
Comparative Medicine
Copyright 2013
by the American Association for Laboratory Animal Science

Vol 63, No 3
June 2013

Pages 207–217

207

Mesenchymal stem cells (MSC, alternatively known as mes-
enchymal stromal cells) were first reported in the literature in 
1968.39 MSC are thought to be of pericyte origin (cells that line 
the vasculature)21,22 and typically are isolated from highly vascu-
lar tissues. In humans and mice, MSC have been isolated from  
fat, placental tissues (placenta, Wharton jelly, umbilical cord, um-
bilical cord blood), hair follicles, tendon, synovial membrane, 
periodontal ligament, and every major organ (brain, spleen, liver, 
kidney, lung, bone marrow, muscle, thymus, pancreas, skin).23,121 
For most current clinical applications, MSC are isolated from 
adipose tissue (AT), bone marrow (BM), umbilical cord blood 
(CB), and umbilical cord tissue (CT; Table 1). Both in human and 
veterinary medicine, MSC promote tissue regeneration and heal-
ing via modulation of the immune response, including decreasing 
the cells and cytokines associated with inflammation and in-
creasing blood flow to promote normal healing rather than scar-
ring.11,87,99 Clinical trials in human medicine focus on the use of 
MSC both for their antiinflammatory properties (graft-versus-
host disease, irritable bowel syndrome) and their ability to aid 
in tissue and bone regeneration in combination with growth 
factors and bone scaffolds (clinicaltrials.gov).131 For tissue re-
generation, the abilities of MSC to differentiate and to secrete 
mediators and interact with cells of the immune system likely 
contribute to tissue healing (Figure 1). The current review will 

not address the specific use of MSC for orthopedic applica-
tions and tissue regeneration, although the topic is covered 
widely in current literature for both human and veterinary 
medicine.57,62,90

Long-term studies in veterinary species have shown no  
adverse effects with the administration of MSC in a large number 
of animals.9,10,53 Smaller, controlled studies on veterinary species 
have shown few adverse effects, such as minor localized inflam-
mation after MSC administration in vivo.7,15,17,45,86,92,98 Private com-
panies, educational institutions, and private veterinary clinics 
(including Tufts University, Cummins School of Veterinary Medi-
cine, University of California Davis School of Veterinary Medicine, 
VetStem, Celavet, Alamo Pintado Equine Medical Center, and 
Rood and Riddle Equine Hospital) offer MSC as a clinical treat-
ment for veterinary species. Clinical uses include tendon and car-
tilage injuries, tendonitis, and osteoarthritis and, to a lesser extent, 
bone regeneration, spinal cord injuries, and liver disease in both 
large and small animals.38,41,113 Even with this broad clinical use, 
there have been no reports of severe adverse effects secondary to 
MSC administration in veterinary patients.

MSC Characterization
MSC are defined as highly proliferative, plastic-adherent, 

fibroblast-like cells capable of osteogenic, chondrogenic, and 
adipogenic differentiation.39,101 MSC are further characterized ac-
cording to their surface protein expression by flow cytometry or 
immunophenotyping. Full characterization of MSC from veteri-
nary species is hindered by the lack of available species-specific 
antibodies and reagents. The identification of crossreactive anti-
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Table 1. Tissues from which MSC have been isolated

Species

Tissue source (reference no.)

Fat Bone marrow Cord blood Cord tissue Other

Cat 134 83 56
Chicken 63
Cow 138 12 108
Dog 97 3, 59 78, 119 139 Periodontal ligament65

Goat 66 96 4
Horse 26, 130 37, 40, 123 67 130 Periodontal ligament and gingiva88

Nonhuman primate 28, 54 5
Pig 135 114 70 14, 20, 91
Rabbit 128 80 32 Fetal liver93

Sheep 84 95 42, 55

Figure 1. The dual roles of MSC: differentiation and modulation of inflammation.
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CD105, CD73, and CD90 and negative for CD45, CD34, CD14, 
CD11b, CD79a, and CD19.31 Table 2 provides a comprehensive 
list of antibodies used to identify MSC in veterinary species from 
different tissue sources.

