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One prominent view holds that episodic memory emerged recently
in humans and lacks a “(neo)Darwinian evolution” [Tulving E (2002)
AnnuRev Psychol 53:1–25]. Here, we review evidence supporting the
alternative perspective that episodic memory has a long evolution-
ary history.We show that fundamental features of episodic memory
capacity are present in mammals and birds and that the major brain
regions responsible for episodic memory in humans have anatomical
and functional homologs in other species. We propose that episodic
memory capacity depends on a fundamental neural circuit that is
similar across mammalian and avian species, suggesting that proto-
episodic memory systems exist across amniotes and, possibly, all
vertebrates. The implication is that episodic memory in diverse spe-
cies may primarily be due to a shared underlying neural ancestry,
rather than the result of evolutionary convergence. We also discuss
potential advantages that episodic memory may offer, as well as
species-specific divergences that have developed on top of the fun-
damental episodic memory architecture. We conclude by identifying
possible time points for the emergence of episodic memory in evo-
lution, to help guide further research in this area.
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In humans, episodic memory has been defined as the capacity to
recall specific experiences, as if one were to “mentally time travel”

to reexperience individual events (1, 2). Although a prominent
view holds that episodic memory is unique to humans (1, 3), ac-
cumulating evidence indicates that birds and rodents can dem-
onstrate a memory capacity that satisfies behavioral criteria for
episodic memory (4–6). Does this evidence imply that episodic
memory capacity is fundamentally conserved across avian and
mammalian species? Or does it suggest “episodic-like” memory
capacity evolved separately in a few species and thus is the result
of convergent evolution? Notably, these important questions
cannot be answered by focusing on behavior alone because it is
difficult, perhaps impossible, to distinguish between homologous
and analogous memory capacities. Here, our objective is to shed
light on the potential evolution of episodic memory. We go be-
yond previous efforts by integrating the behavioral evidence
across species with a comparative analysis of the neurobiology
and neural mechanisms underlying episodic memory capacity.
We also discuss the potential functions of episodic memory in an
evolutionary context, as well as species-specific divergences.

Episodic Memory Capacity Across Species
Episodic memory refers to the memory for specific personal
experiences. Although accurate, this definition does not capture
the considerable challenge associated with distinguishing episodic
memory from other memory capacities. A common mistake is to
assume that one-trial learning is a sufficient criterion for episodic
memory capacity. This is clearly not the case, as nonepisodic
memories can be formed after a single exposure [e.g., conditioned
taste aversion or familiarity (4, 7, 8)]. In this section, we consider
the main approaches used to define and demonstrate episodic
memory capacity across species.

Subjective Measures of Episodic Recall. Because the concept of
episodic memory was first studied in cognitive psychology, one
approach is to define it in terms of the subjective experience as-
sociated with episodic recall. Specifically, Tulving (1) proposed
that episodic recall involves the ability to “mentally time travel” to

reexperience specific events, a capacity that requires a sense of
self, subjective time, and autonoetic awareness (conscious aware-
ness that the experience occurred in the past). Although this defi-
nition may capture the phenomenological aspects associated with
episodic memory in humans, it relies entirely on verbal reports of
subjective mental experiences. Because this definition of episodic
memory precludes its investigation in animals, the hypothesis that
this capacity is unique to humans lacks falsifiability. The absence of
objective measures for episodic memory is also not conducive to
rigorous scientific investigation in human studies. A more pro-
ductive approach to defining episodic memory is to identify fun-
damental features that can be measured experimentally.

Receiver Operating Characteristics. The main objective of the re-
ceiver operating characteristics (ROC) approach is to use signal
detection analyses to characterize recognition memory perfor-
mance. More specifically, this method can be used to objectively
quantify the relative contributions of episodic recollection versus
familiarity in a recognition memory task. Although this approach
was originally developed for human studies, it was successfully
adapted to rodents and provided strong evidence that rodents
have recollective and familiarity processes similar to humans (9).
However, considerable effort is required to adjust the experi-
mental parameters (e.g., response biases) for each species. There-
fore, although this approach has distinct advantages (for a
comprehensive review, see refs. 8 and 10), it is unlikely to become
widely used across species.

