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Abstract
The development of various neuroimaging techniques is rapidly improving the measurements of
brain function/structure. However, despite improvements in individual modalities, it is becoming
increasingly clear that the most effective research approaches will utilize multi-modal fusion,
which takes advantage of the fact that each modality provides a limited view of the brain. The goal
of multimodal fusion is to capitalize on the strength of each modality in a joint analysis, rather
than a separate analysis of each. This is a more complicated endeavor that must be approached
more carefully and efficient methods should be developed to draw generalized and valid
conclusions from high dimensional data with a limited number of subjects. Numerous research
efforts have been reported in the field based on various statistical approaches, e.g. independent
component analysis (ICA), canonical correlation analysis (CCA) and partial least squares (PLS).
In this review paper, we survey a number of multivariate methods appearing in previous reports,
which are performed with or without prior information and may have utility for identifying
potential brain illness biomarkers. We also discuss the possible strengths and limitations of each
method, and review their applications to brain imaging data.
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I. INTRODUCTION
Recently, collecting multiple types of brain data from the same individual using various
non-invasive imaging techniques (MRI, DTI, EEG, MEG, etc.) has become common
practice. Each imaging technique provides a different view of brain function or structure.
For example, functional magnetic resonance imaging (fMRI) measures the hemodynamic
response related to neural activity in the brain dynamically; structural MRI (sMRI) provides
information about the tissue type of the brain [gray matter (GM), white matter (WM),
cerebrospinal fluid (CSF)]. Diffusion tensor imaging (DTI) can additionally provide
information on structural connectivity among brain networks. Another useful measure of
brain function is electroencephalography (EEG), which measures brain electrical activity
with higher temporal resolution than fMRI (and lower spatial resolution). Typically these
data are analyzed separately; however separate analyses do not enable the examination of
the joint information between the modalities.
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By contrast, combining modalities may uncover previously hidden relationships that can
unify disparate findings in brain imaging [1,2]. For example, the spatial precision of fMRI
could be complemented with the temporal precision of EEG to provide unprecedented
spatiotemporal accuracy [3]. The combined analysis of fMRI and magnetoencephalography
(MEG) measurements can lead to improvement in the description of the dynamic and spatial
properties of brain activity [4]. In another case, using combined genetic and fMRI data
achieved better classification accuracy than using either alone, indicating that genetic and
brain function representing different, but partially complementary aspects [5]. Finally, a
lower and different function-structure linkage is often found in patients with brain disorder
such as schizophrenia [6,7], suggesting that combination of two brain modalities provides
more comprehensive descriptions of altered brain connectivity. Therefore, a key motivation
for jointly analyzing multimodal data is to take maximal advantage of the cross-information
of the existing data, and thus may discover the potentially important variations which are
only partially detected by each modality.

Approaches for combining or fusing data in brain imaging can be conceptualized as having a
place on an analytic spectrum with meta-analysis (highly distilled data) to examine
convergent evidence at one end and large-scale computational modeling (highly detailed
theoretical modeling) at the other end [8]. In between are methods that attempt to perform
direct data fusion [9].

We note that there is an alternative approach—which we call data integration, which we
distinguish from “data fusion”. One example is using the results from one modality to
constrain models of the other, —as EEG [10,11] or DTI [12,13] being constrained by fMRI
or sMRI data, or vice versa [14,15]. While these are powerful techniques, a limitation is that
they may impose potentially unrealistic assumptions upon the constrained data, which are
fundamentally of a different nature than the known modality. Another integration example is
to analyze each data type separately and overlay them—thereby not allowing for any direct
interaction between the data types. For example, a data integration approach would not
detect a change in fMRI activation maps that is related to a change in brain structure in a
remote region.

By contrast, multimodal fusion refers to the use of a common forward model of neuronal
activity that explains different sorts of data [16]. This is a more complicated endeavor,
especially when studying complex mental illnesses like schizophrenia that impact many
brain circuits, also in real world, the conclusions usually need to be drawn out of high
dimensional brain imaging data from a limited number of subjects. Hence efficient methods
should be developed carefully.

