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Fear Extinction Induces mGluR5-Mediated Synaptic and
Intrinsic Plasticity in Infralimbic Neurons

Marian T. Sepulveda-Orengo, Ana V. Lopez, Omar Soler-Cedeiio, and James T. Porter
Department of Pharmacology and Physiology, Ponce School of Medicine, Ponce, Puerto Rico 00732

Studies suggest that plasticity in the infralimbic prefrontal cortex (IL) in rodents and its homolog in humans is necessary for inhibition
of fear during the recall of fear extinction. The recall of extinction is impaired by locally blocking metabotropic glutamate receptor type
5(mGluR5) activation in IL during extinction training. This finding suggests that mGluR5 stimulation may lead to IL plasticity needed for
fear extinction. To test this hypothesis, we recorded AMPA and NMDA currents, AMPA receptor (AMPAR) rectification, and intrinsic
excitability in IL pyramidal neurons in slices from trained rats using whole-cell patch-clamp recording. We observed that fear extinction
increases the AMPA/NMDA ratio, consistent with insertion of AMPARs into IL synapses. In addition, extinction training increased
inward rectification, suggesting that extinction induces the insertion of calcium-permeable (GluA2-lacking) AMPARs into IL synapses.
Consistent with this, selectively blocking calcium-permeable AMPARSs with Naspm reduced the AMPA EPSCs in IL neurons to a larger
degree after extinction. Extinction-induced changes in AMPA/NMDA ratio, rectification, and intrinsic excitability were blocked with an
mGluR5 antagonist. These findings suggest that mGluR5 activation leads to consolidation of fear extinction by regulating the intrinsic
excitability of IL neurons and modifying the composition of AMPARs in IL synapses. Therefore, impaired mGluRS5 activity in IL synapses

could be one factor that causes inappropriate modulation of fear expression leading to anxiety disorders.

Introduction

Some individuals exposed to traumatic experiences develop anx-
iety disorders such as posttraumatic stress disorder and exhibit
deficient regulation of fear responses. Experimental models such
as rodent extinction of conditioned fear have been developed to
study the mechanisms underlying fear regulation. Extinction in-
volves learning to inhibit fear reactions to a stimulus that has
been previously paired with an aversive stimulus such as a mild
electrical shock. Studies in both humans and rodents show that
interactions between the amygdala, hippocampus, and infralim-
bic prefrontal cortex (IL) are important for fear extinction learn-
ing and memory (Quirk and Mueller, 2008; Pape and Paré, 2010;
Milad and Quirk, 2012; Orsini and Maren, 2012). During the
recall of fear extinction, it is proposed that IL inhibits fear by
reducing activity outflow from the amygdala (Quirk et al., 2003),
a structure critical for learning and expressing fear memories
(Phelps and LeDoux, 2005; Schafe et al., 2005). In order for IL to
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inhibit fear after extinction, plasticity must occur in afferents to
IL or in IL neurons themselves to allow IL neurons to respond
more vigorously to the conditioned stimulus during extinction
recall (Milad and Quirk, 2002; Holmes et al., 2012).

Blocking metabotropic glutamate receptor type 5 (mGluR5)
pharmacologically (Fontanez-Nuin et al., 2011) or with a knock-
out approach (Xu et al., 2009) was shown to impair recall of
auditory fear extinction the following day. Furthermore, mice
lacking mGluR5 also exhibit impaired synaptic plasticity (Lu et
al., 1997) and the activation of mGluR5 can induce synaptic plas-
ticity (Rodrigues et al., 2002; Clem et al., 2008; Ayala et al., 2009)
and intrinsic plasticity (Sourdet et al., 2003; El-Hassar et al.,
2011). It is therefore possible that mGluR5 activation in IL could
mediate extinction-induced synaptic and intrinsic plasticity.
Consistent with this possibility, local infusion of the mGluR5
blocker MPEP into IL is sufficient to disrupt recall of fear extinc-
tion (Fontanez-Nuin et al., 2011).

In the present study, we investigated whether fear extinction
induces synaptic changes in addition to intrinsic changes in IL
neurons and whether mGIluRS5 is required for these changes by
examining the ratio of AMPA to NMDA synaptic currents and
AMPA receptor (AMPAR) rectification in IL neurons from
naive, fear conditioned, and extinguished rats with whole-cell
patch-clamp recordings. We found that fear extinction in-
creases the ratio of AMPA to NMDA synaptic currents and
AMPA rectification index in IL neurons. These extinction-
induced synaptic changes and the previously described
extinction-induced intrinsic excitability changes (Santini et
al., 2008) were prevented by blocking mGIuR5 receptors, in-
dicating that fear extinction induces mGluR5-dependent syn-
aptic and intrinsic plasticity in IL.
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Materials and Methods

Subjects. Male Sprague Dawley rats (30—40 d postnatal) were group
housed in transparent polyethylene cages located in a negative pressure
clean room (Colorado Clean Room, Ft. Collins, CO) and maintained on
a 12 hlight/12 h dark schedule. Food (standard laboratory rat chow) and
water were available ad libitum. All experiments were approved by the
institutional animal care and use committee of the Ponce School of Med-
icine in compliance with the National Institutes of Health’s Guide for the
Care and Use of Laboratory Animals.