Memory for “Events in Context.” The events-in-context approach
capitalizes on the fact that, in the episodic memory system, in-
formation about specific events is tied to the spatial, temporal, and
other situational contexts in which they occurred (2, 11, 12). Based
on this operational definition, demonstrations that animals can re-
member events in context (12–14) provided compelling evidence
that core properties of episodic memory are present in nonhumans.
This capacity is often termed episodic-like to emphasize that,
whereas it does not address the phenomenological aspects asso-
ciated with episodic memory in humans, it satisfies three key
behavioral criteria (4):

i) Content: The individual remembers information about the
event (“what”) and its context of occurrence (e.g., “where”
or “when” it happened).

ii) Structure: The information about the event and its context is
integrated in a single representation.

iii) Flexibility: The memory can be expressed to support adaptive
behavior in novel situations.

These criteria have provided a solid theoretical framework for
behavioral tests of episodic memory. It is important to note that
the criteria are usually satisfied using converging evidence from
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multiple studies, as it is impractical to address them all in every
experiment. Here, we examine the three main approaches used
to study the memory for events in context: (i) “what-where-
when,” (ii) “what-where,” and (iii) “what-when.” The distinct content
requirements of these models provide an opportunity to in-
vestigate different aspects of episodic memory capacity.
Memory for what-where-when. An influential animal model of epi-
sodic memory took advantage of the natural caching behavior of
scrub jays. In an ingenious paradigm, Clayton and Dickinson (12)
demonstrated that scrub jays could remember what food they
stored (worms or peanuts), as well as where (the location in the
cage) and when (4 h or 124 h ago) it was cached, thus fully
satisfying the content criterion. Similar evidence of what-where-
when memory has also been reported in other bird species, in-
cluding other corvids [magpies (15)] and noncorvids [black-capped
chickadees (16)]. This approach has also been adapted to many
mammalian species, including rats (14, 17–19), mice (20),
meadow voles (21), pigs (22), nonhuman primates (23, 24), and
humans (25, 26). It is important to note that the structure and
flexibility criteria have been much less investigated than the
content criterion so it remains to be determined whether all
these species will meet all three behavioral criteria. As of now,
there is evidence for what-where-when integration (structure
criterion) in birds (27), rodents (17), and primates (23). Evidence
for the flexibility criterion comes from the demonstration that
the what-where-when memory can be updated with new in-
formation [birds (28, 29); rodents (14)], and that it can be
expressed spontaneously [i.e., without training or in response to
an unexpected test; birds (30); rodents (19, 20)]. Although this
approach has been momentous, leading to the development of
a number of animal models of episodic memory, it also has
limitations. In particular, the content criterion is very stringent,
requiring memory for what, where, and when. On one hand, this
is a positive aspect of the model as it established a very high
threshold for the first convincing behavioral demonstration of
episodic memory in animals. On the other hand, this criterion
may be overly restrictive. In fact, there is no clear evidence that
all episodic memories contain all three types of information.
Therefore, other forms of memory for events in context should
also be considered episodic, such as memories involving a subset
of the two (e.g., what-where), other types of contextual in-
formation [e.g., internal context (31)], or possibly where-when
associations [no “what” component (32)].
Memory for what-where. This approach focuses on the memory for
the spatial context of episodic memory, the ability to remember
where specific events occurred. It is important to note that this ca-
pacity does not simply correspond to spatial memory (memory for
“where”), as it requires animals to remember specific what-where
associations (i.e., specific items in specific places). In these para-
digms, the “what” component refers to the presentation of a specific
item (e.g., odor, object). The “where” component varies depending
on the species, typically referring to a specific place in an environ-
ment in rodent studies, or to a specific location on a screen (or
complex visual scene) in primate studies. Tasks involving item-place
associations have been used extensively in rats (e.g., refs. 33–36) and
nonhuman primates [e.g., item-scene associations (37)], particularly
to study the neural basis of episodic memory. Paradigms relying on
spontaneous preference, which require no training, have also been
developed (e.g., ref. 38). A more detailed review of what-where
approaches, including their use as preclinical tests for assessment of
cognitive function in animal models of aging and Alzheimer’s dis-
ease, is available elsewhere (39).
Memory for what-when. This approach requires subjects to re-
member the temporal context in which specific events occurred,
a defining feature of episodic memory (1, 2). There are different
forms of memory for when events occurred, including memory for
the order of events in a sequence, for how long ago events hap-
pened, and for the time of day at which they took place (6, 40–43).
The vast majority of studies have focused on memory for the order
of events, which reflects the capacity of episodic memory to pre-
serve the “flow of events” as they occurred in experience (1, 2). The

typical paradigm involves the presentation of a sequence of items
(e.g., odors, objects), followed by a choice between two of the
presented items. Memory for order is expressed by selecting (e.g.,
refs. 13 and 44), or preferentially exploring (e.g., ref. 45), the item
that appeared earlier in the sequence. Importantly, information
about the spatial context is irrelevant to performance. This basic
approach has been used in rodents (13, 44), and similar approaches
have been developed in nonhuman primates (46–48) and humans
(49–51). Notably, the NIH Toolbox Cognition Battery proposes
a what-when paradigm, which requires memory for sequences of
pictured events, as the new standard measure for episodic memory
capacity in humans (for a review, see refs. 39 and 52).