Multivariate approaches for combing brain imaging data can be divided into two classes:
hypotheses driven and data driven. Hypotheses-driven approaches such as multiple linear
regression and confirmatory structural equation modeling, have the advantages of: 1)
allowing testing of specific hypotheses about brain networks implicated in the experimental
paradigm; 2) allowing simultaneous assessment of several connectivity links, which would
have been compromised by the one-by-one assessment of covariance [17]. However, when
using these approaches, it is possible to miss important connectivity links that were not
included in the a priori hypotheses and they do not provide information about inter-voxel
relationships [18,19].

Data-driven approaches include, but are not limited to, principal component analysis (PCA),
independent component analysis (ICA) and canonical correlation analysis (CCA). These
methods are attractive as they do not require a priori hypotheses about the connection of
interest. Hence, these methods are attractive for the exploration of the full body of data.

Sui et al. Page 2

J Neurosci Methods. Author manuscript; available in PMC 2013 June 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



However, some methods may be more demanding from a computational standpoint. Partial
least squares (PLS) is a hybrid which incorporates both hypotheses and data exploration, see
details in section II. We next review several multivariate multimodal fusion methods
including their statistical assumption, possible strengths and limitations, and illustrate the
analysis strategies for the 7 models presented in Figure 1.

II. MULTIVARIATE METHOD REVIEW
The multivariate approaches adopted in multimodal MRI fusion can be further divided into
four classes based on their use of the prior information and the dimension of the used MRI
data:

1. blind methods that use second-level fMRI data (3D contrast image) or structural
features (e.g. gray matter or fractional anisotropy (FA) maps), including joint ICA
(jICA) [20,21], multimodal canonical correlation analysis (mCCA) [22] and linked
ICA [23].

2. blind methods that can use raw fMRI data (4D data), including partial least squares
(PLS) [24] and multiset CCA [25].

3. semi-blind methods that use second-level fMRI data (3D contrast), e.g., parallel
ICA [26], coefficient-constrained ICA (CC-ICA) [27], PCA with reference (PCA-
R) [28,29] and informed multimodal PLS [30].

4. Other multimodal fusion applications using fMRI data, include multiple linear
regression [31,32], structural equation modeling (SEM) [33] or dynamic causal
modeling (DCM) [34].

Before introducing the statistical approaches, we’d like to clarify the use of “feature” as
input to most of the above mentioned models. We note that this definition of “feature” is
somewhat different than what is used in traditional machine learning algorithms [54].
Basically, a “feature” is a distilled dataset representing an interesting part of each modality
[9] and it contributes as an input vector for each modality and each subject. Usually the
brain imaging data are high dimensional, in order to reduce the redundancy and facilitate the
identification of relationships between modalities, the raw data can be preprocessed to
generate a second-level output, that is “feature”, which can be a contrast map calculated
from task-related fMRI by the general linear model (GLM), a component image such as the
“default mode” resulting from a first-level ICA, an FA map from DTI data, or a stimulus
averaged channel or channels from raw EEG signals. The main reason to use features is to
provide a simpler space in which to link the data. The trade-off is that some information may
be lost; however, there is considerable evidence that the use of features is quite useful and
valid. For example, in a recent PNAS paper [55], which used ICA on rest data and on task
blobs (contrasts), they found nearly identical resting fMRI patterns from task blobs (even
further distilled data), motivating the use of features. Figure 1 depicts the analysis strategies
of 7 of the above mentioned multivariate models, including 5 blind and 2 semi-blind
approaches, which provide a direct view of the current popular fusion methods. All of them
are based on the assumption that the changes in one data type (e.g. gray matter) are related
to another one, such as functional activation. We also provide a summary of modal
combinations which have been studied by the various published methods, listed in Table 1.

