: Neuroprotective signal transduction by polyphenols.

Pathway Polyphenol References
P13K/AkT pathway Resveratrol [99, 100]

Baicalein [97]

NF𝜅B pathway Kaempferol, acacetin,
apigenin, luteolin [101]

Soybean isoflavones [102]
Fisetin [94]

Resveratrol [103]
Baicalein [104]
Silymarin [105]

Tetrahydroxystilbene [58]
Quercetin [101, 106]

Catechin hydrate [94]
STAT pathway Silymarin [105]
PPAR pathway Baicalein [104]

Resveratrol [107]
Pterostilbene [108]

Nrf2/HO1/ARE pathway Epicatechin [109]
Resveratrol [110]

HIF-1𝛼 Xanthohumol [111]
Resveratrol [112]

MAPK Flavone glycoside [113]
Quercetin [114]

in ischemic injury and contributes to both inflammation
and cell death [21]. Silymarin, a flavonolignan from milk
thistle (Silybum marianum), has protected against cerebral
ischemia by inhibiting signal transducer and activating
transcription (STAT-1) pathway and NF𝜅B [105]. Tetrahy-
droxystilbene glucoside from Polygonum multiforum has
protected neurons from cerebral ischemia by activating SIRT1
and inhibiting NF𝜅B signaling pathway in neurons [58].
Quercetin administration has also protected rat brain against
oxidative stress and hypoxia-induced damage through NF𝜅B
inhibition [106]. Similarly, catechin hydrate and fisetin have
been shown to protect rat brain against ischemic injury
and oxidative damage by inhibiting expression of NF𝜅B and
proinflammatory cytokines such as IL-1𝛽 and TNF-𝛼 [83,
94]. It is observed that recent research advances confirm
an immunomodulatory role of polyphenols as they control
inflammatory response by inhibiting NF𝜅B expression.

4.3. PPAR Pathway. Peroxisome proliferator activated recep-
tor gamma (PPAR gamma) plays a role of a biomarker in
cerebral ischemia as CI results in its upregulation and
translocation to nucleus from the cytosol. Baicalein has
reversed PPAR gamma expression and also suppresses its
translocation to nucleus [104]. Resveratrol has attenuated
the MMP-9 by modulating the peroxisome proliferator acti-
vated receptor (PPAR) alpha expression in hypoxia model
of neurons [107]. Pterostilbene, a resveratrol derivative, has
significant effect on the downregulation and normalization
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of PPAR-𝛼 expression in SAMP8 mouse model studies [108].
The scientific evidence shows that benefits associated with
polyphenols in age-related and other disorders are associated
with downregulation of PPAR pathway.

4.4. Nrf2/ARE/HO1 and HIF-1 Pathway. Nuclear factor (ery-
throid-derived 2-) like 2 (Nrf2) pathway is also involved
in Sestrin2 (Sesn2), also known as Hi95, a p53 target gene
expression which leads to encoding of antioxidant proteins
[169]. Epicatechin has protected neurons against stroke and
oxidative stress by upregulation of Nrf2 cascade and heme
oxygenase-1 (HO1) enzyme [109]. Similarly, resveratrol has
also been shown to protecte brain through increased expres-
sion of Nrf2, HO-1 expression, and downregulation of apop-
totic enzymes like caspase-3 [110]. Xanthohumol, a preny-
lated chalcone, has demonstrated neuroprotective action
by inhibiting HIF-1 pathway and it further stopped signal
transduction pathway leading to apoptosis by caspases [111].
Resveratrol, apart from Nrf2 and HO-1 expression, has pro-
tected against ischemic injury in cells by downregulation of
mRNA expression of hypoxia inducible factors-1𝛼 (HIF-1𝛼)
[112]. Upregulation of Nrf2 and HO-1 pathways by polyphe-
nols in response to oxidative insult shows protective role of
these compounds in brain health and oxidative damage.