Trilineage differentiation has been demonstrated for MSC from 
many species and tissues, including cow BM- and CB-MSC;12,108 dog 
AT-, BM-, CB-, and CT-MSC,59,97,119,139 goat AT- and BM-MSC;96,112 
chicken BM-MSC;63 horse AT- BM-, CT-, and CB-MSC;37,67,107,130 
sheep AT-, BM-, and CB-MSC;55,84,85,95 rabbit BM- and fetal-liver–

bodies and the generation of species-specific reagents have been 
augmented recently by large-scale collaborations (http://www.
umass.edu/vetimm/). In addition, several studies have screened 
antibodies for crossreactivity to MSC from veterinary species.25,118 
Similar to those from humans and mice, MSC from veterinary 
species express MHC class I but not MHCII or the T-lymphocyte 
costimulatory molecules CD86 and CD80 (Table 2) .68,69 Because 
no single, specific MSC marker has been identified, a panel of  
antibodies is used. Human MSC are defined as positive for 

Table 2. MSC surface markers, as determined by flow cytometry, RT-PCR, or immunocytochemistry

Species
MSC 
type Positive Negative Reference

Cat AT Reported CD44, CD90, CD105 CD4, MHCII 134
BM Confirmed MHCI, CD44, CD9 CD4, CD8, CD13, CD14, CD18, CD41/61, CD45, 

MHCII
83

Reported CD90, CD105 134

Chicken BM Confirmed CD44, CD90, CD105 CD45 63

Dog AT Confirmed MHCI, CD44, CD90 MHCII, pan-lymphocyte, CD14, CD45, CD3, CD4, 
CD8, CD172a, CD11c

61

BM Confirmed CD29, CD90, CD44, CD73, CD106, 
CD10, CD13

CD34, CD14, CD105, CD3, CD45 60, 77

Reported MHCI MHCII 60
CT Reported CD44, CD29, CD90 CD34, CD45, CD14, CD117 139
CB Reported CD29, CD33, CD44, CD105, CD184 CD4, CD8a, CD10, CD14, CD20, CD24, CD31, 

CD34, CD38, CD41a, MHCII, CD45, CD49b, 
CD41/61, CD62p, CD73, CD90, CD133

119

Goat CT Reported CD44 CD34 4

Horse AT Confirmed MHCI, CD29, CD90, CD44 MHCII, CD86, F6B (pan-leukocyte) 16
Reported CD73, CD105 CD14, CD34, CD79a, CD45 13, 48, 107

BM Confirmed MHCI, CD29, CD90, CD44 MHCII, CD86, F6B (pan-leukocyte) 16
Reported CD73, CD105 CD14, CD34, CD79a, CD45 13, 48, 107

CT Confirmed MHCI, CD29, CD90, CD44, CD105, CD166 MHCII, CD86, F6B (panleukocyte), CD34 15, 16
CB Confirmed MHCI, CD29, CD90, CD44 MHCII, CD86, F6B (panleukocyte) 16, 74

Reported CD79a 48

Nonhuman AT Reported CD90, MHCI, CD105, CD59, CD3, CD4, CD8, CD11b, CD13, 54
  primate CD106, CD146, CD161, STRO1 CD31, CD164

BM Reported CD29, CD90, CD44, MHCI, CD105, CD73, 
CD166, CD56, CD59, CD106, CD146, CD161, 

STRO1

CD34, CD14, CD11c, CD45, CD56, CD31, MHCII, 
CD3, CD4, CD8, CD11b, CD13, CD164

8, 54

Pig AT Reported CD44, CD34 136
BM Confirmed CD90, CD29, CD44, MHCI, CD46 CD172a, CD106, CD56 94, 100

Reported CD45, MHCII 50
CT Confirmed CD90, CD44, MHCI CD31, CD45RA, MHCII 20
CB Reported CD29, CD105, CD49b CD45, CD133 70

Sheep BM Reported CD44, CD105, CD29, CD166 CD34, CD45, CD14, CD106, CD31, STRO1 85, 95

Markers listed as ‘confirmed’ were listed as such when the cited study included appropriate validation of antibody crossreactivity (for example 
through bioassay or Western blots) , documented gene sequences, or published appropriate positive and negative controls. Markers listed as ‘reported’ 
either could not be verified, usually because the original report did not include appropriate validation or controls, or have prompted controversy in the 
literature regarding whether the antibodies crossreact with the species tested.
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MHCII and T-cell costimulatory molecule expression, downreg-
ulation of cytokine production, and prevention of DC homing 
to lymph nodes.35,43,137 The downstream effect of these changes 
includes limitation of the ability of DC to stimulate a T cell re-
sponse. Similar to their effect on T lymphocytes, human MSC 
inhibit B-cell proliferation in a dose-dependent manner, blocking 
progression of the cell cycle.46,125,137