Joint ICA
Joint ICA (jICA) is a second-level fMRI analysis method that assumes two or more features
(modalities) share the same mixing matrix and maximizes the independence among joint
components [1]. This is a straightforward yet effective method that performs ICA on the
horizontally concatenated features (along voxels and/or time points in the case of ERP). It is
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suitable for examining a common modulation across subjects among modalities. Joint ICA is
feasible for many paired combinations of features, such as fMRI, EEG, sMRI and DTI, or 3-
way data fusion [37,38,40–42]. For MR images, in order to control intensity differences
based on scanner, template and population variations, each feature matrix (dimension:
number of subject by number of voxel) is usually normalized to a study specific template.

Figure 2 gives a fusion example of EEG and fMRI data collected from 23 healthy controls
and 18 chronic schizophrenia patients [9,39], during the performance of an auditory oddball
task [56]. One joint component was found to distinguish patients and controls using a two-
sample t-test (p<0.0001) on patient and control loading parameters. This identified
component showed a clear difference in fMRI at bilateral frontotemporal regions (Figure
2B) and in the event-related potentials (ERP) during the N2-P3 latency range (Figure 2A,
ERPs are labeled based on their ordinal position following the stimulus onset, e.g., P3 for
the third positive peak or N2 for the second negative peak). Both the hemodynamic and
electrophysiologic phenomena that were jointly expressed in this source have been
previously implicated in schizophrenia, but there had not previously been a study which
showed that the changes in these two modalities were linked. Figure 3 reveals a set of linked
gray and white matter regions that have a significant difference between schizophrenia and
healthy controls by use of joint source-based morphometry (jSBM) [57]. For joint source 3,
more gray and white matter were detected in patients affecting multiple brain lobes,
reflecting the widespread nature of the disease and consistent with previous findings [58].
For joint source 4, the larger thalamic white matter concentrations were shown in
schizophrenia; it also suggests that gray matter difference in the parietal and frontal lobe are
linked to white matter difference in thalamus which is consistent with the role of the
thalamus as a relay station.

Multimodal CCA
Multimodal CCA allows a different mixing matrix for each modality and is used to find a
transformed coordinate system that maximizes inter-subject covariation across the two data
sets [44]. This method decomposes each dataset into a set of components (such as spatial
areas for fMRI/sMRI or temporal segments for EEG) and their corresponding mixing
profile, called canonical variates (CVs). The CVs have varying levels of activations for
different subjects and are linked if they modulate similarly across subjects. After
decomposition, the CVs correlate to each other only on the same indices and their
corresponding correlation values are called canonical correlation coefficients (CCCs).
Compared to jICA that constrains two (or more) features to have the same mixing matrix,
mCCA is flexible in that it allows common as well as distinct level of connection between
two features, as shown in Figure 3, but the associated source maps may not be spatially
sparse, especially when the CCC are not sufficiently distinct [43,59].

Figure 3 is an application result of multimodal CCA to 16 schizophrenia and 23 controls
performing an auditory oddball task [44]. A number of interesting associations are identified
by mCCA, three of which have subjects’ loadings that are significantly different between
groups. The first pair of components, having a correlation given by 0.85, has the fMRI map
(fMRI IC 1) showing activations in the temporal lobe (activations enclosed in red circles)
and the middle anterior cingulate region (red box) and the ERP (ERP IC 1) showing a
maximum peak at around 300 ms (P3) after the stimulus onset. This is similar to the result
obtained in [39] using jICA on a similar dataset. Another pair of components, having a
correlation of 0.66, shows activation in the motor areas (purple box) and the bilateral
temporal lobe (blue box) (fMRI IC 2) which are associated with the N2 peak (ERP IC 2).
The final pair of components of interest shows significant differences between patients and
controls for only the ERP component and not the fMRI component. This finding is not
possible with jICA since it assumes the same mixing matrix for both modalities and it is

Sui et al. Page 4

J Neurosci Methods. Author manuscript; available in PMC 2013 June 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



quite plausible that for this particular component pair, fMRI is not sensitive to the
differences in controls and patients.

