
Making lasting memories: Remembering the significant
James L. McGaugh1

Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697-3800

Edited by Francisco J. Ayala, University of California, Irvine, CA, and approved May 9, 2013 (received for review February 15, 2013)

Although forgetting is the common fate of most of our experi-
ences, much evidence indicates that emotional arousal enhances
the storage of memories, thus serving to create, selectively, lasting
memories of our more important experiences. The neurobiological
systems mediating emotional arousal and memory are very closely
linked. The adrenal stress hormones epinephrine and corticoste-
rone released by emotional arousal regulate the consolidation of
long-term memory. The amygdala plays a critical role in mediating
these stress hormone influences. The release of norepinephrine in
the amygdala and the activation of noradrenergic receptors are
essential for stress hormone-induced memory enhancement. The
findings of both animal and human studies provide compelling
evidence that stress-induced activation of the amygdala and its
interactions with other brain regions involved in processing
memory play a critical role in ensuring that emotionally significant
experiences are well-remembered. Recent research has deter-
mined that some human subjects have highly superior autobio-
graphic memory of their daily experiences and that there are
structural differences in the brains of these subjects compared
with the brains of subjects who do not have such memory. Un-
derstanding of neurobiological bases of such exceptional memory
may provide additional insights into the processes underlying the
selectivity of memory.

Our brains, remarkable as they are, could not begin to contain and
give equal weight to our every moment of life. (1)

The ability to learn and remember is essential for our survival.
Remembering what has happened enables us to predict what

is likely to happen and alter our behavior accordingly. As noted
by Bernecker (2), “[r]emembering is a fundamental cognitive
process, subserving virtually all other important cognitive func-
tions . . . Since without memory one couldn’t think, some phi-
losophers go as far as to claim that memory is the mark of being
human” (ref. 2, p. 1). This latter claim is, of course, off of the
mark, because most, if not all, animals display memory of their
experiences. However, the many moments of their lives and our
lives are not given equal weight in memory: we do not remember
equally well all of our experiences. As James (3) commented,
“[o]f some [experiences] no memory survives the instance of their
passage . . . Others . . . may be recalled as long as life endures.
How can we explain these differences?” (ref. 3, p. 643). There
are many possible explanations. Experiences that we attend to
are, of course, more likely to be remembered. Some new expe-
riences become lasting, because they fit well with and can be
readily processed and integrated with existing memories (4).
Additionally, beginning with the pioneering studies of Ebbinghaus
(5), we learned that memories are strengthened by repetition or
retrieval (6).

Emotional Arousal and Lasting Memory
There is also extensive evidence that experiences that are emo-
tionally arousing are well-remembered (7–10). Experiences of
unpleasant occasions, such as an automobile accident, a mug-
ging, or learning about the death of a loved one, are remembered
better than those experiences of a routine day (8, 11–18).
Memories of pleasant occasions, such as birthdays, holidays, and
weddings, are also well-retained. The strength of memories of
events varies with the emotional significance of the events. The
memories of individuals who were close to San Francisco at the

time of the 1989 San Francisco earthquake had better memories
of the earthquake months later compared with individuals in
Atlanta, Georgia (16). Three years after the terrorist attack on
September 11, 2001, individuals who were in downtown Man-
hattan at the time of the attack had more detailed memories of
the attack compared with individuals who were in midtown
Manhattan, several miles from the attack (18).

Modulation of Memory Consolidation
These findings clearly support Bacon’s (19) assertion that
“[m]emory is assisted by anything that makes an impression on
a powerful passion, inspiring fear, for example or wonder, shame
or joy” (19). However, such evidence provides only the begin-
nings of an answer to William James’ wondering about why some
memories are lasting. A more comprehensive answer requires an
understanding of the effects of emotional arousal that regulate
the strength of memories.
Lasting memories are not created at the time of an experience.