Behavioral training. Rats were fear conditioned, extinguished, and
tested in a 25 X 29 X 28 cm chamber with aluminum and Plexiglas walls
(Coulbourn). The floor consisted of stainless steel bars that could be
electrified to deliver a mild shock. A speaker was mounted on the outside
wall and illumination was provided by a single overhead light. The cham-
ber was situated inside a sound-attenuating box (Med Associates) with a
ventilating fan, which produced an ambient noise level of 60 dB. Between
sessions, floor trays and shock bars were cleaned with 70% alcohol solu-
tion and the chamber walls were wiped with a damp cloth. Behavior was
recorded with digital video cameras (Micro Video Products).

Rats were separated into three experimental groups: Naive, condi-
tioned (Cond), and extinction (Ext). Rats of the Cond and Ext groups
received one habituation trial (tone alone) and three conditioning trials
(tone-shock pairings) on day one. The conditioned stimulus was a tone
(4 kHz, 75 dB, 30 s; 2 min intertrial interval) and the unconditioned
stimulus was a mild scrambled foot shock (0.44 mA, 0.5 s) that co-
terminated with the tone. On day 2, the Ext group received 15 extinction
trials (tone alone) while the Cond group remained in their home cages.
On day 3, the Cond and Ext groups were killed immediately after two test
trials (tone alone) and prepared for slice recordings. The Naive group was
killed immediately after two test trials and prepared for slice recordings.
All training was done in the same context, as described previously (San-
tini et al., 2008). Freezing to the tone (absence of movement except
breathing) was quantified during the 30 s of the tone presentation and
analyzed using the FreezeScan program (Clever Systems).

Whole-cell recordings. Immediately after the test, rats were deeply anes-
thetized with pentobarbital (65 mg/kg) and perfused transcardially with
cold artificial CSF (ACSF) with sucrose substituted for the sodium chlo-
ride and decapitated. Next, 300 wm coronal slices of the mPFC were cut
with a Vibratome as described previously (Santini et al., 2008). The
mPFC slices were incubated at room temperature in ACSF for at least 1 h
before being transferred to a submersion recording chamber and per-
fused at 2—3 ml/min with room temperature ACSF with 50 uM picrotoxin
toblock GABA , postsynaptic currents. The neurons were visualized with
infrared video microscopy using a 40 X water-immersion objective on an
upright EG00FN microscope (Nikon Instruments). Whole-cell record-
ings were done with glass pipettes with a resistance of 2.5-4 M) when
filled with an internal solution containing the following (in mm): 12 TEA-CI,
140 CsOH, 10 HEPES, 140 gluconic acid, 10 biocytin, 2 adenosine triphos-
phate, 3 guanosine triphosphate, and 0.4 cesium-ethyleneglycol-bis(2-
aminoethylether)-N,N,N’, N'-tetra acetic acid (Cs-EGTA, 0.4). pH was
adjusted to 7.3 with CsOH (300 mOsm). After establishing a whole-cell
voltage-clamp recording, the resting membrane potential, membrane resis-
tance, membrane capacitance, and access resistance were measured. Record-
ings were filtered at 4 kHz, digitized at 10 kHz, and saved to a computer using
pCLAMPY (Molecular Devices).

AMPA and NMDA currents. EPSCs composed of AMPA- and NMDA-
receptor (NMDAR)-mediated currents in IL neurons were measured in
response to the stimulation of layer V with a glass microelectrode (Fig.
1B). The EPSC of IL pyramidal neurons of layer V was recorded because
they have reciprocal connections with subcortical structures including
the amygdala (Vertes et al., 2004; Gabbott et al., 2005). Picrotoxin was
added to the bath to block GABA,-mediated currents. AMPAR-
mediated EPSCs were measured as the peak of the EPSCs recorded at
—60 mV, whereas NMDAR-mediated EPSCs were measured as the am-
plitude of the EPSC 45 milliseconds after the stimulus at +60 mV (Cabe-
zas and Bufio, 2006; Van den Oever et al., 2008; Lin et al., 2009; Amano et
al,, 2010). In some experiments, the AMPA to NMDA ratio was calcu-
lated from isolated AMPA and NMDA EPSCs. In these experiments,
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AMPA EPSCs were isolated by blocking NMDA currents with 100 um
DL-2-amino-5-phosphonopentanoic acid (AP5), and the NMDA EPSCs
were obtained by subtracting the remaining AMPA EPSCs from the orig-
inal composite EPSCs. The rectification index of the synaptic AMPAR-
mediated EPSCs was measured as the ratio of the peak of the EPSCs
recorded at —60 mV to the peak of the EPSCs measured at +60 mV at the
same time point as the peak at —60 mV. In some experiments, the AMPA
EPSCs were isolated by adding 50 um picrotoxin and 100 um AP5 to
block GABA, and NMDAR currents, respectively (Clem and Barth,
2006).

Relative contribution of (GluA2-lacking) calcium-permeable AMPARSs.
The percentage of calcium-permeable AMPAR (CP-AMPAR) current
was obtained by the subtraction of the peak amplitude AMPA EPSCs
recorded at —60 mV before and after adding the selective CP-AMPAR
antagonist Naspm (Vikman et al., 2008; Kott et al., 2009; Clem and
Huganir, 2010). The percentage blocking of the EPSCs by Naspm was
calculated for neurons from each group.