Multimodal CCA is invariant to differences in the range of the data types and can be used to
jointly analyze very diverse data types. It can also be extended to multi-set CCA to
incorporate more than two modalities [43,60]. Note that multimodal CCA works on the
second-level fMRI feature ___ contrast maps, while multiset-CCA can work with 4D raw
fMRI data (not shown in Figure 1), e.g., to maximize the trial-to-trial covariation between
the concurrent fMRI and EEG data [25].

Partial Least Squares
Partial Least Squares (PLS) as part of a family of multivariate data analyses, is based on the
definition of a linear relationship between a dependent variable and predictor variables, and
hence the goal is to determine which aspect of a set of observations (e.g., imaging data) are
related directly to another set of data (e.g., experimental design, behavior) [61]. PLS was
first applied to multimodal fusion by [24], where the multiway PLS (N-PLS) was proposed
to find correlations between fMRI time courses (dependent variables) and the spectral
components of the EEG data (independent variables) from a single subject, as seen in Figure
1. The N-PLS method assumes a tri-linear decomposition of the EEG data into spectral,
spatial and temporal signatures, and a linear mixing model for fMRI data into spatial and
temporal components. The decomposition was constrained to maximize the covariance of
corresponding temporal components between EEG and fMRI, see Figure 1. The limitation
of N-PLS is that decomposing the data and then correlating across modalities may not
ensure discovery of optimal relationship across modalities since this may lead to making
non-physiological assumptions about cross-modality relationships [25]. In addition, N-PLS
can be prone to overfitting, i.e., explaining EEG modulations with random multivariate
noise in fMRI data [62].

[30] proposed a multimodal PLS (MMPLS) to simultaneously characterize the linkage
between patterns of PET and gray matter, and applied it to 15 younger adults and 14
cognitively normal older adults. Multimodal PLS can be performed either informed to the
variable of interest such as age or agnostic to this additional information (with or without a
prior information). Investigators may want to pre-specify which of these two methods to use
in the data analysis. The agnostic MMPLS was used to identify the linkage between PET
(dependent datablock) and MRI (independent datablock), which is mainly oriented for
extraction of covariance patterns and related latent variables, rather than for classifications.
Figure 4 shows each of the subjects’ latent variable subject scores (PET versus MRI),
demonstrating no overlap between the older and younger subject groups. And the overall
linkage strength index, the squared correlation coefficient for the latent variables, is R2=0.73
(p<4e–9).

Even though PLS has some similarity to CCA in that they both maximize between-set
correlations, PLS is based on the definition of a dependency and works especially well when
the dependence among the constituents of the datasets is explicitly assessed [63]; while CCA
does not assign independent/dependent labels to either of the modalities and treats both
equally [43]. Hence PLS is particularly suited to the analysis of relationships between
measures of brain activity and of behavior or experimental design [62], while
interpretational difficulties in PLS often arise when the effects identified do not correspond
to the prior expectations of the researcher.
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Linked ICA
Linked ICA is a probabilistic approach based on a modular Bayesian framework, which is
designed for simultaneously modeling and discovering common characteristics across
multiple modalities [23]. The combined modalities can potentially have completely different
units, noise level, spatial smoothnesses and intensity distributions. Linked ICA has two
configurations: one is “linked tensor ICA”, in which modalities derived from the same
source with similar spatial properties can be grouped together into one modality group to
share a common modal map, e.g., FA, mean diffusivity (MD), and tensor mode (MO) can be
configured as a tensor (DTI group data) to link GM, as shown in Figure 1. Another one is
“linked flat ICA”, in which all modalities have their own spatial map respectively, but
shared a same subject-mixing matrix. In both cases, each modality (group) is modeled using
Bayesian tensor ICA [64], which differs from the traditional ICA methods like fastICA [65]
and Infomax [66] in that it incorporates dimensionality reduction into the ICA method itself
by the use of automatic relevance determination (ARD) priors on components [67] and
works on the full-dimensionality data directly.

