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Editor’s key points

e Neuroimaging can improve our understanding of pain
mechanisms, analgesic action and the placebo effect.

¢ New modelling approaches can explore the dynamic processes
influencing pain perception.

e Neural mechanisms of the effects of personality and expectancy
on pain perception and analgesia have been explored.

e Future developments will continue to expand our knowledge of
pain mechanisms, allowing translation from laboratory to clinic.

Pain is an unpleasant sensation that is associated with, or
described in terms of, a bodily injury.’ Clinicians have long
regarded pain as a symptom or warning of disease that
should be investigated to expedite treatment of pathology. Un-
fortunately, medicine does not yet possess every cure, or
indeed knowledge of every pathophysiology that can generate
pain. Pain can persist despite the best efforts of physicians.
Chronic pain is currently defined by the duration of physical
symptoms but is, in reality, suffering strongly associated with
feelings of anxiety, depression, and despair.”

In the individual, chronic pain is highly influenced by
disease pathophysiology, psychological state, and social
milieu. The pathogenesis of chronic pain syndromes is often
unclear. Research continues to suggest specific patho phy-
siologies that may distinguish between different chronic
pain syndromes, forexample, fibromyalgia, complex regional
pain syndrome. Whether these clinical syndromes can be dis-
tinguished as diseases in their own right with specific treat-
ments, or considered as a collection of symptoms that are
driven by shared mechanisms, remains unclear. Regardless,
psychosocial factors can supervene to influence how pain is
perceived or reported by patients, and these factors can
operate unconsciously. Their contribution to the chronic
pain state further determines appropriate and holistic
management of the patient. Hence, there is a desperate
need for additional methods that can quantify disease load
or psychosocial contributions to the chronic pain state in
patients.

In the fifth century BC, Hippocrates declared that pain, like
all consciousness, must emerge from brain activity.> Robust
scientific evidence for that philosophical intuition arrived
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much later (two decades ago) with the demonstration of
increased and localized brain activation during pain in
humans.” We now accept that pain may be caused by bodily
injury, but as a consciousness, must be generated in the brain.

Functional magnetic resonance imaging (fMRI), positron
emission tomography (PET), magnetoencephalography (MEG),
and scalp electroencephalography (EEG) are commonly used
to study the neural bases of pain. Researchers are also increas-
ingly using other magnetic resonance-based measures (e.g.
diffusion tensor imaging, spectroscopy, and volumetric
imaging) to assess pain-related changes in the brain’s wiring,
chemistry, and structure in order to gain further insights into
the neurobiology of pain, particularly chronic pain. There are ex-
cellent reviews written recently to summarize the findings of
neuroimaging studies in healthy individuals and in patients.” ©
Here, we focus on recent neuroimaging studies that continue
to shape our understanding of pain in headlth, disease, and
illness. We review the progress in neuroimaging research that
is contributing to the development of clinically relevant tools
for the management of pain in patients.

The pain ‘neuromatrix’

Neuroimaging studies have now identified several cortical
regions in humans that are considered to be important for
the perception of pain. The primary and secondary somatosen-
sory cortices (insular and anterior cingulate) and the prefrontal
cortices (PFCs) are commonly activated, often bilaterally, and
during painful experiences. Furthermore, altered activity in sub-
cortical areas (e.g. brainstem periaqueductal grey (PAG), hypo-
thalamus, amygdala, hippocampus, and cerebellum) is also
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observed during pain. Thus, activity within several diverse regions
of the brain seem to be necessary for the multidimensional ex-
perience that is pain.”~® Some of these regions comprise the
so-called ‘pain neuromatrix’,’® a term that is often misused, in
which multiple inputs are processed to produce an output (neuro-
signature) that is bespoke for an individual depending on context,
mood and cognitive state.? Hence, pain is the product of a widely
distributed and variably accessible neural network in the brain,
rather than an inevitable consequence of noxious stimulation.
Current research suggests that parts of this network can be
accessed by non-nociceptive events or inputs to produce ‘pain-
like’ experiences (e.g. during empathy for others,'* romantic re-
jection,*” and social exclusion).”® Hypnotically induced pain in
susceptible individuals' and central post-stroke pain are
further examples that illustrate the latent capacity of the brain
to elicit pain without concomitant peripheral nociceptive inputs.