Intrinsic excitability. The intrinsic excitability of layer V pyramidal
neurons located in IL was measured using whole-cell current-clamp re-
cordings at a holding potential of —70 mV. Action potentials were
evoked by injecting 800 ms depolarizing current pulses (40350 pA at 10
PA increments with an intertrial interval of 5 s), as described previously
(Santini et al., 2008). Recordings were filtered at 4 kHz (MultiClamp
700A; Molecular Devices), digitized at 10 kHz, and saved to a computer
using pClamp9 (Molecular Devices). Membrane potentials (V. s) were
not corrected for the junction potential of 9 mV. The series resistance was
equal across groups. The input resistance (R;,) was measured from a 5
mV, 50 ms depolarizing pulse in voltage-clamp mode at a holding poten-
tial of —60 mV. The fast afterhyperpolarizing potential (fAHP) of the
second evoked spike was measured by subtracting the voltage at the peak
of the fAHP from the threshold potential for spike initiation. The fAHP
was measured from the trace showing the maximum number of spikes.
The medium afterhyperpolarizing potentials (mAHPs) and slow afterhy-
perpolarizing potentials (SAHPs) were measured after the end of the 800
ms pulse. The mAHP was measured as the peak of the AHP, and the
sAHP was measured as the average potential during a 50 ms period
beginning 280 ms after the end of the 800 ms depolarizing pulse (Faber
and Sah, 2002; Santini et al., 2008). The sAHP was measured from the
first trace that showed just two spikes to maintain the spike-induced
calcium increases relatively constant between cells. For these experi-
ments, the internal solution contained the following (in mm): 150
K-MeSO,, 10KCL, 0.1 EGTA, 0.3 GTP,and 0.2 ATP, pH 7.3 (300 mOsm).

Behavioral procedure for mGluR5. On day 1, rats were exposed to one
habituation tone followed by three tones (CS) that coterminated with a
mild shock (US; three tone-shock pairings). After matching for equiva-
lent levels of freezing, conditioned rats were divided into a vehicle-
treated group (Veh) and a group treated with the mGluR5 antagonist
2-methyl-6-(phenylethynyl)pyridine (MPEP; Ascent Scientific), was sys-
temically injected (10 mg/kg intraperitoneal) 30 min before extinction
training as described previously (Fontanez-Nuin et al., 2011). MPEP was
dissolved in 0.9% saline. The age of the animals in the systemic experi-
ments ranged between 30 and 35 d. On day 2, rats received extinction
training consisting of 15 tone-alone trials. On day 3, rats received two
tone-alone trials to test for recall of extinction. All phases of training were
done in the same context.

Statistical analysis. The total time spent freezing during the 30 s tone
was measured and converted to percentage freezing. The percentage of
time spent freezing (Blanchard and Blanchard, 1972) was used as a mea-
sure of conditioned fear. Freezing is the cessation of all movements ex-
cept respiration. The behavioral data were analyzed using commercial
software (FreezeScan; Clever Systems). The electrophysiological data
were analyzed using Clampfit (Molecular Devices). Student’s ¢ test or
one-way ANOVA (STATISTICA; Statsoft) were used to analyze the be-
havioral and electrophysiological data. After a significant main effect,
Tukey HSD or Fisher post hoc tests were performed. Values are reported
as the means = SEM.
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Fear extinction increases the AMPA to NMDA current ratio in IL neurons. A, Percentage freezing during tone in rats that received auditory fear conditioning (Cond), conditioning and

extinction (Ext), or were untrained (Naive). Rats were killed after 2 test tones on day 3 and prefrontal brain slices were prepared. B, Photomicrograph showing the placement of the stimulation and
recording electrodes in layer V of IL. €, Examples of AMPA and NMDA EPSCs recorded at —60 mV and + 60 mV, respectively, in each group. D, The Ext group exhibited larger AMPA to NMDA EPSC
ratios than the Cond and Naive groups. Naive neurons, n = 24; Cond neurons, n = 22; and Ext neurons, n = 24. E, The average AMPA to NMDA ratio for each rat (Ext, blue circles; Cond, black circles)

shows a significant negative correlation with the percentage freezing at test. *p << 0.05.

Results

Fear extinction increases AMPA/NMDA ratios in IL
pyramidal neurons

To investigate whether fear extinction induces synaptic changes
in IL pyramidal neurons, three groups of rats were tested. Two
groups were exposed to auditory fear conditioning on day 1 con-
sisting of three tone-shock pairings. On day 2, the Ext group (n =
11) received 15 tone-alone trials while the Cond group (n = 9)
remained in their home cages. On day 3, Cond and Ext rats were
killed immediately after testing for recall of conditioning and
extinction (two tone-alone trials), respectively. A third group
(Naive, n = 12) remained in their home cages until day 3 when
they received two test tones and were killed. As shown in Figure
1A, the Cond and Ext groups conditioned to similar levels on day
1 (Cond, 60% freezing; Ext, 67%). On day 3, the Cond group
froze more than either the naive or Ext group. In addition, the Ext
group showed good recall of extinction. One-way ANOVA
showed a significant main effect (F, ,o) = 97.68; p < 0.001), and
post hoc comparisons indicated that Cond group froze more than
the Ext group (p < 0.001) or the Naive group (p < 0.001).
Immediately after killing, prefrontal brain slices were prepared
from all three groups and whole-cell patch-clamp recordings
were made from pyramidal neurons of layer V in IL. AMPA and
NMDAR-mediated EPSCs were evoked by local extracellular
stimulation with a glass microelectrode. Picrotoxin was included