Mediator production. Soluble immunosuppressive factors 
demonstrated to be produced or expressed by MSC from vet-
erinary species include TGFβ1,8,16,61,77,80,103 hepatocyte growth fac-
tor,61 PGE2,

16,61,77 indoleamine 2,3-dioxygenase (IDO),61 nitric oxide 
(NO),16,63 vascular endothelial growth factor,8,77 and IL68,16,61 (Table 3). 
Mediator production by MSC in veterinary species has not been 
tested exhaustively, and the mediators reported in Table 3 are 
those that have been published in the literature. A mediator’s 
absence from the list does not imply that MSC do not produce 
it but rather that its production has not yet been determined. 
Some mediators are produced constitutively, whereas others are  
secreted after MSC activation by cytokines or mediators found in 
inflammatory environments. Mediators produced by MSC down-
regulate inflammation and stimulate angiogenesis.33,64,136

The particular mediators produced by MSC can vary by spe-
cies and by tissue source. Horse MSC differentially produce  
mediators depending on MSC tissue source: equine MSC derived 
from hemic sources (BM- and CB-MSC) produce NO, whereas 
those MSC derived from solid tissues (CT- and AT-MSC) do not.16 
Whether these differences in mediator production in vitro confer 
any functional differences in vivo is unknown, although anec-
dotal evidence suggests decreased healing time for equine tendon 
lesions after the injection of equine CB-MSC compared with other 
tissue-derived MSC. We speculate that the production of NO by 
horse CB-MSC causes increased angiogenesis in vivo. Species- 
associated variability in the production of NO and IDO by MSC 
has been described. Human MSC produce high levels of IDO 
and do not produce NO, whereas mouse MSC produce high 
levels of NO and do not produce IDO.109 Human and mouse MSC 
are reported to induce T regulatory cells (CD4+CD25+ FoxP3+), 
a population of T cells that suppress the immune response and 
promote T-cell tolerance to antigens.29,36 This induction, or prefer-
ential production, of T-regulatory cells is dictated by the presence 
of TGFβ1 and IL10 in the microenvironment. Research is ongoing 
with regard to constitutive compared with induced production of 
TGFβ1 by human MSC.47,105

TGFβ1 production by veterinary species varies by species, 
tissue type, and MSC activation status. Dog BM-MSC, pig BM-
MSC, and horse AT-, BM-, CT-, and CB-MSC do not increase 
TGFβ1 production after exposure to activated lymphocytes.16,77,103 
Dog BM-MSC produce TGFβ1 at levels insufficient to inhibit 
lymphocyte proliferation.77 Conversely, dog AT-MSC increase 
TGFβ1 production after exposure to lymphocytes, and rabbit BM-
MSC increase their TGFβ1 production after IFNγ pretreatment in 
vitro.61,80 To date, no studies in veterinary species have demon-
strated that MSC production of TGFβ1 shifts T lymphocytes to a 
T-regulatory phenotype.

The role of specific mediators on lymphocyte proliferation or 
function can be evaluated via chemical blockade of individual 
mediators and measurement of corresponding lymphocyte pro-
liferation in a MSC–lymphocyte coculture (mixed lymphocyte 
reaction). Although not yet documented in veterinary species, 
blocking TGFβ1 produced by human BM-MSC results in de-

MSC;80,93 pig AT- and BM-MSC;114,135 and nonhuman primate BM- 
and AT-MSC.8,54

Immunomodulatory Properties of MSC
A deeper understanding of the mechanisms by which MSC 

derived from veterinary species modulate inflammation and con-
tribute to healing will benefit both humans and animals. Many 
veterinary species serve as models for human diseases for which 
cellular therapy is currently being investigated (for example, pigs 
for cardiovascular disease, goats for orthopedic lesions96,120). In 
addition, MSC therapy increasingly is used as a mainstay for a 
variety of companion animal disorders including tendon, bone, 
and cartilage injuries in horses and arthritis in dogs.9,123 MSC have 
been shown to interact with CD4 and CD8 lymphocytes and, once 
activated in the presence of pro-inflammatory mediators, secrete 
mediators that downregulate inflammation.122