Section Summary. The evidence reviewed strongly suggests that
core properties of episodic memory are present across mammals,
as well as in a number of bird species. Although the ROC method
has distinct advantages, the memory for the events-in-context
approach is more practical and widely used. Therefore, the latter
is more appropriate to examine episodic memory capacity across
species and shed light on its evolution. What-where-when para-
digms have the strictest behavioral criteria and thus are better
suited for determining whether a given species has the capacity for
episodic memory. In contrast, paradigms that focus on isolating
a specific form of contextual information (e.g., what-where, what-
when) are promising for investigating the types of contextual
information fundamental to episodic memories, as well as elu-
cidating its critical neurobiological substrate (see below). Al-
though no single definition or approach is likely to capture all
features of episodic memory, converging evidence from these
operational approaches has greatly furthered our understanding
of episodic memory across phylogeny.

Brain Structures Important for Episodic Memory
Studies of neurological patients and functional neuroimaging in
humans have shown that episodic memory critically depends on
the integrity of the hippocampus (3, 53, 54) but also involves
a large network of cortical areas that includes the adjacent
parahippocampal region and the prefrontal cortex (55, 56). In
this section, we review basic anatomical and functional evidence
to determine the extent to which these structures are conserved
in mammals and birds.

Hippocampus. The hippocampus has been identified in many
species, including a large breadth of mammals (57, 58), birds (59,
60), reptiles [medial cortex, (61)], and teleost fish [dorsolateral
telencephalon (61, 62)]. The neurobiological and functional ev-
idence strongly suggests that the hippocampus is a homologous
structure across species.
In mammals, the hippocampus is remarkably conserved across

species, including humans, nonhuman primates, pigs, rodents, and
bats (57, 58). The cytoarchitecture can be easily identified by the
dense layers of folded cell bodies that make up hippocampal
subregions, including the subiculum, dentate gyrus, and cornu
Ammonis (CA) fields (58, 63, 64) (Fig. 1). Major inputs to the
hippocampus originate from the entorhinal cortex and synapse on
all subfields. Within the hippocampus, the dentate gyrus projects
to CA3 through mossy fiber connections. CA3 projects to itself,
through recurrent connections, as well as to CA1, through the
Schaffer collaterals. The major outputs of the hippocampus orig-
inate from CA1 and the subiculum, and terminate in the ento-
rhinal cortex (for a comprehensive account of the hippocampal
circuitry, see ref. 64). Additionally, a major anatomical charac-
teristic of the mammalian hippocampus is a connection with the
septum, which is conserved across all mammals. The function of
the hippocampus is also well conserved across mammalian species.
In fact, the hippocampus is critical for spatial memory in rats
(reviewed in ref. 65), nonhuman primates (66), and humans (67).
Moreover, neurophysiological studies have identified hippocampal
neurons that encode specific places in an environment (place cells)
in rodents (68–70), nonhuman primates (71, 72), and humans (73),
as well as in bats (74).
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Birds also have a hippocampus, which arises from the same
developmental origin as mammals (59, 60, 75). As in mammals,
a hippocampal-septal pathway is a major feature of the avian
hippocampus (75, 76). The avian hippocampal subregions are not
as visually obvious (Fig. 1) but nonetheless show homologies to
those in mammals. Based on anatomical connectivity, Atoji and
Wild (60) noted that the dorsomedial area of the hippocampus
is similar to the mammalian subiculum and CA regions, whereas
the V-shaped layer in the ventromedial portion is similar to the
mammalian dentate gyrus. However, a consensus on the exact
homologies of hippocampal subregions is lacking (59, 60, 75).
Functionally, the avian hippocampus is similar to the mammalian
hippocampus. Neurons in the avian hippocampus also show dis-
tinct place fields (reviewed in ref. 77), and lesions to the avian
hippocampus specifically disrupt spatial memories (78–80). No-
tably, hippocampal lesions similarly impair spatial memories in
turtles and goldfish (61), further evidence that theses functional
similarities result from a long neurobiological ancestry.