in the bath to block GABA ,-mediated IPSCs. AMPAR-mediated
EPSCs were measured as the peak of the EPSCs recorded at —60
mV, whereas NMDAR-mediated EPSCs were measured as the
amplitude of the EPSC 45 milliseconds after the stimulus at +60
mV when AMPARs had already closed (Fig. 1C). A change in
input resistance of the neurons could also affect the AMPA to
NMDA ratios by disproportionally filtering the faster AMPA
EPSCs more than the slower NMDA EPSCs. To minimize the
effects of input resistance on the measurements of the EPSCs, all
synaptic measurements were done using an intracellular solution
that contained Cs*? (to block various potassium channels and
hyperpolarization-activated cation channels), QX314 (to block
voltage-gated sodium channels), and TEA (to block various po-
tassium channels). Under these conditions, there was no differ-
ence in input resistance among the groups (Table 1).

We examined IL neurons for changes in the ratio of AMPAR
to NMDAR synaptic currents. As shown in Figure 1D, neurons
from the Ext group had larger AMPA to NMDA EPSC ratios than
either the Cond or Naive groups. A one-way ANOVA showed a
significant main effect (F, 43y = 8.71; p < 0.001), and post hoc
comparisons found that the Ext group had greater AMPA/
NMDA current ratios than the Cond (p < 0.001) and Naive (p =
0.004) groups. These results suggest that fear extinction induced
synaptic plasticity in IL neurons. In addition, rats that expressed
less fear at test had greater AMPA to NMDA ratios than rats that
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Table 1. Electrophysiological properties of IL neurons in synaptic plasticity
experiments

Naive Cond Ext

Decay Tau of composite EPSCs at +60 mV 17752 124=7 136 = 15

Decay Tau of isolated AMPAEPSCsat —60mV ~ ND 9105 87*06
Input resistance of composite EPSCs (M(2) 25 =23 259+16 227+ 24
Input resistance of isolated AMPA EPSCs (M(2) ~ ND 290 =25 288 £ 35

One-way ANOVA showed no difference between the groups for any measure ( p > 0.05). Recordings were done with
aCs 2™ -based intracellular solution.

ND indicates not determined.

expressed high fear (Fig. 1E). Pearson’s analysis showed a signif-
icant negative correlation between the average AMPA/NMDA
ratio for each rat and the percentage freezing at test (Pearson =
—0.49; p = 0.03). As shown in Table 1, all three groups exhibited
equivalent decay kinetics at +60 mV, indicating that a change in
decay kinetics could not account for the increase in the AMPA to
NMDA ratio.

Fear extinction increases AMPAR rectification in IL
pyramidal neurons

In addition to simply inserting more AMPARs into synapses,
experience and learning can modify the subunit composition of
AMPARs, which is reflected by changes in the rectification of
synaptic AMPARs (Clem and Barth, 2006; Xu et al., 2008; Amano
et al., 2010; Clem and Huganir, 2010; Clem et al., 2010). The
insertion of AMPARs lacking the GluA2 subunit increases
the rectification and increases the calcium permeability of the
AMPARs (Cull-Candy et al., 2006). Therefore, to evaluate
whether fear conditioning or extinction modifies the subunit
composition of the synaptic AMPARs, we measured the recti-
fication of AMPARs in IL synapses. AMPAR-mediated EPSCs
were measured as the peak of the composite EPSCs recorded at
—60 mV and +60 mV (Fig. 2A). These measurements were used
to calculate the rectification index (Xu et al., 2008; Clem and
Huganir, 2010), the ratio of the AMPA EPSCs at —60 mV to the
EPSCs at +60 mV. As illustrated in Figure 2B, neurons from the
Ext group had significantly larger rectification indexes than neu-
rons from either the Cond group or the Naive group. A one-way
ANOVA showed a significant main effect (F,4,) = 3.76; p =
0.03), and post hoc comparisons found that the Ext group had
larger rectification indexes compared with the Cond group (p =
0.04) and showed a trend to be larger than the Naive group (p =
0.08). In addition, rats that expressed less fear at test had greater
rectification indexes than rats that expressed high fear (Fig. 2C).
Pearson’s analysis showed a significant negative correlation be-
tween average rectification index for each rat and the percentage
freezing at test (Pearson = —0.59; p = 0.01). Furthermore, the
AMPA/NMDA ratio for each neuron showed a significant pos-
itive correlation with the AMPA rectification index (Pear-
son = 0.87; p = 0.01; Fig. 2D).

The increase in AMPA rectification after extinction suggests
that extinction induces the insertion of CP-AMPARs into IL syn-
apses. If IL synapses contain more CP-AMPARs after extinction,
then AMPA EPSCs in IL neurons after extinction should be more
sensitive to blockade by Naspm, which selectively blocks CP-
AMPARs (Vikman et al., 2008; Kott et al., 2009; Clem et al.,
2010). As shown in Figure 2E, F, application of 50 um Naspm
produced a gradual inhibition of AMPA EPSCs in IL neurons that
was greatest in the Ext group. A one-way ANOVA of the average
of the last two time points for each group showed a significant
main effect (F, 5y = 3.42; p = 0.04), and post hoc comparisons
found that the Ext group had a larger percentage block by Naspm
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compared with the Cond (p = 0.04) and Naive (p = 0.02) groups
(Fig. 2G).