Lymphocyte proliferation. MSC derived from all tissue sources 
have potent immunomodulatory capabilities in vitro. Autologous 
and allogeneic MSC are nonimmunogenic, and completely un-
matched MSC do not induce leukocyte proliferation in the absence 
of activation in vitro.16,95,103 MSC are also antiinflammatory. The 
ability of MSC to inhibit the proliferation of stimulated T lympho-
cytes in vitro has been well described for MSC from nonhuman 
primates,5,8 dogs,61,65,77 chickens,63 rabbits,80,93 pigs,20,103 sheep,95 and 
horses.16,99 Lymphocyte proliferation in vitro is maximally inhibit-
ed at a MSC:lymphocyte ratio of 1:1, 1:5 or 1:10.5,16,61,63,80,81 One pro-
posed mechanism for this inhibition of lymphocyte proliferation 
is MSC-induced T-cell–cycle arrest in G0, which is thought to be 
regulated at a molecular level by decreases in lymphocytic cyclin 
D levels.44,65 MSC decrease the expression of activation markers 
(CD25, CD38, and CD69) on T cells, preventing their activation 
and proliferation.47,76 Pretreatment of MSC with IFNγ, a mediator 
largely present in inflammatory environments, further enhances 
the ability of MSC to decrease lymphocyte proliferation.80,103 Fur-
thermore, in one in vitro experiment, xenogenic pig BM-MSC 
did not stimulate human lymphocyte proliferation; rather, they 
dose-dependently inhibited lymphocyte proliferation after stimu-
lation.81

Both cell–cell contact and soluble factors are thought to play  
a role in MSC-induced inhibition of lymphocyte proliferation. 
Toll-like receptors, intracellular adhesion molecule 1, and vascu-
lar cell adhesion molecule 1 on the surface of MSC and FAS-li-
gand–dependent interactions are thought to play a part in cell–cell  
mediated immunosuppression, although this contribution has 
not been examined in veterinary species.2,27,79,111,127 MSC inhibit 
lymphocyte proliferation even in transwell assays where MSC 
are physically separated from lymphocytes, supporting the idea 
that MSC produce soluble factors involved in immunomodu-
latory activity.61,77,89 In addition, preconditioned media taken 
from cultures of activated MSC, defined as those MSC exposed 
to proinflammatory mediators, inhibits lymphocyte prolifera-
tion.61

MSC interactions with other immune cells have been stud-
ied widely in both humans and rodents, although this research 
has not yet been broadly extended to MSC from veterinary spe-
cies. Human MSC decrease proliferation of both CD4+ and CD8+ 
T cells, cause a shift toward a Th2 phenotype, and inhibit Th17 
differentiation and function.1,43 Human and rodent MSC modu-
late dendritic cell (DC) development from monocytes and impair  
DC function. Impaired DC function includes modulation in 
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There is still some disparity in the literature regarding species-
specific identification of inflammatory mediators that are pro-
duced by or inhibited by MSC. Variability in results could stem 
from the methodology by which researchers measure cytokine 
production; test kits and reagents are not always specific for  
veterinary species and have been adapted from human or lab 
animal methodologies. Large-scale collaborations and increased 
communication through the veterinary stem cell research com-
munity will enable all researchers to ensure they are accessing the 
most appropriate tools for their research.

MSC In Vivo
In vitro compared with in vivo results. MSC safety and func-

tion has been studied in vivo in healthy animals, in patients with 
naturally occurring disease, and in animals serving as models of 
human diseases. Although extensive in vitro studies have shown 
that MSC are effective at decreasing inflammation, in vivo results 
are variable. Factors that contribute to variable therapeutic out-
comes include natural variation in disease processes and lack of 
standards for MSC dose, route of administration, tissue source, 
or measured endpoints. Table 4 outlines the species, MSC dose, 
MSC source, and route of administration for the in vivo studies 
discussed in the current review.

An example of a strong correlation between in vitro and in 
vivo studies was a skin graft model in baboons. Skin grafts from 
MHC-mismatched donors were transplanted to adult baboons, 
after which a single BM-MSC dose was administered intrave-
nously. Grafts in baboons that received MSC infusions were  
rejected more slowly (11 d) than were those in animals not treated 
with MSC (7 d).5 The delay in graft rejection attributed to MSC 
was comparable to the alleviation of graft rejection by antigraft 
rejection pharmaceuticals currently on the market.5 The authors 
of the study postulated that the MSC were sufficient to subdue 
the lymphocyte response but insufficient to inhibit recruitment of 
inflammatory cells to the graft.5

creased production of T-regulatory cells36 and a significant re-
versal in the inhibition of T cell proliferation,30,47 indicating that 
TGFβ1 has an important role in MSC function. Blocking PGE2

61,77 
or IDO61 produced by dog BM- or AT-MSC restores lymphocyte 
proliferation, indicating that both mediators have functional roles 
in modulating the MSC–lymphocyte interaction. In addition,  
according to our experience, PGE2 appears to be the primary 
mediator responsible for inhibition of lymphocyte proliferation 
by horse AT-, BM-, CT-, and CB-MSC because blocking PGE2 
restores lymphocyte proliferation.