5. Polyphenols and Immune Response

Proinflammatory cytokines and genes contribute to inflam-
mation and neuronal death in various neurological disor-
ders. Most of the therapeutics target cytokines and other
immune responses for therapeutic intervention. Polyphenols
are well known for their anti-inflammatory activities and
thus control neuroinflammation and neural death. EGCGhas
been found to inhibit expression of monocyte chemotactic
protein (MCP-1/CCL2) and IL-1𝛽, thus protecting blood-
brain barrier (BBB) integrity during pathological inflamma-
tion [170]. In another study, EGCG inhibited cytokine and
chemokines including IL-1𝛽, IL-6, andMCP-1 [116]. Resvera-
trol has also controlled hippocampal inflammation by reduc-
ing expression of MCP-1 mRNA levels [118]. Polyphenols,
that is, catechin, caffeic acid, and transresveratrol, reduced
production of inflammatory markers MCP-1, MIP-1𝛼, MIP-
1𝛽, chemokine receptor-1 (CCR1), and CCR2 in vascular
wall [119]. Polyphenol-rich olive oil controlled inflamma-
tion by inhibiting proinflammatory CD40, a costimulatory
protein found on antigen presenting cells, gene expression
[164]. EGCG reduced expression of inflammatory cytokines
and chemokines such as chemokine (C-X-C motif) ligand
(CXCL10), CCL22, CCL 17, and TGF-𝛽, promising strong
neuroprotection in AD and stroke [117]. Quercetin has been
shown to inhibit proinflammatory cytokines like IL-1𝛽, IL-
6, COX-2, CD40, and TNF𝛼 receptor-associated factor-1
(TRAF1) [120]. A similar study [121] showed that quercetin
exhibits neuroprotective effect in PC12 cells and zebrafish
possibly by downregulating expression of proinflammatory
genes like IL-1𝛽 and COX-2. Resveratrol also reduced neu-
roinflammation and improved memory along with IL-1𝛽
inhibition [115]. Resveratrol has exhibited restoration of BBB

Table 2: Modulation of cytokines and inflammatory targets by
polyphenols.

Polyphenol Target References
EGCG IL-1𝛽 [115]

IL-6 [116]
MCP-1 [115]

CXCL 10, [116]
CCL22, CCL 17 [117]

TGF 𝛽 [117]
Resveratrol MCP-1 [118]
Catechin MCP-1 (𝛼 and 𝛽) [119]
Caffeic acid CCR1, CCR2 [119]
Quercetin IL-1𝛽, IL-6 [120]

COX-2 [120]
COX-20, TRAF1 [121]

Apple polyphenols IL-1𝛽, IL-6, IL-17, IL-22
CXCL-9, CXCL-10, CXCL-11, [122, 123]

integrity and inhibited rising levels of IL-17A, T-helper 17
lymphocytes, and MMP [171]. Apple polyphenols have also
reduced expression of a wide range of neuroinflammatory
markers including IL-1𝛽, IL-6, IL-17, 1L-22, CXCL9, CXCL10,
CXCL11, and IFN-𝛾, thus providing immune-modulatory
effects against inflammation [122]. Studies have also shown
that blueberry and apple polyphenols can attenuate neu-
roinflammation and improve cognitive impairment, possibly
by lowering the expression of IL-1𝛽 and TNF𝛼 in rat hip-
pocampus [172, 173]. About 20 structurally related flavonoids
have been shown to inhibit hypoxia-induced STAT3 tyrosine
phosphorylation promoting cell survival [174]. Fisetin and
quercetin protected neurons against LPS-induced inflam-
mation by inhibiting TNF𝛼 production and JNK/Jun phos-
phorylation [120, 139]. Resveratrol administration during
ischemic stroke inhibits neuronal damage alongwith reduced
expression of IL-1𝛽 and TNF𝛼 [175]. Overall, polyphenols
modulate immune response in neurodegenerative diseases
as they induce expression of antiapoptotic factors, control
neuroinflammation, and modulate cell signaling under stress
(Table 2). These features of polyphenols make them strong
neuroprotective candidates and support their translation
from laboratory to clinical trials.