Parahippocampal Region. In mammals, the hallmark of cortical–
hippocampal connectivity is the existence of associative cortical
structures that serve as an interface between the hippocampus
and the rest of the neocortex. These associative regions include
the entorhinal cortex, perirhinal cortex, and parahippocampal
cortex [postrhinal cortex in rodents (81)], which are collectively
referred to as the parahippocampal region (Fig. 1). There are
two main information processing pathways within the para-
hippocampal region (Fig. 2A). The “what” pathway, composed
of the perirhinal and lateral entorhinal cortex, is important for

processing and representing features of specific objects or items.
In rodents and primates, this system receives information from
all sensory modalities (81–83), is critical for object memory (84–
86), and contains neurons that respond to specific objects (47,
87–89). The second pathway processes “where” information and
is composed of the parahippocampal/postrhinal cortex and me-
dial entorhinal cortex. This system primarily receives visuospa-
tial information (81, 83). Consistent with a role in processing
“where” information, neurons in a subregion of the medial
entorhinal cortex fire in a triangular grid pattern as animals ex-
plore an environment [grid cells (90)]. Evidence for grid cells has
been reported in rodents (90), nonhuman primates (91), and
humans (92), as well as in bats (74). Although species differences
exist in the information processed by these pathways, the distinct
informational segregation is conserved across rats, nonhuman
primates, and humans (8, 83, 93).
In birds, the primary inputs and outputs of the hippocampus

originate in the area parahippocampalis (60) (Figs. 1 and 2B).
Afferents to area parahippocampalis arise from several locations,
including the dorsal ventricular ridge and hyperpallium. Its
efferents project back to the same structures and to the V-shaped
layer and triangular region of the avian hippocampus. Therefore,
the avian hippocampus has access to information from all mo-
dalities through the area parahippocampalis (60), much like the
mammalian system. However, it is unknown whether the dorso-
lateral and dorsomedial subregions of area parahippocampalis are
involved in segregated informational streams. As in the medial
entorhinal cortex in mammals, grid-like cells have been observed

Fig. 1. Brain regions important for episodic memory. Anatomical comparison of the hippocampus (avian hippocampus), parahippocampal region (avian area
parahippocampalis), associational neocortex (avian dorsal ventricular ridge), and prefrontal cortex (avian nidopallium caudolaterale). Themammalian hippocampus
shows distinct subregions, which are less evident in the avian hippocampus. Themammalian parahippocampal region is shown in diagrams (adaptedwith permission
from ref. 81. CopyrightWiley-Liss, Inc.) to highlight the conserved relative spatial locations among species, with similar adjacent locations of area parahippocampalis
and hippocampus in birds. Neocortical areas inmammals and associational areas of the dorsal ventricular ridge are outlined. The prefrontal cortex is shown inwhole
brains in mammals (medial surface in rat) and in a sagittal section in the bird. Human, nonhuman primate (Macacamulatta) and rodent (Rattus norvegicus) sections
were adapted with permission from http://www.brains.rad.msu.edu, and www.brainmuseum.org supported by the US National Science Foundation, and bird
(Taeniopygia guttata) sections from http://zebrafinch.brainarchitecture.org. DG, dentate gyrus; DL, dorsolateral region; DM, dorsomedial region; EC, entorhinal
cortex, HC, hippocampus; PER, perirhinal cortex; PHC, parahippocampal cortex; POR, postrhinal cortex; Tr, triangular region; V, V-shaped layer.
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near the avian hippocampus although their exact location remains
unclear (77).
To summarize, the extent to which the mammalian para-

hippocampal region and the avian area parahippocampalis are
homologous remains to be determined. However, it is clear there
are similarities in the circuit organization and functions of these
regions across mammals and birds, and especially within mammals.

Prefrontal Cortex. The size of the prefrontal cortex varies greatly
across mammals, especially between primates and rodents (Fig.
1), but there is strong evidence of anatomical and functional
correspondence across species (94–96). The prefrontal cortex
receives information from most cortical association areas and
strongly projects to cortical and subcortical motor regions, sug-
gesting that it plays a key role in the representation and execu-
tion of actions (97, 98) (Fig. 2A). The prefrontal cortex is also
connected to the hippocampus by a direct pathway from CA1
(99) and indirect connections through the parahippocampal re-
gion (81, 82). Importantly, individual prefrontal neurons exhibit
delay-related activity in nonhuman primates (reviewed in refs. 97
and 98) and rodents (100), activity that may contribute to working
memory, inferential reasoning, and decision-making abilities.
These findings are consistent with the view that the prefrontal
cortex is the primary executive region of the brain, a structure
particularly important for bridging perception, memory, and ac-
tion (97, 98).
Birds also have an executive region thought to be similar to the