Remarkably, none of the brain regions identified above is
uniquely associated with pain; they are also involved in many
other sensory, motor, cognitive, and emotional functions. Some
regions within the so-called pain neuromatrix exhibit signifi-
cantly correlated activity with sensory or emotional descriptions
of the painful experience, suggesting that they have a signifi-
cant role in pain generation but no brain region has been
shown to be exclusively activated during pain experiences.'>"
'8 Disruption of the specific regions within this pain matrix by
cortical lesions very rarely remove or ‘numb’ pain completely.*?
20 syrgical cingulotomies, performed for intractable pain syn-
dromes, may reduce emotional or motivational aspects of the
clinical pain state but leaves intact the capacity for nociceptive
pain.?! In fact, prior failure to associate cortical activity or cor-
tical lesions to the experience of pain had encouraged the
view that pain had little true cortical representation.”? %3
These observations suggest that there is no critical or fixed
brain region for pain.

Despite extensive research, an area of the brain that is
analogous to the primary visual cortex (i.e. ‘primary pain
cortex’) has not been identified. To date, there is no pattern
of brain activity indicating pain in an individual with absolute
certainty for use by medical, legal, or other regulatory bodies.
Forexample, ‘pain-related’ brain activity from noxious stimula-
tion can occur in patients in minimally conscious states®* but
such activations do not necessarily prove pain perception in
these individuals. Nonetheless, they suggest that the neuro-
anatomical substrates for pain are functionally intact and
raise the possibility of pain in these uncommunicative subjects
with obvious clinical implications.

Imaging nociception

Nociception is defined as the ‘neural process of encoding
noxious stimuli’. Although nociception is neither necessary
nor sufficient for pain, it is required for protective autonomic
or reflexive responses that are essential for our survival. Noci-
ceptors are peripheral sensory neurones which are evolved to
respond specifically to high-intensity environmental stimuli
that threaten the physical integrity of the organism.”> The
neurobiology of these first-order afferents is arguably better

understood compared with central neurones onto which they
project to transmit information to the brain.”®

Investigators have attempted to trace the flow of nocicep-
tive information by examining the temporal sequence of
brain activations evoked by noxious stimulation. In humans,
the earliest intra-cortical electrical potentials that are evoked
by noxious laser stimuli applied to the hand occur simultan-
eously within the posterior insular region and mid-cingulate
cortex.?’” 28 These regions receive nociceptive input via
spino-thalamocortical pathways and are thought to provide
a primary interoceptive representation of the physiological
condition of the body.?® Activation of the posterior insula
during nociceptionin humans has been shown to be somatopi-
cally organized.*° The importance of the posterior insula for
nociceptive pain is further suggested by functional imaging
studies of pain empathy,’ hypnotically induced pain,** and
recalled pain experiences.*" *? Neural activations during such
pains may be similar to that of physically induced pain but
there is often attenuation of activation within the posterior
insulawhen painisreportedin the absence of nociceptive stimu-
lation.** Researchers from independent groups have shown that
direct electrical stimulation of the posterior insular region can
lead to painful sensations being reported.** ** The same does
not appear to be true of other cortical regions that are also con-
sidered part of the pain neuromatrix.> ** Additionally, the
insular cortex has been identified as the most consistently acti-
vated region during pain that is induced by nociceptive stimuli.’
These converging data suggest that the posterior insular region
might represent a critical neural node through which nocicep-
tive information must be processed. Hence, a ‘nociceptive
cortex’ within the operculo-insula region may be postulated,
akin to other major senses.