6. Polyphenols and Metal Ion Chelation

Iron and copper play important roles in the generation of
ROS through redox cycling and subsequent neurodegenera-
tion. Metal accumulation in brain contributes to pathology
of diseases like AD, MS, PD, and HD [176, 177]. EGCG
exhibited iron chelating ability in SH-SY5Y neuroblastoma
cells along with the inhibition of apoptotic factors like BCL2-
associated agonist of cell death (Bad), Bax, and caspase-3
[178]. EGCG has exhibited stronger chelation of iron com-
pared to desferrioxamine and increased transferrin recep-
tor protein along with the elevation in mRNA levels in
SH-SY5Y neuroblastoma cells [179]. Electron paramagnetic
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resonance studies [180] demonstrated the interaction of
EGCG and gallic acid as ligands to copper coordination
sphere, thus demonstrating Cumodulatory potential of these
polyphenols. Also, iron modulation by curcumin in rat
brain homogenate has been observed, thus warranting that
curcumin-based therapy in AD and PD disease models [181].
Curcumin has extended neuroprotection in a rat model of
PD against 6-hydroxydopamine treatment through its iron
chelating activity and reduced degeneration of neurons [182].
Similarly, curcumin’s ability to reverse neurodegeneration
in hemi-Parkinson’s mice model has been shown [183].
Apart from iron chelation, NF𝜅B modulation by curcumin
has also contributed to the reduction in 6-OHDA-induced
neurodegeneration [184]. Rosmarinic acid, a phenolic acid
found in Lamiaceae herbs, protected neurons against 6-
OHDA treatment by lowering the expression of Bax/Bcl-
2 at gene level and decreasing iron level in both MES23.5
dopaminergic cells and ratmodel of PD [185, 186]. It is evident
that polyphenols are potent metal chelators and extend
neuroprotection against iron- and copper-induced oxidative
stress and neurotoxicity via metal chelation, modulation of
signal transduction, oxidative stress, and inflammation.

7. Polyphenols and Prions

Prion proteins are involved in neurodegenerative diseases,
and their conformational transition forms basis of prion
diseases. The pathology of prion proteins has been inhibited
by EGCGandECG, thus exhibiting neuroprotective potential
[187]. Studies have also confirmed the antiprion activity of
resveratrol through autophagy activation in neuroblastoma
cells [188]. Resveratrol also protected mouse neurons against
PG14-PrP (mutant prion protein) expression [189]. Cur-
cumin also downregulated the prion pathology in neurob-
lastoma cells [190]. Therefore, polyphenols seem to protect
neurons against prion diseases by controlling prion mutation
and pathology.

8. Polyphenol and Anti
Acetylcholinesterase Activity

Pathology of neurodegenerative diseases including AD
includes deficiency of neuromediator acetylcholine, thus
making acetylcholinesterase (AChE) inhibitors as important
clinically relevant drugs in AD and other dementia [191].
Black chokeberry extract, a rich source of polyphenols,
in combination with lemon juice inhibited AChE [192].
The prenylated flavonols from paper mulberry (Broussonetia
papyrifera) were potent inhibitors of AChE, thus exhibiting
neuroprotective potential [193]. Studies have shown that
a polyphenol-rich blueberry extract also inhibited AChE
activity in vitro [194]. Polyphenols extracted from Paulownia
tomentosa fruits exhibited inhibitory action against both
AChE and butyrylcholinesterase (BChE) [195]. Quercetin
was found to improve cognitive ability and exhibit neu-
roprotection against trimethyltin-induced neurotoxicity by
inhibitingAChE [196]. A report has also shown that quercetin
inhibited AChE activity and improved cognitive abilities in