mammalian prefrontal cortex, called the nidopallium caudola-
terale (101, 102). Importantly, the nidopallium caudolaterale
directly projects to motor regions and has indirect access to the
hippocampus through the area parahippocampalis (101) (Fig.
2B). Delay-related neuronal activity has also been observed in
individual nidopallium caudolaterale neurons (103). However, it
is important to note that, despite these similarities to the
mammalian prefrontal cortex, the nidopallium caudolaterale is

not homologous to its mammalian counterpart [i.e., the simi-
larities are due to convergent evolution (103)].

Section Summary. In sum, the hippocampus, parahippocampal re-
gion, and prefrontal cortex form a neural system that is thought to
underlie episodic memory capacities in humans, but this basic
neurobiology is not unique to humans. Considerable evidence shows
that this circuit is present across mammals and that a comparable
circuit exists in the avian brain. Interestingly, regions that are ho-
mologous to the hippocampus also exist in reptiles and bony (tele-
ost) fish. Considering the long evolutionary history and structure–
function similarities, it seems reasonable to hypothesize that the
human episodic memory circuit shares an ancestral protoepisodic
memory system with other mammals and possibly birds.

Neural Mechanisms Underlying Episodic Memory
Episodic memory in mammals depends on the hippocampus, the
parahippocampal region, and the prefrontal cortex. However,
until recently, it was unclear how this network of structures could
give rise to episodic memory. In fact, considerable progress has
been made in recent years toward understanding the specific
contribution of each structure, as well as the nature of their
functional relationships. Here, we describe a model, derived
primarily from rodent and primates studies, summarizing the
neural mechanisms thought to support the encoding and ex-
pression of episodic memories in mammals (Fig. 2A).

Processing Information About Events and Elements of Context. After
being processed by sensory receptors and thalamic nuclei, in-
formation from the external world reaches primary sensory areas
of the neocortex. A hierarchy of association cortical areas then
processes this information at increasing levels of complexity and
abstraction, culminating in multimodal representations. This in-
formation is funneled into the parahippocampal region, which

A B C

Fig. 2. Neural circuits underlying episodic memory capacity in mammalian and avian species. (A) Schematic diagram of neural mechanisms supporting
episodic memory encoding and expression in mammals. After information from the environment reaches the neocortex, the processing of “what” and
“where” information is divided in parallel streams of cortical association areas. This functional segregation is maintained in the parahippocampal region,
where the information is further processed before it reaches the hippocampus. Episodic memories are formed when the hippocampus integrates information
about a specific event (what happened) with the context in which it occurred (e.g., where and/or when it happened). Although what-where coding has been
shown in regions CA3 and CA1, lesion studies suggest that this type of integration depends specifically on region CA3. Recent evidence suggests that region
CA1 provides an internal representation of elapsed time (when), which could support the formation of what-when and what-where-when associations.
Episodic recall is thought to occur when the integrated event-in-context representation is reactivated in the hippocampal network, which leads to the
reactivation of the associated representations in parahippocampal and neocortical association areas. The process by which the retrieved memories can guide
behavior depends on the prefrontal cortex. (B) Comparable circuit in the avian brain. (C) Fundamental circuit hypothesized to support episodic memory across
species. Anatomical, behavioral, and physiological evidence demonstrate that this system involves homologous and analogous structures. DG, dentate gyrus;
DL, dorsolateral region; DM, dorsomedial region (lateral and medial); DVR, dorsal ventricular ridge; LEC, lateral entorhinal cortex; MEC, medial entorhinal
cortex; PER, perirhinal cortex; PHC, parahippocampal cortex; POR, postrhinal cortex; Sub, subiculum; Tr, triangular region; V, V-shaped layer.
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mediates communications between the neocortex and the hip-
pocampus (104).
The processing of “what” (e.g., stimuli, items) and “where”

information is generally segregated into parallel streams. This
functional segregation is maintained in the parahippocampal
region (8, 82, 93): the perirhinal and lateral entorhinal areas play
a critical role in item memory (what) whereas the postrhinal and
medial entorhinal areas are important for the memory of con-
textual information (where). In contrast, the neural basis of the
memory for “when” is much less understood. Although the
hippocampus may play a critical role in processing “when” in-
formation under specific conditions (105), this capacity is gener-
ally thought to depend on other cortical and subcortical structures
[e.g., striatum (106)].