Linked ICA automatically determines the optimal weighting of each modality, and also can
detect single-modality structured components when present. In particular, it is noted to be
better at detecting and isolating single-modality noise, which may help provide more
components in real data that can be interpreted. Linked ICA is similar to jICA in that they
both assume a common subject loading matrix for all features and can “turn off” certain
modalities if necessary. However, linked tensor ICA may make more sense in grouping
similar features when combining multiple (3+) modalities; though it is computationally
more demanding. Furthermore, joint ICA is probably best suited for two modalities, but
when going above two, a hybrid approach called “mCCA+jICA” as discussed in the next
section, is recommended.

In a real application, Linked ICA was applied to probable Alzheimer’s patients and 46 age-
matched controls. Figure 5 displayed one joint component derived from linked flat ICA,
which involves all modalities and has subject’s loadings that are strongly correlated with age
(0.49) as well as pathology (0.30). The widespread increase in MD and decrease in GM are
observed. The other DTI patterns are more complicated: in the corpus callosum and forceps
major both FA and MO decrease, while they both increase in the internal capsule, corona
radiata, and superior longitudinal fasciculus. All of these are consistent with
neurodegeneration, because these signals will decrease in single-fiber direction areas but
will increase due to selective degeneration of one tract in areas of crossing fibers.

mCCA+jICA
According to a number of previous findings in brain connectivity studies that combined
function and structure [17,68], it is plausible to assume that the components decomposed
from each modality have some degree of correlation between their mixing profiles among
subjects. mCCA+jICA is a blind data-driven model that is optimized for this situation [69]
and also to have excellent performance for achieving both flexible modal association and
source separation. It takes advantages of two complementary approaches: mCCA and jICA,
thus allows both highly and weakly connected modulations as well as joint independent
components. mCCA makes the jICA job more reliable by providing a closer initial match
via correlation; while jICA further decomposes the remaining mixtures in the associated
maps and relaxes the requirement of sufficiently distinct canonical correlation coefficients.

Note that the mCCA+jICA approach does not increase the computational load appreciably;
however it achieves the best performance compared to mCCA and jICA alone in simulations
designed to be similar to real-world brain imaging data fusion. In addition, mCCA+jICA is
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not limited to two-way fusion, but can potentially be extended to 3-way or N-way fusion of
multiple data types by replacing the multimodal CCA with multi-set CCA [70], e.g.,
combining fMRI, sMRI and genetic data to construct a broad function-structure-genetics
network, thus arguing for a widespread utilization.

This approach was applied to real fMRI-DTI datasets from 164 subjects, including 62
healthy controls (HC), 54 schizophrenia patients (SZ) and 48 bipolar disorders (BP), in order
to clarify differences/similarities between SZ and BP [69]. Joint IC9 is carefully analyzed in
Figure 6. For this component, the modal link “A1–A2 correlation” is significant (r=0.27,
p=5e-04); moreover, its FA loadings are group-discriminating (controls versus patients,
p=0.04) and significantly age-correlated (Figure 6c). As indicated in (a), fMRI map reveals
task-related activations in superior temporal gyrus, motor cortex and parietal lobe for the
Auditory oddball task; while FA map localizes the breakdown of WM integrity in UF, ATR
and SLF for patients, more so for bipolar, which support the DTI findings in [71] and [72]
where patients with schizophrenia and bipolar show consistent reduced integrity in uncinate
fasciculus (UF), anterior thalamic radiation (ATR) and superior longitudinal fasciculus
(SLF), implying a considerable overlap in white matter pathology, possibly relating to risk
factors common to both disorders. Figure 6(b) demonstrates a high-level functional-
structural network diagram, in order to identify which known tracts are both intersected by
the regions of FA changes and touch the regional fMRI changes. Note that the WM fiber
tractography is not performed for this plot, a strength of mCCA+jICA is that it can detect
complicated FA/fMRI relationships without requiring a detected direct link. Figure 6(c)
illustrates that both patient groups have significant anti-correlation (r >0.4) between age and
FA loadings, while controls don’t; suggesting that white matter density of patients may
decrease faster in these specific tracts [72,73].