streptozotocin-treated mice [197]. Quercetin and maclurax-
anthone, fromMaclura tinctoria andDyer’smulberry, respec-
tively, inhibited both AChE and BChE in vitro by competitive
and noncompetitive inhibition, respectively [191]. Molecular
docking studies [191] have indicated the hydrophobic inter-
actions and strong hydrogen bonding of both flavonoids with
enzymes as basis of their inhibitory activity. Polyphenols from
Cistus laurifolius L. also exhibited cholinesterase inhibitory
effects againstAChE andBChE, supporting a neuroprotective
role of polyphenols [198]. A herbal tea from Paulownia
barbatus leaves reduced AChE activity by 40% and its princi-
pal constituent, natural polyphenol rosmarinic acid, reduces
AChE activity by 25% [199]. Galangin, a flavonol isolated
from rhizome of Alpiniae officinarum, has also exhibited
strong AChE inhibition [200]. EGCG enhances huperzine
A’s (acetylcholinesterase inhibitor) effects against AChE as
its supplementation leads to 88–91% inhibition [201]. Later
reports have supported that EGCG supplementation with
huperzine A improves cognitive abilities in AD [202].
Linarin, a flavonoid found in Linaria species, inhibited AChE
activity in neuronal PC12 cells and extended potential for
neuroprotection in AD and related disorders [203]. All these
pieces of evidences suggest that polyphenols are potent AChE
and BChE inhibitors, thus warranting neuroprotection and
improved cognitive functions in AD and related dementia.

9. Polyphenols and
Autophagy-Related Proteins

Flavonoids such as hesperetin and hesperidin inhibited
A𝛽-induced glucose metabolism impairment in neurons
and downregulated A𝛽 stimulated autophagy, resulting in
improved cognitive functions [204]. Kaempferol also pro-
tected SH-SY5Y and primary neurons from rotenone toxicity
through induction of autophagy [154]. Resveratrol exhibited
neuroprotective effect by activating AMPK-SIRT1 autophagy
pathway in PD cell model studies [205]. Brain-related
autophagy studies have a wide research gap, and polyphe-
nols have strong potential for inducing neuroprotection via
autophagy and its related pathways.

10. Polyphenols as Neuronal
Mitochondria Medicine

Polyphenols from wine are known to reduce oxidative stress
and increase the expression of antioxidant enzymes like cata-
lase, superoxide dismutase, glutathione reductase, and glu-
tathione peroxidase [131]. Resveratrol upregulates antiapop-
totic Bcl-2 protein and downregulates Bax protein expression
[206]. Resveratrol also acted as mitochondrial antioxidant
by elevating the levels of antioxidants trioredoxin-2 (TRX2)
and X-chromosome-linked inhibitor of apoptosis protein
[207]. Another study has shown that resveratrol increased
expression of Bcl-2, thus preventing neuronal apoptosis
[100]. Similarly, resveratrol controlled oxidative stress in
PC12 cells and inhibited mitochondria-mediated apoptosis
by downregulating Bax and upregulating Bcl-2 [112]. Simi-
larly, lutein has shown protection of mice against ischemic
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Table 3: Modulation of mitochondrial targets by polyphenols.

Target Polyphenol Effect References
AP-1 EGCG Downregulation [116]
Bad/Bax Resveratrol Downregulation [112]

Ferulic acid Downregulation [124]
Bcl-2 Lutein Upregulation [125]

Baicalein Upregulation [126]
Cox-2 Lutein Downregulation [125]

Hesperidin Downregulation [127]
Hibiscus sabdariffa polyphenols Downregulation [128]

GCLM Chrysin, apigenin, luteolin Upregulation [129]
GCLC Chrysin, apigenin, luteolin Upregulation [129]
GPX EGCG Upregulation [130]

Red wine polyphenols Upregulation [131, 132]
3,3󸀠,5,5󸀠-tetra-t-butyl-biphenyl-4,4󸀠-diol Upregulation [133]

HO-1 Butein, apigenin Upregulation [129]
Luteolin Upregulation [134]

IFN-𝛾 Quercetin Downregulation [135]
JNK Quercetin Downregulation [135]