Brain dynamics

As discussed above, the experience of pain requires activity
within various regions of the brain. Nevertheless, how pain
arises from the flow of information between these different
brain regionsis largely unknown, as investigating this phenom-
enon requires a multimodal approach, of which few published
studies exist.>> Most studies involve EEG or MEG alone, which
record brain activity with high temporal resolution but relative-
ly poor spatial resolution when compared with fMRI. A human
scalp EEG study of cortical potentials evoked by highly noxious
stimuli has revealed that late, rather than early, laser-evoked
responses are associated with conscious detection of noxious
stimuli.’® Hence, the consciousness of pain appears to
emerge at later stages of such processing when neural infor-
mation is being integrated across multiple cortical regions.
The processes by which the brain prioritizes nociceptive in-
formation over competing sensory stimuli for conscious aware-
ness should also be examined.?” This may explain how the
perception of pain arises from nociceptive input. Synchronous
neuronal oscillations at gamma-band frequency (>40 Hz)
are known to occur when the relevant sensory stimulus is
selected for neural representation and perception.*® Using
MEG, Gross and colleagues®? demonstrated that painful laser
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stimuli were associated with stronger gagmma-band oscillations
(GBO) than unperceived stimuli of equal stimulus intensity, sug-
gesting that the perception of pain emerges when nociceptive
input is prioritized in the brain. A more recent EEG study
further revealed that, unlike evoked potentials, GBO is not sup-
pressed with repetitive noxious (laser) stimulation.?® In that
study, healthy subjects perceived and reported that repeated
stimuli were just as painful as the original stimulus. However,
the laser-evoked potentials tended to diminish in amplitude
with each stimulus repetition. Hence, these potentials appear
to signal the novelty, rather than the intensity, of pain experi-
enced.*! Repetition suppression does not occur with GBO; this
observation lends further support for the role of GBO in deter-
mining the emergence of pain from a noxious stimulus.

Dynamic causal modelling and structural equation model-
ling are analytical methods that have the potential to further
our understanding of pain. These techniques use data from
EEG, MEG, fMRI, or PET studies to investigate brain dynamics
and cortical coupling,*”~** and are now being applied in the
field of pain.*® Such analyses take us beyond a simple spatial
representation of pain towards a network-based understand-
ing of this condition that better reflects the dynamic nature
of the pain experience.

Prefrontal-limbic control

Numerousimaging studies demonstrate that the PFC can regu-
late the perception and behavioural expression of pain in
humans. The PFC is reciprocally connected to limbic regions
and these connections form the neural substrates through
which the motivational-emotional aspects of pain can be
regulated. The belief that pain from noxious stimulation can
be controlled increases tolerance of such painful stimuli; this
analgesic effect involves the ventrolateral PFC.*® Individuals
can be taught to reinterpret the significance of adverse
events so that the negative emotional responses (e.g. fear)
can be controlled. During successful reappraisal, the dorsolat-
eral PFC engages the nucleus accumbens and suppresses
amygdala activation.*” “® Reducing the fear associated with
impending pain via extinction learning requires activation
of the ventromedial PFC.*? *° However, anxiety levels can
increase if extinction learning fails to lower such fear,>*
which can exacerbate a pain experience via para-hippocampal
mechanisms.”” >

Frontal-limbic regions are reciprocally connected to the
brainstem. This neuroanatomical connection presents another
route through which pain can be controlled—via inhibition of
neurones within the spinal cord that transmit nociceptive infor-
mation to the brain. Distraction from pain has been shown to
involve activity within the cingulo-frontal cortex, thalamus,
and PAG™* >® and, more recently, suppression of spinal cord ac-
tivity.>® Likewise, placebo analgesia invokes and alters activity
in similar regions within the central nervous system.>’~>°

The brainstem integrator

Neurones in the spinal cord that transmit information regard-
ing noxious events to higher centres within the brain receive
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descending control from supraspinal regions. This powerful
modulatory input, emanating from the frontal-limbic regions,
is integrated within the rostral ventromedial medulla (RVM)
and PAG; activity within these regions in the brainstem deter-
mines whether the nociceptive information is prioritized.®® De-
pending what the situation demands, these brainstem regions
co-ordinate the inhibition or facilitation of nociception. Classic-
al “fight or flight’ responses engage immediate inhibitory
effects for survival in battlefield or success in competitive
sports. After retreat, the same brainstem network can facilitate
nociception if physical injuries are sustained. Heightened sen-
sitivity to noxious stimuli (hyperalgesia) is protective during re-
covery, promoting tissue healing.