There is considerable evidence supporting the hypothesis of
Mueller and Pilzecker (20) that experiences initiate neural pro-
cesses that perseverate and induce, over time, the consolidation
of memory. Subsequently, Hebb (21) proposed a dual-trace
hypothesis of memory formation. According to this hypothesis,
memories are initially based on the reverberation of neural
circuits, and long-term memory results from synaptic changes
induced by the neural reverberation. Thus, for both the consol-
idation hypothesis and the dual-trace hypothesis, lasting memory
is formed after an experience.
The time-dependent process of memory consolidation, thus,

provides an opportunity for conditions occurring after learning
(i.e., during the consolidation of memory) to regulate the strength
of memory. Studies of the effects of electroconvulsive shock
(22) were the first studies to provide experimental evidence sup-
porting the consolidation hypothesis. Electroconvulsive shock
treatments impaired memory when administered to rats im-
mediately after training. These findings were replicated and ex-
tended in extensive research with rats and mice in experiments
using many kinds of treatments that disrupt brain functioning
(23, 24). The common finding was that the treatments affected
memory when administered shortly after training and were
less affective when administered several hours or longer after
training. These early findings of retrograde amnesia induced
by disrupting brain functioning after learning suggested the
possibility that mild stimulation of the brain shortly after an
experience might enhance memory (25). The finding of many
subsequent studies that memory is enhanced by administration
of low doses of CNS stimulants to rats and mice shortly after
training but not after a delay provided strong support for this
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implication (25–32). Also, importantly, comparable findings were
obtained in studies using human subjects (33).

Endogenous Modulation of Memory Consolidation
The findings of experimentally induced retrograde amnesia and
memory enhancement also suggest a hypothesis that might provide
an answer to the question of why, as Francis Bacon asserted,
memory is assisted by passion. Emotional arousal induces the
release of the adrenal stress hormones epinephrine and cor-
tisol (corticosterone in rats). Thus, the levels of the hormones
activated by arousing training experiences are increased while
memories are undergoing consolidation. Gerard (34) noted
that “. . . as epinephrine is released in vivid emotional expe-
riences, such an intense adventure should be highly memo-
rable” (ref. 34, p. 30). Much subsequent evidence supports this
suggestion. As found with stimulant drugs, posttraining admin-
istration of epinephrine as well as corticosterone enhances memory
for many kinds of training experiences (35–39). Furthermore,
adrenoreceptor antagonists (e.g., propranolol) and glucoco-
corticoid receptor antagonists block the effects of emotional
arousal and adrenal stress hormones on memory consolida-
tion (40–47). Although most experiments investigating stress
hormone influences have used memory of stressful training,
such as stress induced by mild footshocks, posttraining admin-
istration of stress hormones enhances memory for many kinds of
less stressful experiences, including memory for rewards (48).

Amygdala Activation and Memory Modulation
Thus, the experimental evidence provides strong support for the
hypothesis that adrenal stress hormones enhance the consoli-
dation of memory of experiences that induce their release. Ad-
ditionally, the findings provide an initial step to providing an
answer to William James’ question of why some memories en-
dure. A next essential step requires understanding of how ad-
renal stress hormones act to influence brain processes involved
in memory consolidation. When released into the blood, epi-
nephrine passes poorly, if at all, into the brain (49). Consider-
able evidence indicates that epinephrine influences on brain
function are mediated by activating adrenoreceptors located on
the ascending vagus nerve that projects to brainstem nuclei (to
the locus coeruleus through the nucleus of the solitary tract)
responsible for noradrenergic activation of other brain regions
(50, 51). Moreover, direct electrical stimulation of the ascending
vagus after learning enhances memory in human subjects as well
as rats (52–55). Cortisol passes freely into the brain, where it can
activate glucocorticoid receptors throughout the brain.
Several findings suggested the amygdala, a collection of nuclei