MSC immunomodulatory function is stimulated by pro- 
inflammatory mediators, namely IFNγ and TNFα34,103 (Figure 
1). MSC derived from IFNγ-receptor knock-out mice are unable 
to inhibit a lymphocyte proliferative response.110 At baseline, 
neither unstimulated lymphocytes nor MSC produce these pro-
inflammatory mediators.16,103 However, activated lymphocytes se-
crete IFNγ and TNFα and stimulate MSC. Dog AT-MSC decrease 
TNFα production and increase IFNγ production by lymphocytes,61 
whereas horse BM-, AT-, CB-, and CT-MSC decrease both TNFα 
and IFNγ.16,99 Pig BM-MSC decrease IFNγ and IL2 production by 
lymphocytes. Whether the decrease in these mediators is related 
to a decrease in the total number of lymphocytes present in cul-
ture or due to a functional shift in lymphocyte phenotype and the 
induction of T-regulatory cells is unknown.

The relevance of these mediators in vivo is largely unknown 
in veterinary medicine. Few studies have measured mediators 
in fluids or tissues, and both the kinetics of inflammation and 
the redundant functions of many mediators make interpretation 
of mediator concentrations at isolated time points difficult. In 
an equine model of osteoarthritis, PGE2 levels were significantly 
decreased in synovial fluid after BM-MSC treatment compared 
with those in untreated affected joints.40 The authors attributed 
this difference to the decrease in swelling and inflammation noted 
1 week after MSC administration.40 Human MSC exposed in vitro 
to joint fluids taken from patients with osteoarthritis and rheuma-
toid arthritis upregulated their mRNA expression of IL6 and IDO 
and suppressed lymphocyte proliferation.

Table 3. Mediator production by MSC in veterinary species

Species MSC type

Mediators

ReferenceELISA Gene expression

Chicken BM NOa 63

Dog AT TGFβ, HGF, PGE2, IDO TGFβ, IL6, IL8, VEGF, HGF, 
COX2

61

BM TGFβ, VEGF, PGE2
77

Horse AT, CT PGE2, IL6, TGFβ 16

BM, CB PGE2, IL6, TGFβ, NOa 16

Nonhuman primate BM IL6, VEGF, TGFβ, HGF 8

Pig BM TGFβ, IL10 103

Rabbit BM IL10, TGFβ 80

HGF, hepatocyte growth factor; IDO, indoleamine 2;3-dioxygenase; IL, interleukin; PGE2, prostaglandin E2; TGF, transforming growth factor; VEGF, 
vascular endothelial growth factor
aNO measured by using Greiss reagent.
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and CB-derived MSC.16 A similar study showed no difference 
in inflammatory response to horse autologous compared with  
allogeneic MSC after intraarticular administration.17

Graft-versus-host disease and T regulatory cells. Clinical tri-
als are underway to determine the efficacy of MSC in treating 
humans with graft-versus-host disease.52,73,75 However, results 
of studies using MSC to treat graft-versus-host disease in vet-
erinary species have been mixed. Two studies in dogs showed 
no difference in the rate of graft rejection between dogs that  
received MSC after dog leukocyte antigen-identical bone marrow 
transplants compared with those that did not receive MSC treat-
ment, even though in vitro data demonstrated diminished leuko-
cyte proliferation in the presence of MSC.77,89 Two other studies 
found that pigs given composite tissue allografts and BM-MSC 
had prolonged graft survival when compared with animals that 
did not receive BM-MSC treatment.71,72 In the cited study,72 pigs 
given cyclosporine along with irradiation had marked evidence 
of graft-versus-host disease, whereas pigs given cyclosporine,  
irradiation, and MSC had no evidence of graft-versus-host dis-
ease and the least rejection of transplanted tissue.72 In a second 
set of experiments, T-cell phenotypes were investigated in pe-
ripheral blood and graft tissue.71 The authors found a significant 
increase in the percentages of CD4+CD25+ and CD4+FoxP3+ T cells 
(T regulatory cells) in both the blood and graft when pigs were 
given cyclosporine, irradiation, and MSC compared with pigs 
that did not receive MSC, indicating that T-regulatory cells were 
induced both globally and locally.71