Hyperalgesic states

We have demonstrated that, in healthy volunteers, the
mescencephalo-pontine reticular formation (MPRF), which
projects to the RVM, regulates the expression of hyperalgesia
in different central sensitization states. For example, cutane-
ous capsaicin initiates central sensitization by activation of
peripheral nociceptors. The result is hyperalgesia and its main-
tenance involves MPRF activity.® Cessation of remifentanil, a
potent i.v. opioid can also induce®”~®* hyperalgesia.®® °° This
opioid-induced phenomenon was investigated in a combined
psychophysical-fMRI study.® MPRF activation was significantly
increased only in hyperalgesic subjects and correlated nega-
tively with the degree of hyperalgesia suggesting that brain-
stem activity regulates the behavioural expression of central
sensitization during opioid withdrawal.

Personality and pain

The degree to which limbic and brainstem regions are function-
ally linked by neural activity can explain the influence of
personality on pain thresholds. Using fMRI, we found that
insular-brainstem functional connectivity®’ was weaker in
more anxious individuals, who also had lower pain thresholds
when compared with less anxious individuals.®® Hence, the
influence of personality traits on pain can be substantiated
by mechanisms involving the descending control of pain;
therefore, an anxious and pain-vigilant personality might
arise from less effective intrinsic regulation of nociception.®’

Expectancy effects

Individuals often ‘get what they expect’ from any treatment for
pain. Expectancy is often used to explain the placebo effect
which is now substantiated by neuroimaging research as a
genuine psychobiological event. Mechanisms for placebo anal-
gesia operate within the neural circuit for the descending
control of pain which include the ACC, PAG, and the spinal
dorsal horn.>® More recently, we investigated whether effects
from positive and negative expectancies of opioid analgesia
engaged similar brain regionsin healthy subjects.’’ The experi-
ment involved a fixed and constant infusion of remifentanil.
Subjects reported slightly lower pain compared with baseline
when the infusion commenced but knowledge of that was
hidden. Pain relief became significantly superior when subjects
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were told that the infusion had commenced. When informed
that the infusion had ceased (though in reality the infusion
was continued), their ratings of pain returned to baseline.
The fMRI data revealed that effects of positive and negative ex-
pectancies on opioid analgesia involve distinct neuroanatom-
ical substrates. Expectation of poor analgesic effect was
accompanied by activation of the entorhinal cortex, the hippo-
campal region that mediates the exacerbation of pain through
anxiety®Z and inhibition (negative activation) of the perigenual
ACC (pgACC). Conversely, positive expectation of analgesic
effect was associated with increased pgACC activation, sug-
gesting the descending mechanisms of pain inhibition were
engaged.

In our study, activations within the primary somatosensory,
insular, and mid-anterior cingulate cortices followed subjective
reports of pain, with the intensity modulated by expectancy
using a fixed remifentanil dose. However, activations in these
same regions also correlate with pain modulated by varying
doses of remifentanil without psychological manipulations.
This raises important questions about whether innate placebo
mechanisms in the brain might be altered fundamentally by
the presence of the active opioid. Atlas and colleagues’” used
afull factorial experimental designin their recent study to inves-
tigate potential interaction effects between remifentanil and
expectation on pain ratings and also brain activity. They did
not find significant interaction effects on pain ratings or brain
activity. Pain relief from remifentanil and expectation were in-
distinguishable based on subjective pain ratings. fMRI did not
reveal regions where interaction effects were significant.
Instead, expectancy and remifentanil effects were distinguish-
able because they influenced different brain regions. Additional-
ly, expectancy and remifentanil effects had different onsets.
Expectancy effects occurred soon after the subjects became
aware the infusion had started, whereas remifentanil effects

Activation
PFC hypo [72-74]
or hyper activity [75-77]

become prominent only after peak blood concentrations were
achieved from the infusion. These studies on drug and expect-
ancy effects suggest that expectancy effects possess distinct
functional neuro-anatomies. Further research is needed to
explore the possibility of isolating the contribution of placebo
or nocebo effects on pain based on neuroimaging data from
clinical drug trials.”