located in the medial temporal lobe, as a possible critical brain
region involved in mediating stress hormone influences on
memory consolidation. Findings of several early (56, 57) as well
as more recent studies (58, 59) indicated that, in rats, memory
is enhanced by brief low-intensity posttraining electrical stim-
ulation of the amygdala. Other early findings indicated that, in
rats, β-adrenoreceptor antagonists infused into the amygdala
after training impaired memory consolidation and that con-
current infusions of norepinephrine blocked the impairment
(60, 61). Other studies reported that systemically administered
epinephrine induces the release of norepinephrine in the brain
(62) and that epinephrine enhancement of memory consolida-
tion is blocked by intraamygdala infusions of propranolol (63).
There is now substantial evidence that norepinephrine or other
noradrenergic agonists administered into the amygdala or selec-
tively into the basolateral region of the amygdala (BLA) after
training enhances memory for many kinds of training experi-
ences (64–68). Also, posttraining intraamygdala infusions of
β-adrenoreceptor antagonists impair memory and block the
memory-enhancing effects of both corticosterone and epineph-
rine administered systemically (63, 69–71). Such findings strongly

suggest that glucocorticoid-induced enhancement of memory
consolidation requires noradrenergic activation of the amygdala.
Noradrenergic activation induced by emotional arousal seems to
enable glucocorticoid modulation of memory consolidation (72).
The extensive evidence that memory is influenced by norad-

renergic agonists and antagonists infused into the amygdala after
training suggests that emotionally arousing training experiences
should increase norepinephrine release within the amygdala.
The findings of experiments using microdialysis and HPLC to
assess norepinephrine release provide strong support for this
implication. Footshock training increases the release of norepi-
nephrine within the amygdala (73, 74), and rats that have greater
increases in release subsequently display better retention (75).
Additionally, several drugs that enhance memory consolidation,
including GABAergic and opioid peptidergic antagonists, in-
crease the release of norepinephrine in the amygdala (74, 76).

Amygdala Influences on Other Brain Systems
Decades before initiation of the research discussed above in-
vestigating the involvement of the amygdala in memory consol-
idation, Gerard (34) noted that, “. . . [because] the amygdala
[acts] directly on cortical neurons to alter . . . their responsiveness
to the discrete impulses that reach the cortex . . . these deep
nuclei could easily modify the ease and completeness of expe-
rience fixation” (ref. 34, p. 30). The amygdala is richly inter-
connected with other brain regions, including the cortex, known
to be involved in processing different aspects of memory. Addi-
tionally, there is now considerable evidence supporting the pre-
scient suggestion by Gerard (34) that the amygdala influences
memory consolidation through projections to other brain regions
(24, 68, 77–81). However, the interactions are not restricted to
the cortex.
The findings of many studies using rats indicate that the hip-

pocampus is involved in spatial learning (82–84), whereas the
caudate nucleus is involved in the learning of specific cues as-
sociated with responses (85–87). Packard et al. (88) found that
posttraining activation of the amygdala (using microinfusions of
D-amphetamine) enhanced memory for both place learning and
cued response learning in a water maze (88). In contrast, hip-
pocampal infusions selectively enhanced spatial memory, and
caudate infusions selectively enhanced cued response memory.
Posttraining, intra-BLA drug infusions enhance rats’ memory of
a context as well as the memory of a brief footshock subsequently
received in that context (89). Additionally and importantly,
McIntyre et al. (90) found that, in rats, noradrenergic activation
of the BLA that enhanced memory consolidation increased the
expression of activity-regulated cytoskeletal (Arc) protein in the
hippocampus. Furthermore, posttraining inactivation of the BLA
impairs memory consolidation and decreases hippocampal Arc
protein expression. These findings are of interest in view of ev-
idence indicating that Arc is involved in regulating synaptic
plasticity and memory consolidation (91). Additionally, electrical
stimulation of the BLA enhances the development of hippo-
campal plasticity as assessed by induction of long-term potenti-
ation (92, 93).
As noted by Gerard (34), the amygdala also projects to the