Pharmacological isolation of AMPA and NMDA currents
gives similar results

To extend our findings, we also calculated the AMPA-NMDA
ratio and AMPA rectification index by pharmacologically isolat-
ing the AMPA and NMDA EPSCs in IL neurons from additional
Cond and Ext groups (Fig. 3). The NMDA component was
blocked with the NMDAR blocker AP5 to isolate the AMPA
EPSCs, and the NMDA EPSCs were obtained by subtraction of
the AMPA EPSCs from the combined EPSCs (Fig. 3B, C). Con-
sistent with our initial findings, IL neurons from the Ext group
had larger AMPA-NMDA ratios than the Cond group (Fig. 3D;
T = 2.04,p = 0.01). To determine whether our original measure-
ments of NMDA current from the composite EPSCs were af-
fected by any remaining AMPA currents, we compared the
NMDA currents obtained from the composite EPSCs with those
obtained by pharmacologically isolating the NMDA EPSCs in the
same neurons. The correlation between NMDA current of com-
posite EPSCs and pharmacologically isolated NMDA EPSCs was
0.97, indicating that our measurements of the NMDA currents
from the composite EPSCs were not affected by AMPA currents
at that point. We also calculated the rectification indexes from
traces in which the AMPA EPSCs were isolated by blocking the
NMDA component with AP5 (Fig. 3E). Calculating the rectifica-
tion index in this manner also showed that AMPA EPSCs in
neurons of the Ext group had more rectification than those of the
Cond group (Fig. 3F; T = 2.03, p = 0.04).

Blocking mGluRS5 prevents extinction-induced synaptic
plasticity in IL

To determine whether mGluR5 activation mediates extinction-
induced synaptic changes, we systemically injected the mGluR5
antagonist MPEP 30 min before extinction. As shown in Figure
4A, MPEP-injected rats showed impaired recall of extinction
memory on day 3 compared with rats that received saline before
extinction or conditioning only (Sal-Ext: 18 * 6% freezing,
MPEP-Ext: 51 £ 8% freezing, Sal-Cond: 67 * 4% freezing).
One-way ANOVA showed a significant main effect (F, ¢ =
10.5; p < 0.001) and post hoc comparisons indicated that Sal-
Cond and MPEP-Ext groups froze more than the Sal-Ext group
(p < 0.05). After testing for the recall of extinction on day 3, rats
were killed and the IL neurons were examined for changes in the
ratio of AMPA to NMDAR synaptic currents and AMPAR recti-
fication index (Fig. 4B). Figure 4C shows that IL neurons from
the MPEP-Ext rats showed significantly smaller AMPA to NMDA
EPSC ratios than neurons from the Sal-Ext rats (Sal-Cond: 1.6 =
0.3, Sal-Ext: 4.4 = 0.8, MPEP-Ext: 1.8 = 0.2). A one-way ANOVA
showed a significant main effect (F, 53y = 6.34; p = 0.005) and
post hoc comparisons found that the MPEP-Ext group had
smaller AMPA to NMDA ratios than the Sal-Ext group (p =
0.01), but not the Sal-Cond group (p = 0.96). In addition, IL
neurons from the MPEP-Ext group exhibited smaller AMPA rec-
tification indexes compared with the Sal-Ext group (Fig. 4D; Sal-
Ext: 2.7 = 0.3, Sal-Cond: 1.7 *= 0.3, MPEP-Ext: 1.6 = 0.1). A
one-way ANOVA showed a significant main effect (F, 35, = 5.71;
p = 0.007) and post hoc comparisons found that the MPEP-Ext
group had smaller AMPA rectification indexes compared with
the Sal-Ext group (p = 0.009), but not the Sal-Cond group (p =
0.95). These results demonstrate that mGIluR5 activation is
needed for the extinction-induced synaptic changes in IL.
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Fear extinction increases CP-AMPARs in IL synapses. A, Examples of EPSCs recorded at —60 mV and +60 mV in neurons from each group. Data are from the same neurons as in Figure

1. Vertical line indicates when AMPA EPSCs were measured. B, Average AMPAR rectification index of EPSCs from Naive (n = 24 neurons), Con (n = 22 neurons), and Ext (n = 24 neurons) groups.
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Blocking mGluRS5 prevents extinction-induced intrinsic
plasticity in IL

Knowing that inhibition of mGluR5 receptors disrupts fear ex-
tinction memory and prevents synaptic plasticity in IL, we next
evaluated whether mGIluR5 receptor blockade also disrupts
extinction-induced intrinsic plasticity in IL neurons (Santini et
al., 2008). To determine whether mGluR5 receptor activation
mediates extinction-induced intrinsic changes, we examined the
intrinsic excitability of IL neurons in slices from the same rats
used to examine the effects of MPEP on extinction-induced syn-
aptic changes in IL (Fig. 5A). Four measurements of neuronal
excitability were examined: the number of evoked spikes, the first
interspike interval (ISI), the SAHP, and the fAHP. Replicating our
previous findings (Santini et al., 2008), IL neurons from the Sal-