EGCG Downregulation [116]
Hibiscus sabdariffa polyphenols Downregulation [128]

JUN Quercetin Downregulation [135]
SOD Phloridzin Upregulation [136]

injury by enhancing the Bcl-2 levels and downregulated
Cox-2 and pancreatic ER kinase (PERK) [125]. Baicalein
also regulated Bcl-2 and antagonized cytochrome c release
in cytosol [126]. Similarly, ferulic acid, a phenolic acid,
attenuates mitochondria apoptosis by inhibiting Bax, tBid
expression, and elevating Bcl-2-like proteins [124]. Important
transcription factors of ERK/Nrf2 pathway like glutamate
cysteine ligase catalytic (GCLC) and glutamate-cysteine lig-
ase, modifier subunit (GCLM), are upregulated by flavones
like chrysin, apigenin, and luteolin to combat oxidative stress
[129]. Glutathione peroxidase (GPx) levels were modulated
by red wine polyphenols resulting in combat of oxidative
stress [132]. Similarly, phenolic antioxidant 3,3󸀠,5,5󸀠-tetra-t-
butyl-biphenyl-4,4󸀠-diol also controlled expression of GPx
andHIF-1𝛼 in hypoxia studies [133]. Various polyphenols like
butein, phloretin, chrysin, apigenin, and luteolin activated
HO-1 (HMOX1), GCLC, and GCLM through expression of
ERK/Nrf2 pathway [129, 134]. Quercetin has also downreg-
ulated inflammatory cascade by lowering the expression of
JNK, c-Jun, and interferon-𝛾 inducible protein [135]. Simi-
larly, p-JNK and COX-2 were downregulated by polyphenols
from Hibiscus sabdariffa L. providing relief from oxidative
stress and pathological inflammation [128]. EGCG controlled
mitochondria lead inflammation by lowering transcription
of JNK and activator protein-1 (AP-1) [116]. Neuroprotection
through the phosphatidylinositol 3-kinase (P13K) andMAPK
has also been shown by flavone glycoside [113]. Hesperidin
carsonic acid, a major rosemary polyphenol, exhibited strong
anti-inflammatory action in neurons under hypoxia stress
by inhibiting ROS, MAPKs, caspase-3, and COX-2 [127].
Lowering of JNK serves as mitochondrial therapy not only

in stroke but also in AD as JNK activation in AD brain
leads to tau hyperphosphorylation and A𝛽 pathogenesis
[208]. Curcumin and resveratrol exhibited neuroprotection
through increased activity of NAD(P)H quinone oxidoreduc-
tase (NQO1) via Nrf2 pathway in astrocytes [209]. Similarly,
structurally modified isomers of resveratrol also elevated the
NQO1 activity, thus promising antioxidant effects through
NRf2 pathway [210]. ECG modulated endophilin-B1, also
known as SH3GLB1, which is required for maintaining
mitochondrial morphology and plays important role in
apoptosis [211, 212]. EGCG has also increased expression
of mitochondrial antioxidant enzymes including superoxide
dismutase (SOD) and glutathione peroxidase (GPX1) [130].
Flavonoid-enriched fraction (AF4) isolated from the peel
of “Northern Spy” apples has been shown to suppress the
expression of IL-1𝛽, TNF-𝛼, and IL-6 in a mouse model of
hypoxic-ischemic (HI) brain damage [123]. Phloridzin, also
an apple polyphenol, has been shown to increase expression
of SOD1 and SOD2 genes, thus protecting mitochondria
against oxidative stress [80]. Polyphenols are importantmito-
chondrial therapeutics as they play a role in mitochondrial
biochemistry by modulating apoptosis, antioxidant action,
signal transduction, and inflammation (Table 3).