cortex. Electrical stimulation of the BLA activates the cortex,
which is indicated by EEG desynchronization (94, 95), and en-
hances cortical long-term potentiation (96). Additionally, elec-
trical stimulation of the amygdala enhances the development of
plasticity in the auditory cortex (97). It is well-established that
pairing of a tone stimulus with a reinforcing stimulus (e.g.,
footshock) alters the representation of the tone in the auditory
cortex (98, 99). The frequency-receptive fields shift to the fre-
quency of the tone stimulus, inducing an increased representa-
tion of significant sounds. Pairing of a tone with BLA stimulation,
which is neither rewarding nor punishing, induces a shift of the
auditory tuning curve to that tone of the conditioning tone
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frequency. Moreover, the tuning curve continues to shift to the
conditioning tone frequency over a period of 45 min after the
training (100). Importantly, the learning-induced shifts in re-
sponsiveness of the auditory cortex are maintained for several
weeks (101).

Emotional Arousal, Adrenal Stress Hormones, and Human
Memory
The findings of studies of the influence of arousal on human
memory are consistent with the findings of studies using animal
subjects: emotional arousal during or after learning enhances
long-term memory, and the modulation involves epinephrine
and cortisol. However, experiences do not have to be intensely
emotional to influence memory strength. Many studies have
reported that subjects presented with pictures or words judged
to be only mildly emotional, whether positive or negative in ef-
fect, subsequently have stronger memories of those stimuli than
pictures and words judged not to be emotional (102–106).
Viewing of emotionally arousing pictures also enhances memory
of a cognitive skill (107).
In support of the view that emotional arousal modulates

memory consolidation, several studies have reported that in-
ducing arousal after subjects learn material enhances memory
tested after a retention interval of 1 d or longer (102, 103, 105,
108, 109). In one study, subjects learned a word list and then
watched an emotionally arousing pleasant (comedy) or un-
pleasant (surgery) brief video either immediately or after
delays of up to 45 min. When viewed within 30 min, both the
pleasant and unpleasant postlearning videos enhanced memory
as assessed 1 wk later (108). Furthermore, the effect of post-
learning arousal is not restricted to laboratory experiments.
College students who watched an arousing video clip after a
lecture compared with students who did not watch the clip
performed significantly better on a midterm examination 2 wk
later (110).
There is also extensive evidence that arousal influences on

memory consolidation involve both epinephrine and cortisol. Ad-
ministration of the adrenoreceptor antagonist propranolol before
subjects’ viewing of a series of pictures accompanied by an emo-
tionally arousing story blocked the enhancing effects of emotional
arousal on memory assessed as 1 wk later (111). Administration
of epinephrine or cold pressor stress (induced by holding an arm
in ice water), which induces the release of epinephrine and
cortisol, immediately after presentation of emotionally arousing
pictures enhances subjects’ memory of the pictures (112, 113).
Furthermore, Hupbach and Fieman (114) reported that arousal
induced by exposure to cold pressor stress after a memory re-
trieval test increased salivary cortisol and enhanced memory of
the test material when tested several days later.
Other studies have reported evidence that adrenergic activa-

tion selectively influences memory for emotionally arousing
stimulation (115). Cold pressor stress induced after listening
to neutral and emotional words selectively enhanced memory
of the emotional words on a test the next day. Furthermore,
levels of cortisol and salivary α-amylase, a biomarker for nor-
adrenergic activity, assessed immediately after the cold pressor
stress correlated highly with subsequent memory performance
(116). Additionally, Segal and Cahill (117) found that levels of
salivary α-amylase assessed shortly after subjects viewed a series
of emotional and neutral pictures correlated significantly and
selectively with memory of the emotional pictures on a 1-wk
retention test (117). Salivary α-amylase measured after exposure
to emotionally arousing pictures also correlated highly with sub-
sequent memory assessed by successful discrimination of pictures
seen from other similar pictures (i.e., pattern separation) (118).
Such discrimination is known to involve the hippocampus (119).
Findings of human studies provide additional evidence that