Parallel ICA
The strong regularization imposed by the jICA framework can be relaxed in a number of
ways to allow for more flexibility in the estimation. One such approach is called parallel
ICA. As a framework to investigate the integration of data from two imaging modalities, this
method identifies independent components of both modalities and connections between
them through enhancing intrinsic interrelationships [46]. The algorithm maximizes the cost
function based on both entropy and the correlation term. It proceeds such that the
independence among components within each data set is maximized separately, during
which if the mixing profile correlations of certain components are above the threshold; they
are selected and used to modify the update of the demixing matrix based on the correlation
constraint using appropriate stopping criteria, as shown in Figure 1. Note that the threshold
is determined empirically and may change for different combinations of data type. Because
of the ability to enhance the inter-modality correlation of one or more components, we
consider parallel ICA as a semi-blind method. It has been adopted to link fMRI and genetic
data (single nucleotide polymorphism arrays, SNP) [26], and sMRI and SNP data [50].
Results show that paraICA provides stable results and can identify the linked components
with a relatively high accuracy [74].

Figure 7 shows results from a parallel ICA analysis of auditory oddball fMRI data and 367
SNPs from 20 schizophrenia patients and 43 healthy controls, all Caucasian [26]. The
authors found a correlation of 0.38 between one fMRI component and one SNP component,
both showed significant differences in loading parameters between the schizophrenia and
control groups (p=0.0006 for the fMRI; p=0.001 for SNP). The fMRI component consisted
of regions in parietal lobe, right temporal lobe, and bilateral frontal lobe. The relevant SNP
component was contributed to significantly by 10 SNPs located in genes including those
coding for the nicotinic alpha-7cholinergic receptor (CHRNA7), aromatic amino acid
decarboxylase (AADC) and disrupted in schizophrenia 1 (DISC1).
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The parallel ICA framework enabled us to identify interactions between brain functional and
genetic information; our findings provide a proof-of-concept that genomic SNP factors can
be investigated by using phenotypic imaging findings in a multivariate format.

CC-ICA
Coefficients-constrained ICA (CC-ICA) aims to improve the components’ extraction
sensitivity to group differences as well as the decomposition accuracy. Note that joint ICA is
a blind method that does not incorporate prior diagnostic information and is as such not
optimized for detecting group differences. If the goal is to optimally identify potential
biomarkers of disease, we can incorporate prior membership information and thus enhance
the sensitivity of the method to detect relevant group differences. Towards this end, CC-ICA
was proposed [27], which is formulated by incorporating a group difference criterion into
the traditional ICA cost function to adaptively constrain the mixing coefficients of certain
components and thus enhance detection of group differences. It can be combined with
principal component analysis with reference (PCA-R) [28,75] as a general approach for
disease biomarker identification [51,52]. One advantage of the approach is that it provides a
unitary, and concise representation of a particular group discriminative feature from
multitask/multimodal data into a single component. CC-ICA can be applied to a variety of
multimodal combinations similar to joint ICA.

For example, CC-ICA+PCA-R is applied to fMRI data from 3 tasks: sensorimotor (SM),
auditory oddball (AOD) and Sternberg working memory (SBP), which were collected from
25 patients with schizophrenia and 28 healthy controls [51]. Three optimal components
belong to two optimal feature combinations were identified (Figure 8 a, b): two components
extracted from the SM task alone, and one joint component from the SBP & AOD tasks.
Figure 8c gives a distinct view of the combined spatial maps in Figures 8a, b; these activated
regions can best separate the two groups. A significant group difference is indicated in
Figure 8d by subtracting the spatial maps of patients from controls. The three optimal
components predominantly describe aberrant patterns of activity in the superior temporal
gyri, precuneus and angular gyri (DMN). Note also that each of these brain networks was
identified separately in previous neuroimaging studies; [76–78]. Our approach grouped them
together in a framework that specifically identifies group discriminative features.