11. Polyphenols and Ion Channels

The neuroprotective benefits of polyphenols are often attri-
buted to their antioxidant activity and their ability to mod-
ulate the cell signaling pathways [105, 124, 155]. Sodium
channels (Nav 1.5) involved in pathology of MS were found
to be blocked by red grape polyphenols like quercetin,
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Figure 2: Chemical structure of polyphenols with therapeutic use in age-related neurological diseases.

catechin, and resveratrol in rodent and cell model studies
[87, 213]. G protein-coupled inwardly rectifying potassium
(KIR3) channels, involved in neuron signaling andmembrane
excitability [214], are activated by naringin (flavonoid gly-
coside), thus exhibiting potential for improving cognition
in AD [215]. EGCG’s neuroprotective effect was proposed
to occur through inhibition of high-voltage-activated cal-
cium currents (𝐼HVA) and NMDA-induced inward currents
(𝐼NMDA) along with elevation of Ca2+ through PLC-IP

3

pathway [216]. Similarly, curcumin exhibited modulation
of a wide range of ionic channels including Ca2+-release-
activated Ca2+ channels (𝐼CRAC), voltage-gated K+ channel
(𝐼Kv), intermediate-conductance Ca2+-activated K+ channel
(𝐼SK4), and the cytoplasmic Ca2+ concentration Δ[Ca2+]C in
Jurkat-T cells [217]. However, the current literature has a
research gap of specific ion channel study (Kv3 subfamily of
K+ channel subunits) in disease-specific conditions. Overall,

the ability of polyphenols to modulate ion channels and
action potential [218] complements their ability to protect
neurons from disorders and thus supports the growing evi-
dence that polyphenolsmay act as neuroprotectants in several
neuropathological conditions.

12. Concluding Remarks

In conclusion, recent scientific evidence suggests that neu-
rodegenerative diseases are accompanied by oxidative stress,
inflammation, metal accumulation, and mitochondrial dys-
functions. Various physiological mechanisms are altered by
these pathological changes which contribute to etiology of
neurodegenerative diseases like stroke, MS, PD, AD, andHD.
The prevention and treatment of these disorders with com-
plex mechanisms need novel therapeutic strategies targeted
formultiple genes and proteins. Polyphenols are natural plant
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secondary metabolites which exhibit remarkable multipotent
ability to control and modulate ROS, metal toxicity, inflam-
mation, apoptosis, signal transduction, ion channels, and
neurotransmitters. Polyphenolic dietary antioxidants, partic-
ularly resveratrol, EGCG, quercetin, and other fruit polyphe-
nols, are potent neuroprotectants (Figure 2). Their direct
usage and dietary supplementation could act as antioxidant
and neuroprotective therapy for treatment of these diseases.
Most of experimental and epidemiological studies suggest
that dietary polyphenols activate antioxidant pathways such
as Nrf2/HO1 and downregulate NF𝜅B, MMPs, PPAR, HIF-
1, and STAT pathways. Polyphenols also modulate immune
response by inhibiting proinflammatory biomarkers such as
CCL17, CCL22, CCR1, CCR2, MIP1𝛼, MIP 1𝛽, CXCL (9,
10, 11), IFN-𝛾, TNF-𝛼, and IL(1𝛽, 6, 17A, 22). These salient
properties of polyphenols help to reduce two hallmarks of
neurodegeneration, that is, oxidative damage and inflamma-
tion.

Polyphenols also protect mitochondria from pathological
events by triggering prosurvival cell signaling. Polyphenols
increase antioxidant enzymes, that is, catalase, superoxide
dismutase (SOD1, SOD2), and prosurvival Bcl-2 and PERK
pathways. Downregulation of Bad/Bax, c-jun, JNK, COX-
2, AP-1, and caspase-3 also contributes to the survival of
neurons. Polyphenols also help in improving cognitive abil-
ities by inhibiting AChE and BChE. The inhibition of these
enzymes plays an important role in clinical medicine of AD.
Apart from their anti-AChE activity, polyphenols also induce
metal chelation and modulate autophagy and prion proteins.
These features along with reduction of A𝛽 toxicity, reduction
of neural lesions, and activation of cell survival genes are
of particular relevance to neurodegenerative diseases. The
activation of novel spectrum of these molecular targets forms
underlying mechanism of neuroprotection by polyphenols.
The lack of toxic effect and availability from natural sources
makes polyphenols as clinically relevant therapeutics in
neurodegeneration.