Integrating Event and Context Information. Before reaching the
hippocampus, information about the “what,” “where,” or “when”
of individual events is not yet integrated into a single represen-
tation and thus does not satisfy the structure criterion for epi-
sodic memory. Episodic memory requires the integration of the
representation of a single event with its distinctive contextual
information, and it is this process that critically depends on the
hippocampus (for potential mechanisms, see 107).
What-where integration. Studies in rodents (33–36) and primates
(37) show that the hippocampus plays a critical role in forming
specific item–place associations. It is important to note that the
spatial layout is already well-learned in these paradigms so def-
icits after hippocampus lesions cannot be solely attributed to an
impairment in processing “where” information. Similarly, the
deficits cannot be attributed to a deficiency in processing “what”
information, as this capacity is normal in animals with hippo-
campal damage (13, 33, 86). The integration of what-where in-
formation can also be demonstrated in the coding properties of
individual hippocampal neurons. A study by Wood et al. (108)
showed that different subsets of neurons selectively coded for
“what” (e.g., a specific odor) and “where” (e.g., a specific loca-
tion) information whereas others coded for specific what-where
conjunctions (a specific odor in a particular place). More recent
studies have shown that the emergence of what-where coding
parallels the learning of item–place associations (109, 110). Al-
though lesions studies suggest what-where integration depends
on subregion CA3 but not CA1 (34), what-where neural coding
has been reported in both subregions with no significant differ-
ences reported (108, 109).
What-when integration. Accumulating evidence suggests that the
hippocampus also plays a critical role in forming what-when
associations, including memory for the order in which specific
events occurred. For instance, in sequence memory paradigms,
rats with hippocampal damage were shown to have normal
memory for the individual items presented (what) but consis-
tently failed to remember the temporal relationships among
events [what-when (13, 44)]. Functional neuroimaging studies
have shown that the hippocampus is strongly engaged during
performance of similar tasks in humans as well (49–51). Fur-
thermore, recent electrophysiological evidence suggests that
a fundamental role of the hippocampus is to provide an internal
representation of elapsed time, which could support the forma-
tion of what-when memories (47, 111, 112). In fact, recent
studies have shown that individual hippocampal neurons exhibit
robust timing signals during stimulus-free intervals [“time cells”
(111, 113)] and during the presentation of sequences of events
(47). In addition, the pattern of activity in hippocampal ensem-
bles has been shown to gradually change over time, a form of
population coding that could serve as a timing signal (32, 114).
The above lesion and electrophysiological studies provide con-
verging evidence that this capacity primarily depends on sub-
region CA1 of the hippocampus.

Episodic Recall and Response Selection.Episodic recall is thought to
occur when the integrated event-in-context representation is
reactivated, involving a pattern completion process that can be

initiated by cueing the hippocampal network with elements of
the event or context. This hippocampal reactivation leads to the
reactivation of the corresponding representations in the para-
hippocampal region and other cortical association areas (8, 104).
The process by which the retrieved information can guide be-
havior is thought to critically depend on the prefrontal cortex
(97, 98, 115, 116). First, the episode-specific patterns of activity
retrieved in the hippocampus are thought to reach the prefrontal
cortex, either directly or through the parahippocampal region.
The prefrontal cortex then evaluates the retrieved information
and plans the appropriate course of action, which is then con-
veyed to motor regions (97, 98, 115, 116).

Section Summary. Significant progress has been made in our un-
derstanding of the neural circuits underlying episodic memory
capacity in mammals. In its essence, the circuit requires higher
association areas to process the sensory information (neocortex),
interface areas to communicate with the hippocampus (para-
hippocampal region), the hippocampus to integrate and retrieve
information about the episode, and executive areas to produce
the appropriate behavior (prefrontal cortex). Although little is
known about the neural mechanisms underlying episodic mem-
ory in birds, it is important to note that they have a similar cir-
cuit that could perform the same fundamental operations. The
corresponding system in birds involves a combination of ho-
mologous (the hippocampus and, to some degree, the area
parahippocampalis) and analogous (dorsal ventricular ridge,
nidopallium caudolaterale) structures (Fig. 2B). Therefore, we
hypothesize that a fundamental circuit may be shared between
species that demonstrate episodic memory abilities (Fig. 2C).