Ext group fired more spikes in response to depolarizing current
steps than neurons from the Sal-Cond group (Fig. 5A-C). In
contrast, IL neurons from the MPEP-Ext rats fired the same
number of spikes as the Sal-Cond group, indicating that blocking
mGluR5 had prevented the extinction-induced increase in num-
ber of evoked spikes. Repeated-measures ANOVA across all three
groups showed a main effect of group (F(, 3, = 6.07; p =
0.005) and a significant current by group interaction (F,q sg)
= 3.70; p < 0.001). Post hoc comparisons indicated that neurons
in the Sal-Ext group generated significantly more spikes than
both Sal-Cond and MPEP-Ext groups at all intensities between
260 and 350 pA (p < 0.01). The maximum number of spikes that
could be evoked in IL neurons in the MPEP-Ext group was less
than that in the Sal-Ext group and equivalent to that in the Sal-
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Cond group (Sal-Cond: 3.8 = 0.6, Sal-Ext: 6.9 = 1.4, MPEP:
2.8 * 0.4). One-way ANOVA showed a main effect of group
(F(a,34) = 6.44; p = 0.004), and post hoc comparisons indicated
that the maximum number of evoked spikes in the MPEP-Ext
group was significantly lower than in the Sal-Ext (p = 0.001)
group. The MPEP-Ext and Sal-Cond groups were not different
from each other (p = 0.35). There was no difference in input
resistance, the amount of depolarizing current necessary to
evoke an action potential (rheobase), or in resting membrane
potential among the groups (Table 2).

Because extinction also reduced the first ISI, the sAHP, and
the fAHP (Santini et al., 2008), we also determined whether
blocking mGluR5 receptors also prevented these extinction-
induced intrinsic changes. As shown in Figure 5D, neurons from
the Sal-Ext group fired spikes with a smaller first ISI than neurons

N

[t ————

S

Cond

Pharmacologically isolated AMPA and NMDA EPSCs in IL neurons also show that fear extinction induces an increase in
the AMPA to NMDA ratio and AMPAR rectification index. 4, Behavior of rats used to measure pharmacologically isolated AMPA and
NMDA EPSCs. B, Examples of EPSCs recorded at +60 mV before (brown) and after (green) blocking NMDARs with AP-5 (100 rm).
After blocking NMDAR with AP-5, the number of NMDA EPSCs was calculated by subtracting the AMPA component from the
composite EPSCs. Two vertical lines indicate when NMDA EPSCs were measured in Figure 1. Note that at this point the majority of
the EPSCs were mediated by NMDARs. €, Examples traces of isolated AMPA and NMDA EPSCs in each group. D, AMPA to NMDA ratio
of Ext (n = 17) and Cond (n = 14) groups. E, Example traces of isolated AMPA EPSCs recorded at —60mV and +60mV. F, Average
AMPAR rectification index of isolated AMPA EPSCs in the Ext (n = 17) and Cond (n = 16) groups.
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from the MPEP-Ext group (T = 1.72,p =
0.02), suggesting that MPEP had pre-
vented extinction training from induc-
ing a reduction in the first ISI. We were
unable to determine whether MPEP
completely blocked the reduction in the
first ISI because one-way ANOVA
showed no difference between the three
groups when the Sal-Cond group was
included in the analysis (F, 3, = 49.70;
p = 0.16). Because the amplitude of the
sAHP depends on the number of spikes
(Abel et al.,, 2004), we measured the
sAHP in IL neurons from traces in
which cells fired only two spikes (San-
tini et al., 2008). MPEP also appeared to
prevent the extinction-induced reduc-
tion in the sSAHP (Fig. 5E), because the
sAHP was smaller in the Sal-Ext group
* than in the MPEP-Ext group (T = 1.72,
p = 0.017). After inclusion of the Sal-
Cond group in the analysis, one-way
ANOVA showed no difference between
the three groups (F, s, = 2.14; p =
0.13), precluding any further compari-
sons. Because the passive change in
membrane potential from the current
injection can contaminate the fAHP af-
ter the first evoked spike (Duvarci and
* Paré, 2007), we measured the fAHPs
evoked by the second spike (Fig. 5F).
Neurons from the Sal-Ext group had
smaller fAHPs than neurons from either
the Sal-Cond or the MPEP-Ext groups.
A one-way ANOVA revealed a main ef-
fect of group (F,,0 = 10.75; p =
0.0007) and post hoc comparisons indi-
cated that the Sal-Ext group had signif-
icantly reduced fAHP amplitudes
compared with both the MPEP-Ext
group and the Sal-Cond group (both
p < 0.01). In contrast to the sSAHP and
the fAHP, the mAHP measured as the
negative peak at the end of the current
pulse showed no difference between
groups (Table 2). These results show
that blocking mGIuR5 prevented the
extinction-induced changes in the num-
ber of evoked spikes, first ISI, sSAHP, and fAHP.