The optimal components are then utilized as a template in a simple approach to classify
patients and controls using a dataset collected from a different scanner. Another mask is
created by thresholding a two-sample t-test on the contrast images of the two groups at a
significance level of p<0.0001. The contrast image of every subject is masked via the
template and the resulting nonzero voxels are transformed into a scalar with reduced
dimension. We use mean of the absolute value of this scalar as the classifier input of each
subject. Each individual was assigned one of two class memberships, with a leave-one-out
approach based on the Euclidian distance between the individual and group means. The
mask using optimal components generates the highest classification accuracy (sensitivity
87% and specificity 73%), while using the same concatenated multimodal data, a univariate
method (t-test) results in a relatively lower accuracy (sensitivity 75% and specificity 64%).

These results are quite encouraging considering the use of optimal components generated by
CC-ICA as potential biomarkers. Such a result cannot be obtained using traditional mass-
univariate approaches which focus upon detection of activity differences in single tasks.
Moreover, the optimal components may only be “identifiable” by using data collected
during different tasks, which further motivates a data fusion approach.
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Other Multimodal Fusion Applications
There are several other multivariate methods employed in multimodal fusion, such as
multiple regression [31,45], in which data fusion usually involves two stages: a form of
feature extraction, e.g., source separation, then followed by a cross-modality correlation or
regression based on these features. In addtion, structural equation modeling (SEM) or
dynamic causal modeling (DCM) can be used to examine the correlational structure between
functional and structural variables (Astolfi, et al. 2004; Hamandi, et al. 2008; Kiebel, et al.
2008; Vitacco, et al. 2002). Such approaches are useful for model testing; however, neither
do they provide an examination of the full set of brain voxels, nor do they allow testing of
unknown connections. Alternatively, one could choose to examine correlation (and
potentially extend to nonlinear relationship through the use of other criteria such as mutual
information) between all points of the data. This approach has been applied to examine
functional connectivity in fMRI by computing a 6D matrix of correlations [79]. Such
computations are straightforward; whereas, the drawback is that they are high in
dimensionality and hence potentially difficult to interpret. Moreover, the Local Linearization
(LL) method for integrating stochastic differential equations is appropriate for highly
nonlinear dynamics. It has been successfully applied to small and medium sized networks,
reproducing the described EEG/BOLD correlations [3].

III. CONCLUSION
There is great potential benefit in exploring joint information from multimodal brain
imaging data. In this paper, we review several data-driven multivariate methods that have
been applied to multimodal/multitask brain imaging data fusion. Each method presents a
different view in interpreting the multiple datasets based on their various hypotheses; hence
it is important to choose an appropriate fusion model according to the purpose of the
analysis, the available data types and the need of priors, so as to help better elucidate the
relationship between multiple modalities.