The brain and chronic pain

Neuroimaging research in patients with chronic pain have
revealed altered structure, function, and neurochemistry in
the frontal-limbic-brainstem regions compared with healthy
controls underscoring the importance of this descending
neuro-circuit for the regulation of pain in humans.
Converging evidence suggests that frontal-limbic dysfunc-
tion accompanies chronic pain (Fig. 1). Early fMRI studies
have shown altered functional activation of PFC by noxious
stimuli in patients with chronic pain. Both hypo-activity’?~"*
and hyperactivity of the PFC’>~7” have been observed.
Further evidence of frontal-limbic dysfunction in chronic pain
states comes from PET-ligand studies which suggests abnor-
mal opioidergic transmission within frontal-limbic regions in
patients with chronic pain (e.g. complex regional pain syn-
drome,’® central post-stroke pain,’? #° and fibromyalgia).*
Numerous investigators have used voxel-based morphometry
(VBM) to demonstrate subtle but distinct alterations in
grey-matter densities in the brains of patients with chronic pain
when compared with healthy controls. Distinct grey-matter
changes have been observed in the prefrontal®’~%* and limbic
regions®* "% in disparate chronic pain syndromes. However,
these MR-based changes do not necessarily imply neuronal
loss. Furthermore as these MRI data are from cross-sectional
studies in patients, they cannot reveal whether the chronic pain

Opioidergic tone
Altered opioid receptor
Binding within

limbic regions [78-81]

PFC

limbic

Structural
BrSt integrity

Pain
Depression
Anxiety
Fear

Altered grey-matter

Connectivity
Altered frontal—striatal
functional connection [83, 84]

density [82—-88]
White matter tracts [84]

Fig 1 The PFC-limbic-brainstem (BrSt) pathways is involved in the descending modulation of pain. Brain imaging studies (references in brackets)
have revealed altered functional activation, structure and neurochemistry of prefrontal and limbic regions in association with symptoms reported

by patients with chronic pain.
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state is the cause or consequence of regional grey-matter
changes. Nonetheless, in rodent models of neuropathic pain,
neuronal remodelling,®® and altered MRI-based measures of
grey-matter structures occur in the frontal-limbic regions and
correlate with ‘anxiety-like’ behaviours after the peripheral
nerve lesions. These animal data suggest that the brain can
change as a consequence of aberrant input from damaged noci-
ceptive afferents and potentially contribute to the state of chronic
pain.

Longitudinal VBM studies in patients with chronic pain now
suggest that abnormalities in grey-matter densities within
specific brain regions can resolve with improvement in

MRI-modality

Neurovascular

FMRI-BOLD
stimulus-
evoked pain

ASL
Spontaneous,
ongoing pain

Anatomical
Structural
Diffusion weighted

Neurochemical
MRS

Grey matter

Where are grey matter densities
or cortical thickness

altered?

symptoms.’* %3 These data have been extended to changes
in cortical thickness which is a more quantitative measure
that can be compared between studies, unlike grey-matter
densities.”* Seminowicz and colleagues demonstrated that
the dorsolateral PFC thickened in patients with chronic lower
back pain who reported improved symptoms. Additionally,
the degree of thickening correlated with the extent of clinical
improvement. Interestingly, when compared with controls,
patients whose symptoms improved still had thinner cortices
inthe DLPFC, though the difference did not reach statistical sig-
nificance. This finding may well reflect incomplete recovery of
the pain state in that patient cohort. However, it prompts us to

Physiological measure

Activation maps
Which brains regions
show increased activity?

Functional @ +
connectivity .g)
Which brain regions show @ r
closely correlated activity? .%

i) _

Brain regions

White matter tracts
Is anatomical connectivity
altered ?

Brain metabolites

Fig 2 MRI-based imaging modalities that measure the brain function, structure, and neurochemistry. Blood oxygenation level dependent (BOLD)
fMRI and ASL techniques can map the brain’s neurovascular responses that are associated with pain symptoms. These techniques reveal where
activation or cerebral perfusion is altered within the brain. More sophisticated connectivity analyses provide information regarding the flow of
neural information within the brain. Advanced analyses of anatomical MRI scans can demonstrate subtle changes of grey-matter densities or
alterations in the connectivity of white-matter tracts between brain regions. Magnetic resonance spectroscopy quantifies changes in brain meta-
bolites to reveal potential areas of neuroinflammation or neurodegeneration.
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consider whether predisposition to chronic pain can be pre-
dicted based on prefrontal structure or function.