EPSC = AMPA
+NMDA component

AMPA component

|2oo pA

40 ms

NMDA component

Ext

Ext

Discussion

We examined the synaptic and intrinsic properties of IL neurons
after fear conditioning and extinction to investigate the role of
mGluRS5 activation in extinction-induced synaptic and intrinsic
plasticity in IL. The main findings in this study were as follows:
(1) fear extinction induced an increase in the AMPA to NMDA
ratio and AMPA rectification index, (2) fear extinction increased
the contribution of CP-AMPARSs in IL excitatory synapses, (3)
blocking mGluR5 prevented these extinction-induced synaptic
changes, and (4) blocking mGluR5 also prevented extinction-
induced intrinsic plasticity. Our results demonstrate that fear
extinction induces synaptic and intrinsic changes in IL that de-
pend on mGluR5 activation. Although we used adolescent ani-
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mals, our results appear to be applicable
to adults. Similar extinction-induced syn-
aptic changes were found previously in IL
in adult animals (Pattwell et al., 2012).
Furthermore, infusion of the mGIluR5
blocker MPEP into IL blocks the recall of
fear extinction in adult animals
(Fontanez-Nuin et al., 2011), suggesting
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that mGluR5 activation in IL also induces
extinction-related plasticity in adults.
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Fear extinction induces synaptic C
plasticity in IL

Previous studies have suggested that fear
extinction memory is encoded by IL neu-
rons (Quirk et al., 2006) that show en-
hanced responses to extinguished cues
during extinction recall (Milad and
Quirk, 2002). Although several experi-
mental manipulations suggest that fear
extinction induces synaptic plasticity in IL
(Herry et al., 1999; Herry and Garcia,
2002; Burgos-Robles et al., 2007), a direct
demonstration of extinction-induced
synaptic changes in IL was lacking until a
recent study showed that fear extinction
induces IL synaptic plasticity in preado-
lescent and adult mice (Pattwell et al.,
2012). Consistent with the slower extinc-
tion learning found in adolescent rats
(McCallum et al., 2010; Kim et al., 2011), the adolescent mice did
not show evidence of fear extinction or IL synaptic plasticity after
five extinction trials (Pattwell et al., 2012), suggesting that fear
extinction is less robust during the adolescent period that extends
from approximately postnatal day 28 to 42 in rodents (Spear,
2000).

However, when sufficient extinction is given to adolescent
rats, they do show extinction and activation of IL (Kim et al.,
2007b; Santini et al., 2008; Amano et al., 2010; McCallum et al.,
2010; Kim et al., 2011). In the present study, we exposed adoles-
cent rats to a longer extinction protocol than Pattwell et al., and
found that neurons from the Ext group had significantly larger
AMPA to NMDA EPSC ratios than either the Cond or Naive
group, indicating that fear extinction induced synaptic plasticity
in IL. Moreover, rats that expressed less fear at test had greater
AMPA to NMDA ratios compared with rats that expressed high
fear. The increased AMPA to NMDA ratio found in both mice
(Pattwell etal., 2012) and rats (present study) after fear extinction
is consistent with the insertion of AMPARSs into the postsynaptic
membrane and/or an increase in the open-time or conductance
of synaptic AMPARs.

We have extended the recent findings of Pattwell et al. (2012)
by showing that fear extinction also increases AMPAR rectifica-
tion and blockade of AMPAR-mediated EPSCs by Naspm, sug-
gesting that fear extinction induces the insertion of GluA2-
lacking CP-AMPARs into IL synapses (Clem and Barth, 2006; Lee
et al., 2006; Van den Oever et al., 2008; Vikman et al., 2008; Kott
et al., 2009; Clem and Huganir, 2010; Lee et al., 2010; Wiltgen et
al,, 2010). Because CP-AMPARs have a larger single channel
conductance (Swanson et al., 1997), the increase in the AMPA
to NMDA ratio is likely mediated by the insertion of CP-
AMPARs into IL synapses. Consistent with this, the AMPA to
NMDA ratio was correlated with the AMPA rectification in

G_

AMPA/NMDA ratio

Figure 4.

group. *p << 0.05.

Sal-Cond Sal-Ext MPEP-Ext

O

Rectification index
N

Sal-Cond Sal-Ext MPEP-Ext

Blockade of mGIuR5 impairs extinction recall and prevents the extinction-induced increase in AMPA to NMDA ratio
and AMPAR rectification index. A, Behavior of groups. Before extinction, rats were injected intraperitoneally with 10 mg/kg MPEP
(MPEP-Ext; n = 6) or saline (Sal-Ext; n = 6). MPEP-Ext rats showed more freezing on the test day than the Sal-Ext rats. Sal-Cond
rats were injected with saline on day 2 and returned to their home cages. B, Example traces of EPSCs recorded at —60 mV and +60
mV for each group. C, Average AMPA to NMDA ratio for each group. D, Average AMPAR rectification index in IL neurons for each

individual IL neurons. The trafficking of CP-AMPARs seems to be
a key mechanism for strengthening and modifying emotional
memories. CP-AMPARs are inserted into lateral amygdala
synapses after fear conditioning and are removed when the
fear memory is erased by giving extinction during reconsoli-
dation of fear memory (Clem and Huganir, 2010). The larger
single channel conductance (Swanson et al., 1997), enhance-
ment of EPSCs at higher frequencies (Rozov and Burnashev,
1999), and increased calcium permeability (Cull-Candy et al.,
2006) provided by CP-AMPARs appear to facilitate the
strengthening of synapses needed for the formation of emo-
tional memories.

Critical role of group I mGluRs in extinction-induced
synaptic and intrinsic plasticity

Studies indicate that group I mGluRs (mGluR1 and mGIuR5) are
important for extinction of conditioned fear (Kim et al., 2007a;
Xu et al., 2009; Clem and Huganir, 2010; Fontanez-Nuin et al.,
2011). Activation of mGluR1 seems to mediate reversal of
conditioning-induced synaptic changes in the amygdala, includ-
ing conditioning-induced potentiation of AMPA currents (Kim
et al., 2007b) and conditioning-induced insertion of CP-
AMPARs (Clem and Huganir, 2010). Therefore, mGluR1 re-
duces conditioned fear by weakening lateral amygdala synapses
to depress amygdala responses to the conditioned stimulus.