T-regulatory cells increase after MSC infusion in a primate 
model of allogeneic islet cell engraftment. Nonhuman primates 
that received islet cells and BM-MSC had significantly enhanced 
islet function 1 month after transplantation, compared with those 
that had not received MSC. Rejection episodes in the animals that 
had not received MSC were reversed with additional infusions of 
allogeneic BM-MSC.8 The presence of T regulatory cells in periph-
eral blood was increased after episodes of rejection and additional 
MSC infusion when compared with levels before MSC infusion.8 
Graft dysfunction was noted as T-regulatory cells decreased in 
peripheral blood.8

Other examples illustrate poor correlation between in vitro 
and in vivo studies. In vitro, pig BM-MSC decreased lympho-
cyte proliferation and inhibited production of pro-inflammatory 
mediators.103 In vivo, allogeneic pig BM-MSC elicited both a cel-
lular and humoral response when injected either subcutaneously 
or intracardiac.103 Antidonor alloantibodies (IgM or IgG) were 
detected after a single or multiple subcutaneous doses of BM-
MSC, although cytolytic activity was not detected after single 
doses of MSC.103 Intracardiac injection of single or multiple doses 
of BM-MSC elicited both alloantibody production and cytolytic 
activity of donor MSC;103 Limitations to the study included low 
sample number (n = 2 for subcutaneous, n = 3 for intracardiac) 
and variable numbers of injected MSC (range, 1.5 × 107 to 1.20 × 
108 MSC). The results of the cited study suggest that allogeneic 
BM-MSC in this pig model are not anti-inflammatory and may 
not escape immune surveillance. The findings of this study103 are 
notable as a general exception to a body of literature in veterinary 
and human medicine suggesting that allogeneic MSC are well-
tolerated and highlight the need for standardized methods of mea-
suring the immune response to MSC both in vivo and in vitro.

Studies comparing autologous (self) and allogeneic (non-self) 
MSC are prominent in veterinary medicine, with a focus on 
healing of orthopedic injuries.49,58,102 A few studies in veterinary 
medicine have focused on the safety and efficacy of autologous 
and allogeneic MSC with regard to their immunomodulatory 
properties. Our study comparing intradermal injection of autolo-
gous and allogeneic equine CT-MSC revealed that 2 rounds of 
intradermal injections failed to induce a significant cell-mediated 
response, as measured in vivo by wheal formation and indura-
tion and ex vivo by histopathology on biopsied tissue and by 
mixed lymphocyte reactions.15 Wheal formation and indura-
tion indicated no difference between MSC injection and control  
(saline) injections.15 Results from mixed lymphocyte reactions in-
dicated that neither autologous or allogeneic MSC stimulated nor 
suppressed baseline T-cell proliferation, even after multiple MSC 
injections. Taken together, the results indicate that CT-MSC could 
be administered in vivo multiple times without eliciting a cel-
lular immune response.15 This in vivo study parallels the in vitro 
findings comparing immunomodulation by horse AT-, BM-, CT-, 

Table 4. MSC sources, dose ranges, and routes of administration for in vivo studies

Species MSC type Dose Route of administration Reference

Dog BM 1.1-1.8 × 106/kg intravenous 77

BM 1 × 106/kg intravenous 89

Horse CT 1 × 106 intradermal 15

CT 7.5 × 106 intraarticular 17

BM 5.6-15 × 106 intraarticular 40

Nonhuman primate BM 20 × 106/kg intravenous 5

BM 4.3-6.4 × 108/kg intraportal 8

BM 3.4-6.5 × 106/kg intravenous 8

Pig BM 15-18 × 106 subcutaneous 103

BM 10-40 × 106 subpericardial 103

BM 1 × 107/dose intravenous 72

BM 1 × 107/dose intravenous 71
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DCs, or neutrophils; whether MSC from veterinary species alter 
lymphocyte phenotype, induce the development of T regulatory 
cells in vitro as well as in vivo; or whether MSC are anti-inflam-
matory in vivo in all species. Additional studies undertaken by 
researchers and collaborative working groups, as well as informa-
tion sharing though professional organizations such as the North 
American Veterinary Regenerative Medicine Association, will 
play a crucial role in answering many of these questions.
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