Functions of Episodic Memory Across Species
As we examine the evolution of episodic memory, it is important
to consider its potential functions across species. What are its
potential contributions to the fitness of an individual? What
advantage could it provide? Episodic memory is not necessary
for animals to find food, shelter, mates, or to avoid dangerous
situations. However, given the dynamic nature of the environ-
ment, the ability to remember unique experiences could certainly
help animals be more successful. This advantage may be espe-
cially beneficial under conditions of limited resources, when in-
cremental gains in the likelihood of success can amount to large
effects on long-term survival. As mentioned earlier, our central
argument is that fundamental properties of episodic memory, as
well as their underlying neural circuits, are shared across mam-
mals and birds. Therefore, some basic functions of episodic
memory should be common across species.

Memory-Based Predictions. The purpose of memory is not to rem-
inisce about the past, but to allow us to think, reason, and plan for
the future (117). Along these lines, we propose that the main
function of episodic memory is to provide memory-based pre-
dictions to support adaptive behavior in the present or immediate
future (116). There are two ways in which episodic memory could
contribute to this capacity. First, episodic memory is the only
memory system to provide spatially and temporally specific in-
formation about single experiences. For instance, when faced with
a specific need (e.g., a tool), an individual could use episodic
memory to make predictions as to how to satisfy this need (e.g.,
look where the tool was last seen). This unparalleled specificity
allows animals to take into account unique events in guiding their
behavior and to quickly adapt to changing circumstances. Second,
episodic memory could contribute to memory-based predictions by
supporting the capacity to make novel inferences. In fact, it has
been proposed that a fundamental role of the hippocampus is to
integrate episodic and semantic memories into a relational (de-
clarative) memory network (116, 118). Because many of our
memories overlap in information content, the network is thought to
represent relationships among memories by linking them using
their common elements. This network structure could support the
flexible expression of inferred relationships between elements that
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were never experienced together, such as deducing a novel tra-
jectory between two locations or the social hierarchy among
a group of individuals. It should be noted that nondeclarative
memory abilities also extract regularities from the environment to
support the ability to generalize to other situations, but the process
requires multiple exposures and lacks flexibility of expression (i.e.,
is tied to specific cues).

Planning for the Distant Future. Future planning involves making
predictions about the distant future (many hours ahead) to an-
ticipate future needs, an extension of the capacity for memory-
based predictions described above. In humans, future planning
involves “episodic future thought,” the ability to simulate plau-
sible future events or scenarios [e.g., imagining future activities to
determine what to pack for an upcoming trip (119–121)]. In-
terestingly, there is considerable overlap between the neural cir-
cuits involved in retrieving episodic memories and those involved
in simulating future events, suggesting that the two capacities are
intrinsically linked (119–121). Does this capacity for future plan-
ning extend beyond humans? Any attempt to examine future
planning in animals must address the Bischof-Köhler hypothesis,
which states that only humans can dissociate themselves from
their current motivational state and take action for future needs
(122). The criteria for demonstrating future planning in animals
are as follows: (i) the behavior involved should be a novel action
or combination of actions, (ii) the action should be appropriate
for the future motivational state, and (iii) the anticipatory action
should not have been extensively reinforced (4, 122–124). The
first study satisfying all criteria has been conducted in scrub jays.
In this study, the birds demonstrated the ability to make provi-
sions for a future need, thus showing that they could dissociate
themselves from their current motivational state and spontane-
ously plan for the next day (123). Accumulating evidence suggests
that apes are also capable of future planning, as they can save
tools for future use (125) and can override immediate drives in
favor of future needs (126, 127). Although it is clear that the
behavior of other animals can be future-oriented or based on
future consequences [e.g., selecting an item to receive a reward
(41)], it remains to be determined whether animals other than
humans, apes, and scrub jays are capable of future planning.

Building Social Relationships and Networks. Episodic memory could
be particularly useful for processing and using social information.
Although some aspects of social information are static (e.g., who
is related to whom?), others can change over time (e.g., who has
been cooperative? who has been aggressive?) and thus could
depend on the capacity to remember specific experiences. In-
terestingly, the species in which episodic memory capacity has
been most convincingly demonstrated (primates, rodents, and
scrub jays) are highly social (128, 129). Recent evidence suggests

that humans with episodic memory impairments have social circles
that are limited compared with controls, suggesting that episodic
memory may be crucial for establishing and/or maintaining social
bonds (130). Thus, there may be a relationship between episodic
memory capacity and social interactions.