In summary, studies featuring multimodal combination prove to be more informative in
understanding of brain activity and disorders. The most promising avenues for the future
may rest on developing better models that can complement and exploit the richness of our
data [16]. These models may well already exist in other disciplines (such as machine
learning, machine vision, computational neuroscience, and behavioral economics) and may
enable the broader neurosciences to access neuroimaging so that key questions can be
addressed in a theoretically grounded fashion.
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Figure 1.
The conceptual diagrams of 7 blind and semi-blind data-driven methods for multimodal
fusion.
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Figure 2.
An example result of EEG/fMRI jICAfrom [9,39] (A, B). Joint component which showed
significantly different loading parameters (p < 0.0001) for patients versus controls: (A)
control (yellow) and patient (blue) average EEG plots along with the ERP part of the
identified joint component (pink). (B) thresholded fMRI part of the joint component
showing bilateral temporal and frontal lobe regions..(C) An example result of GM/WM
jICA from [57]. Joint source 3 and 4 discovered by jSBM thresholded at |z| > 3. left: GM
difference; middle: loading parameters of the joint sources. right: WM difference. red blob:
regions within joint source 3; yellow blob: regions within joint source 4; orange blob:
regions within both joint source 3 & 4.
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Figure 3.
FMRI/EEG mCCAfrom [44]: Three pairs of fMRI and ERP components that are
significantly different between patients and controls show associations of the temporal and
motor areas with the N2 and P3 peaks. The fMRI maps are scaled to Z values and
thresholded at |Z|>=3.
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Figure 4.
PET/GM PLS from [30]. Scatter graph of MRI–PET subject (i.e., latent variable pair)
scores generated using the agnostic multimodal PLS (corresponding to the MRI latent
variable on the x-axis and the PET latent variable on the y-axis). Solid circles denote
subjects in the older age group and open circles denote those in the younger age group. Note
the complete separation (indicated by the dashed line) between the older and younger
subjects. The solid line is the latent variable line of regression between MRI and PET
subject scores.
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Figure 5.
GM/FA/MD/MO from [23]. Linked flat ICA model identified one joint component whose
subject mixing profile is positively correlated with age and pathology, the image is
thresholded as |Z| > 2 for display.
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Figure 6.
FMRI/FA mCCA+jICA, Joint IC 9 from [69] (a): spatial maps of the identified functional
blobs and WM regions. (b): a high-level brain network diaphragm, where functional region
with a red solid line frame indicates a major portion activation and the dotted line frame
indicates that only small part of it is activated. Abbreviations are defined below, F: frontal
lobe, P: parietal lobe, T: temporal lobe, O: occipital lobe, SLF: Superior longitudinal
fasciculus, CST: Corticospinal tract, UF: Uncinate fasciculus IFO: Inferior fronto-occipital
fasciculus, ILF: Inferior longitudinal fasciculus, ATR: Anterior thalamic radiation. (c):
scatter plots and linear trends between subjects’ age and loading parameters. Specifically,
HC in red line, SZ in blue line, BP in green line and trend of all subjects in black line.
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Figure 7.
fMRI/SNP parallel ICA from [26]: Parallel ICA provides an fMRI part (left) and a SNP
part (bottom right) in addition to a correlated subject profile for both fMRI and SNP data
(top right).
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Figure 8.
Multitask fMRI, CC-ICA from Sui et al., 2009a. Top 3 optimal components and the
combined most group-discriminative regions: a, b) are the spatial maps of the top three
optimal components, which are converted to Z-scores and thresholded at |Z|>2.5; (c) shows
the overlapping regions of the four features with their original spatial map values, these
activated regions are important for group discrimination and may serve as potential
biomarkers of schizophrenia patients; (d) displays the difference between the
backreconstructed sources (HC-SZ) on the combined highlighted regions of the top three
optimal ICs in (c), the regions where HC>SZ in | Z | score are shown in orange, otherwise
are shown in blue.
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Table 1

Multivariate methods that have been applied to multimodal fusion of brain imaging data

Multivariate Method Data Studies

Joint ICA fMRI-sMRI(GM) [1],[35],[36]

fMRI-EEG [37],[38],[39]

fMRI-DTI(FA) [40], [41]

GM-WM [42]

Multimodal CCA fMRI-EEG [25],[43]

fMRI-sMRI(GM) [44]

Partial Least Squares fMRI-EEG [45], [24]

PET-sMRI (GM) [30]

Linked ICA GM-DTI(FA/MD/TO) [23]

Parallel ICA FMRI-EEG [46],[47]

FMRI-Gene(SNP) [26],[48]

GM-Gene(SNP) [49], [50]

CC-ICA, PCA-R Multitask fMRI [51], [52]
can be applied to multimodal combinations similar to jICA

Others fMRI-EEG [31], [33],[34] [45],[3,32]

fMRI-MEG [4],[2]

EEG-MEG [53]
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