The longitudinal fMRI study by Baliki and colleagues®?
demonstrated the value of cortical-striatal connectivity in
predicting the 1-year outcome of patients with sub-acute
back pain. Greater functional connectivity between the PFC
and nucleus accumbens predicted pain persistence suggesting
that the frontal-striatal connection is involved in the transition
from acute to chronic pain. Cortico-striatal connectivity is
known to sub-serve a number of neuropsychological functions
and is increased during cognitive reappraisal of emotions,*’ a
skill that may be relevant for coping with chronic pain. Hence,
the increased frontal-striatal Fc observed in patients ‘destined’
for chronic pain could represent an adaptive mechanism that
was eventually overwhelmed.

Brain dynamics

Inrecentyears, fMRI has revealed that the brain exhibits highly
correlated spontaneous and slow (<0.1 Hz) oscillatory activ-
ities, even in the absence of any sensory stimulation.’® The bio-
logical significance of these ‘resting’ state networks is still
unclear.”® It has been suggested that incoming sensory stimu-
lation sculpts the activity and temporal dynamics of these
spontaneous networks, reducing the variability of their fluctua-
tions, to allow stable patterns of neural firing within cortical
regions that are associated with stimulus perception.’’ For
example, baseline fluctuations in fMRI activity can influence
whether pain arises from noxious stimulation.®® %8

Our ability to detect, analyse, and determine changesin the
brain’s resting state networks (RSNs) has improved consider-
ably in recent years. The default-mode network (DMN) is one
such RSN and includes the medial PFC, medial temporal
lobes, posterior cingulate cortex, and retrosplenial cortex.”
Studies utilizing fMRI or PET have shown that patients with
chronic pain can have abnormal patterns of intrinsic brain ac-
tivity in the DMN.”” 190 191 These studies indicate that resting
brain activity within various brain regions is associated in
some way with spontaneous pain in this condition.

Activity in the various brain regions that make up the DMN is
highly correlated when an individual ‘rests with eyes closed’
and does not perform any explicit task. Hence, the DMN is
often associated with ‘mind-wandering’ which philosophical
and contemplative traditions believe is associated with unhap-
piness, in contrast to ‘living in the moment’.’°> Meditation is
associated with relative deactivation of the main nodes of
the DFN (medial prefrontal and posterior cingulate cortices)
in experienced meditators.'® Experienced practitioners also
report that pain is less unpleasant during meditation. Their
subjective reports were associated with decreased activation
in PFCs but increased activation in the sensory regions, includ-
ing the posterior insular.’® ' These observations suggest
neural mechanisms that underlie ‘pain modulation’ by medita-
tion comprise increased sensory processing and decreased
cognitive control, and contrast with established neural
mechanisms for descending control of pain. Such mechanisms
may explain the efficacy of psychological approaches that

integrate meditative practice and cognition-based therapy
for the management of chronic pain.*%®

The future

MR-based brain imaging methods are developing rapidly
(Fig. 2). Using quantitative arterial spin labelling (ASL), we are
now able to measure regional changes in cerebral blood flow
that can be associated with tonic, rather than phasic neural
events.'®” =199 This non-invasive technique provides an abso-
lute measure of cerebral perfusion and provides us with the op-
portunity to identify the neural correlates that underpin the
unrelenting, spontaneous and ongoing pain that is the domin-
ant characteristic of chronic pain syndromes. Spinal cord fMRI
is now available and further research is being undertaken to
enable simultaneous acquisition of neural activities (spinal
dorsal horn, brainstem to the cortex) which, in combination
with microneurography,’®? could allow mapping of the entire
‘pain-pathway’ (nociceptor to brain). Machine-learning algo-
rithmsimplemented in ‘brain-reading’ studies provide new op-
portunities for dissecting the neural bases of pain
perception.’’® Neuroimaging methods are also being devel-
oped as clinical tools that reveal the mechanisms that underlie
chronic pain in patients where disease pathophysiology and
psychosocial influences on pain are unclear based on clinical
presentation alone. The challenge now is to improve the sensi-
tivity and specificity ofimaging techniques to allow their devel-
opment as diagnostic tools for the individual patientin our pain
clinics.
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