emotional arousal influences on memory involve activation of

the amygdala. In an initial study using PET imaging, Cahill et al.
(120) found that amygdala activation induced by watching
emotionally arousing films correlated highly with memory of the
films as tested 3 wk later. Subsequent studies using PET imaging
reported similar findings (121, 122). Furthermore, studies using
functional MRI imaging found that the relationship between
amygdala activity during learning and subsequent memory varied
directly with the intensity of emotional arousal and that the
valence—positive or negative—is not critical (123–125).
Imaging studies have also provided evidence, consistent with

evidence obtained with animal studies, that emotional arousal
influences on consolidation of long-term memory involve inter-
actions of the amygdala with other brain regions, including the
hippocampus, during learning (126–132). Findings of human
brain imaging studies using functional MRI provide additional
evidence that emotional arousal influences on memory involve
noradrenergic activation of the amygdala. Propranolol blocks
amygdala activation induced by emotionally arousing stimuli as
well as subsequent memory of the stimuli (133–136). Further-
more, administration of either the adrenergic drug yohimbine or
hydrocortisone enhanced amygdala and hippocampus activation
as well as memory as tested 1 wk later (137).
The findings of several studies suggest that intense or excessive

activation of this noradrenergic system may contribute to the
development of posttraumatic stress disorder (PTSD) (138).
Propranolol administered to traumatized patients within several
hours after a traumatic experience expressed fewer physiological
signs of PTSD when tested 1 mo later (139, 140). Additionally,
a study of the incidence of PTSD in wounded military personnel
reported that patients given morphine within hours after the
injury expressed fewer signs of PTSD when examined months
after the experience (141). Because opiates inhibit the release of
norepinephrine (142) a morphine-induced reduction in norad-
renergic activation shortly after the trauma may have attenuated
the development of PTSD.

Exceptional Human Memory
The findings summarized above provide the beginnings of un-
derstanding why, as William James wondered, some memories
endure. Moreover, he suggested that the fact that many, perhaps
most, memories are fleeting is adaptive. There is usually no need
for memory of every detail of our daily experiences. As James (3)
commented, “[s]election is the very keel on which our mental
ship is built. If we remembered everything, we should, on most
occasions be as ill off as if we remembered nothing” (ref. 3,
p. 680). The fictional character in Borges’ (143) short story, “Funes
the Memorious,” illustrated James’ observation. After he was
thrown from a horse, Funes expressed an extraordinary ability to
learn and remember. He “. . . remembered not only every leaf of
every tree of every wood, but also every one of the times that he
had perceived . . . it” (143). Also, he claimed to have “. . . more
memories than all mankind has had. . .” (143). However, he also
admitted, as James had anticipated, that his memory was like a
garbage heap. Borges, thus, agreed with William James in stressing
the importance of forgetting.
Luria (144) subsequently documented the now well-known

case of a subject referred to as S, who had extraordinarily strong
memory ability resembling the ability of Funes. Luria concluded
that S’s memory capacity and durability were unlimited. Also, he
asked, “[h]ow had he come by this capacity for indelible memory
traces?” (ref. 144, p. 61). Although another individual was sub-
sequently determined to have comparable memory ability (145),
Luria’s question remains unanswered. It should also be noted
that S’s phenomenal memory seemed to be of little help to him
in his daily personal life.
A small percentage of autistic individuals are capable of highly

exceptional but restricted memory abilities. Calendar calculation
is one of the most commonly reported abilities. Some autistic
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individuals can readily state the day of the week for any specified
date over a range of centuries, despite an inability to remember
how to do simple addition and subtraction (146, 147). Such
complex memory-based ability, like the ability of subject S,
remains unexplained.
Recent research has identified a few human subjects who have