In contrast, mGluR5 contributes to inhibition of condi-
tioned fear by strengthening IL synapses and increasing the
intrinsic excitability of IL neurons. Our results suggest that
fear extinction activates mGluR5 receptors, which increase the
intrinsic excitability of IL neurons and strengthen the synaptic
activation of IL neurons via an increase in CP-AMPARs. Our
results do not rule out the possibility that other receptors also
modulate fear extinction-induced synaptic and intrinsic plas-
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Figure 5.

Blockade of mGIuR5 prevents extinction-induced intrinsic excitability changes in IL pyramidal neurons. A, Example traces from saline Cond (Sal-Cond; n = 15), saline Ext (Sal-Ext; n =

9), and MPEP-Ext (n = 13) groups. Neurons were recorded from slices taken from the same rats used in Figure 4. B, Number of spikes evoked by depolarizing steps of increasing current in different
groups. C, Group data of the maximum number of spikes that could be evoked by current steps in neurons from Sal-Cond, MPEP-Ext, and Sal-Ext groups. D, Group data of the duration of the first ISI
from traces showing the maximum number of spikes in each neuron. E, Group data of the SAHP. Examples are shown in traces at the bottom. F, Group data of the fAHP measured after the second
evoked spike. Examples are shown in the traces at the bottom. *p << 0.05 one-way ANOVA; *p < 0.05; Student’s  test.

Table 2. Electrophysiological properties of IL neurons in intrinsic plasticity
experiments

Property Saline-Cond Saline-Ext MPEP-Ext
V, (mV) —59 %1 —54%2 —54*1
Input resistance (m{2) 252 £18 254 + 30 253+ 14
Rheobase (pA) 105 =9 1M1 £16 17 £8
mAHP (mV) —6 =05 —72=*05 —6.2 =07

One-way ANOVA showed no difference between the groups for any measure ( p > 0.05). Recordings were done with
a KMeS0,-based intracellular solution.

ticity in IL. Because blocking muscarinic (Santini et al., 2012),
B adrenergic (Mueller et al., 2008), NMDA (Burgos-Robles et
al., 2007), or D2 (Mueller et al., 2010) or D4 (Pfeiffer and
Fendt, 2006) dopamine receptors in IL also disrupts recall of
fear extinction, these receptors may also be involved synergis-
tically or in parallel with mGIluR5 activation in the induction
of synaptic or intrinsic plasticity in IL.

Although the intracellular mechanism by which mGIuR5 in-
duces these changes remains to be determined, previous studies
suggest potential mechanisms. The stimulation of mGIuR5 re-
ceptors activates phospholipase C, leading to the production of
inositol trisphosphate and the release of intracellular calcium
(Power and Sah, 2007; El-Hassar et al., 2011). Eventually, this
results in CREB phosphorylation (Wang et al., 2008; Verpelli et
al., 2011), perhaps by activating calcium/calmodulin-activated
adenylate cyclases and protein kinase A (PKA; Wang and Storm,
2003). Fear extinction increases CREB phosphorylation in IL
(Mamiya et al., 2009), and blocking PKA in IL during extinction
learning impairs extinction recall (Mueller et al., 2008), suggest-

ing that PKA-mediated phosphorylation of CREB leads to the
formation of extinction memory in IL. Because increasing CREB
activity increases the intrinsic excitability of neurons (Viosca et
al., 2009; Zhou et al., 2009; Benito and Barco, 2010) and PKA
activation leads to the synaptic incorporation of CP-AMPARs
(Esteban, 2003; Boehm, 2006), mGIuR5 activation could induce
intrinsic and synaptic plasticity in IL via downstream stimulation
of PKA and CREB. In addition, mGluR5 can also activate extra-
cellular signal-regulated kinase (ERK) to increase neuronal excit-
ability (Hu et al., 2007). Given that fear extinction increases ERK
activation in IL (Kim et al., 2011), which is needed for extinction
recall (Hugues et al., 2006), mGluRS5 activation of ERK could
mediate the extinction-induced plasticity in IL. Therefore, down-
stream activation of PKA, ERK, and CREB are likely candidates
for mediating mGluR5’s induction of synaptic and intrinsic plas-
ticity in IL during extinction.

In conclusion, our results suggest that glutamatergic afferents
from the amygdala, ventral hippocampus, or other structures
(Sierra-Mercado et al., 2010), which provide information about
the lack of association between the conditioned and uncondi-
tioned stimulus, activate mGluR5 on IL neurons during fear ex-
tinction learning. The activation of mGluR5 induces synaptic and
intrinsic plasticity in IL neurons. During the recall of extinction
memory, these changes would allow IL neurons to respond more
robustly to the conditioned stimulus (Milad and Quirk, 2002)
and inhibit fear expression via increased activation of inhibitory
networks in the amygdala (Quirk et al., 2003; Ehrlich et al., 2009;
Amano et al., 2010). The development of pharmacological ago-
nists that promote these synaptic and/or intrinsic changes in IL



7192 - J. Neurosci., April 24,2013 - 33(17):7184-7193

could be combined with extinction-based exposure therapy to
facilitate fear extinction learning and treat posttraumatic stress
disorder patients.
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