The future of polyphenol research needs to aim towards
clinical acceptance of health claims from preclinical in vitro
and animal model studies. Therefore, future studies focusing
on human clinical trials of several potent polyphenols and
their combinations should be carried out. Furthermore,
polyphenols must be investigated for the risk assessment
and safety evaluation to observe any undesirable effects. The
success in clinical research of polyphenols will decide their
pharmacological relevance for humans.
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PC: Protein carbonyl
PD: Parkinson’s disease
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PI3K: Phosphatidylinositol 3-kinase
PPAR: Peroxisome proliferator activated receptor
PrP(c): Cellular prion protein
ROS: Reactive oxygen species
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homolog1
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[164] O. Castañer, M. I. Covas, O. Khymenets et al., “Protection of
LDL from oxidation by olive oil polyphenols is associated with a
downregulation of CD40-ligand expression and its downstream
products in vivo in humans,” The American Journal of Clinical
Nutrition, vol. 95, no. 5, pp. 1238–1244, 2012.

[165] A. Karlsen, I. Paur, S. K. Bøhn et al., “Bilberry juice modulates
plasma concentration of NF-𝜅B related inflammatory markers
in subjects at increased risk of CVD,” European Journal of
Nutrition, vol. 49, no. 6, pp. 345–355, 2010.

[166] E. Kesse-Guyot, V. A. Fezeu L, Andreeva et al., “Total and spe-
cific polyphenol intake in midlife are associated with cognitive
function measured 13 years later,”The Journal of Nutrition, vol.
142, no. 1, pp. 76–83, 2012.

[167] J. M. Morillas-Ruiz, J. M. Rubio-Perez, M. D. Albaladejo, P.
Zafrilla, S. Parra, andM. L. Vidal-Guevara, “Effect of an antiox-
idant drink on homocysteine levels in Alzheimer’s patients,”
Journal of the Neurological Sciences, vol. 299, no. 1-2, pp. 175–
178, 2010.

[168] X. Xue, X. J. Qu, Y. Yang et al., “Baicalin attenuates focal cere-
bral ischemic reperfusion injury through inhibition of nuclear
factor 𝜅B p65 activation,” Biochemical and Biophysical Research
Communications, vol. 403, no. 3-4, pp. 398–404, 2010.

[169] B. Y. Shin, S. H. Jin, I. J. Chou, and S. H. Ki, “Nrf2-ARE path-
way regulates induction of Sestrin-2 expression,” Free Radical
Biology and Medicine, vol. 53, no. 4, pp. 834–841, 2012.

[170] J. Li, L. Ye, X. Wang et al., “(-)-Epigallocatechin gallate inhibits
endotoxin-induced expression of inflammatory cytokines in
human cerebral microvascular endothelial cells,” Journal of
Neuroinflammation, vol. 9, no. 161, pp. 1–13, 2012.

[171] A. Saha, C. Sarkar, S. P. Singh et al., “The blood brain barrier
is disrupted in a mouse model of infantile neuronal ceroid
lipofuscinosis: amelioration by resveratrol,” Human Molecular
Genetics, vol. 21, no. 10, pp. 2233–2244, 2012.

[172] B. Shukitt-Hale, F. C. Lau, A. N. Carey et al., “Blueberry poly-
phenols attenuate kainic acid-induced decrements in cognition
and alter inflammatory gene expression in rat hippocampus,”
Nutritional Neuroscience, vol. 11, no. 4, pp. 172–182, 2008.

[173] M. Jung, S. Triebel, T. Anke, E. Richling, and G. Erkel, “Influ-
ence of apple polyphenols on inflammatory gene expression,”

Molecular Nutrition and Food Research, vol. 53, no. 10, pp. 1263–
1280, 2009.
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