a remarkable memory ability referred to as highly superior au-
tobiographical memory (HSAM) (148, 149). The first subject
identified to have this kind of memory (originally referred to as
AJ and now known as Jill Price) wrote: “I am thirty-four years
old and . . . have had this unbelievable ability to recall my past . . .
I can take a date, between 1974 and today, and tell you what day
it falls on, what I was doing that day and if anything of great
importance occurred on that day I can describe that to you as
well” (148). Extensive testing confirmed her claims. She was
remarkably accurate in recalling the experiences of most of the
days of her life beginning at about the age of 11 y. Her extensive
diary entries confirmed her memories of events that occurred on
specific days. Her memory of significant public events is equally
superior. Also, importantly, she does not do calendar calcula-
tion: unlike autistic savants, she cannot readily provide the day
for dates when she was very young or future dates. After the
publication of the paper by Parker et al. (148), testing of many
dozens of subjects who claimed to have strong autobiographical
memory yielded several dozen subjects who surpassed age- and
sex-matched controls in remembering the days and dates of
personal and public events as well as details for each event (149).
All responses were verified by checking available personal and
public records. In contrast and perhaps surprisingly, HSAM
subjects did not generally excel in learning and remembering
information as assessed by laboratory tests (e.g., learning pairs of
words and series of digits). Their exceptional memory ability
seems to be restricted to experiences of daily life as reflected in
episodic remembering. Their memory is not like the memories of
Borges’ character Funes the Memorious, Luria’s subject S, or
autistic savants. They are also not like the memory experts, who
have learned specific mnemonic tricks enabling the learning of
specific kinds of information (150).
MRI scans revealed that several brain regions of HSAM

subjects differed from those regions of controls. Several brain
regions differed in size and shape (e.g., putamen and caudate) as
well as coherence of fiber tracts (e.g., uncinate faciculus) as
assessed by diffusion tensor imaging. These results are, of course,
only correlational and do not provide critical evidence that these
anatomical differences are the bases of or contribute in some
way to HSAM. However, it is worth noting that several of the
brain regions found to be structurally different in HSAM and
control subjects have been implicated in previous studies of au-
tobiographical memory (151–153).

Unusual Memory: Fleeting and Lasting
Studies of unusual memory have significantly influenced memory
research as well as our understanding of the neural systems
underlying memory. The clinical findings of Ribot (154) that
brain damage impairs most recent memories, sparing older
ones, were the first to reveal that lasting memories are con-
solidated slowly over time. The findings of seminal studies of
the patient HM (155, 156) forced the novel conclusion that
different forms of memory are enabled by different brain systems
(86, 157, 158), and thus, they significantly altered research in-
vestigating brain systems and memory. The novel finding that
some human subjects create highly lasting memories of episodes
of their daily experiences as well as memories of significant
public events may, ultimately, lead to findings that provide new
understanding of how our brains retain and retrieve memories.
Studies have not, as yet, investigated whether the strong

memory of HSAM subjects involves experience-induced activa-
tion of stress hormones and activation of the amygdala. It may be
that the modulatory systems of HSAM subjects are more highly
activated by experiences or more sensitive to modestly arousing
experiences.
However, HSAM subjects do not remember in precise detail

all of their experiences. Like the rest of us, they remember best
the more significant events of daily life. Their memories are not
like the memories of Funes the Memorious. However, HSAM
subjects differ from the rest of us in that they can retain their
episodic memories for decades. If lasting memory is important
for survival, why is it that so few individuals have this kind of
long-lasting memory? It might be that these subjects’ memory
systems are genetically programmed to retain acquired in-
formation. Although the evidence, to date, indicates that none of
the HSAM subjects have relatives who have strong memory,
additional research is needed to determine whether this ability
may have a genetic basis.
We might also wonder whether this ability might have been

more common and more commonly used in centuries past. After
all, the inventions of the printing press, computers, and cell phones
in recent centuries have made it less necessary for us to create
lasting records of our experiences. It is said that, before writing was
available to keep records of important events, such as a wedding or
granting of land, a child was selected to observe an event and then
thrown into a river so that the child would subsequently have a
lifelongmemory of the event. As noted above, formost of us, “[o]ur
brains, remarkable as they are, [can] not begin to contain and give
equal weight to our every moment of life” (1). Selectively re-
membering our more important experiences seems to be the best
strategy. It is what we generally do, thanks to the modulating
influences of emotional arousal on lasting memory.
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