Species-Specific Uses of Episodic Memory. Although we have so far
emphasized the commonalities in episodic memory capacity, there
are also clear differences across species. These divergences in-
clude unique uses of episodic memory, as well as species-specific
attributes. For instance, in humans, episodic memory is thought to
be intrinsically tied to other mental capacities such as language,
a sense of self, empathy, and theory of mind (1, 56, 131). Although
such characteristics were initially used as evidence that episodic
memory is unique to humans, according to the present conceptual
framework, they represent species-specific attributes (or modules)
associated with the expansion of neocortical (particularly pre-
frontal) areas in humans. Other species-specific uses of episodic
memory may include meadow voles predicting when and where
a sexually receptive females will be located (21) and hummingbirds
keeping track of the location, quality, and renewal rate of different
sources of nectar (132). Episodic memory may be of particular
importance in hummingbirds because of the enormous energy cost
in gathering nectar, which makes repeat visits or poor planning
highly detrimental (132).

Section Summary.Given that several species demonstrate episodic
memory capacity, it is reasonable to assume that it offers sig-
nificant advantages. Some of these benefits could be common
across species; others may be species-specific. However, further
research is needed before we can understand the specific nature
of these advantages or establish that they are causally linked with
an increase in fitness.

Conclusions
Episodic memory is the remarkable capacity to remember specific
personal experiences. Although it was originally thought that this
capacity was particular to humans, the ample evidence reviewed
here indicates that core properties of episodic memory are present
across mammals, as well as in birds. This cross-species approach to
episodic memory research is made possible by the use of opera-
tional definitions that can be applied across species, a method we
strongly suggest should be used in animal and human studies. The
most common approach to investigate episodic memory capacity
across species is to determine whether animals can remember
events within the context in which they occurred (e.g., memory for
what-where-when, what-where, or what-when). Using this con-
ceptual framework, we showed that episodic memory in mammals
depends on a functional relationship between the hippocampus,
parahippocampal region, neocortical association areas, and

Fig. 3. Possible time points for the emergence of ep-
isodic memory in evolution. Initially, the role of hip-
pocampuswas likely limited to the processing of spatial
information (where). We hypothesize that episodic
memory capacity emerged later on, when the hip-
pocampus began supporting the integration of in-
formation about events in context (e.g., “what”,
“where,” and/or “when” information). The striking
behavioral and neurobiological similarities reviewed
in this paper suggest that episodic memory capacity
emerged before mammals and reptiles diverged (possi-
bility 1). However, additional evidence from birds and
reptiles is needed before the alternative hypothesis that
episodic memory is the result of convergent evolution
(e.g., possibilities 2 and 3) can be safely rejected.
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prefrontal cortex. Importantly, we described a comparable
neural circuit in birds, which includes homologous (hippo-
campus, and to some degree, parahippocampal region) and
analogous (dorsal ventricular ridge association areas, nido-
pallium caudolaterale “prefrontal” area) structures. Finally,
we submit that this fundamental circuit underlies episodic
memory capacity across species but that species-specific
divergences have also evolved around this central architecture.
When did episodic memory emerge? Unfortunately, the avail-

able evidence cannot support a definitive answer at this time. We
speculate that it evolved at a stage when the hippocampus was
already present because the hippocampus is known to be a critical
substrate. However, we are not implying a one-to-one relationship
between the hippocampus and episodic memory (e.g., if the hip-
pocampus is present, the animal has episodic memory capacity).
Because the hippocampus is essential for spatial memory across
species, ranging from humans to teleost fish, it is likely that its
role was limited to the processing of “where” information when
it first emerged (Fig. 3). We propose that episodic memory ca-
pacity emerged at a later time, when the hippocampus began

supporting the integration of information about events in context
(e.g., “what”, “where,” and/or “when” information). As the neural
architecture of the hippocampus indicates, the content of its
associations is determined by its inputs. Thus, the change to sup-
porting episodic memory likely occurred when the hippocampus
began receiving highly processed event and contextual information
from higher association areas. In light of the cross-species behav-
ioral and neurobiological similarities reviewed here, it is tempting
to conclude that episodic memory capacity emerged before
mammals and reptiles diverged (possibility 1 in Fig. 3). However,
because of the limited data available in nonavian reptiles, the
hypothesis that it resulted from convergent evolution (e.g., possi-
bilities 2 and 3 in Fig. 3) cannot be rejected at this time. Addressing
this important issue will require converging evidence from ana-
tomical, behavioral, and neurobiological studies in different avian
and reptilian species.
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