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Undulatory locomotion, a gait in which thrust is produced in the
opposite direction of a traveling wave of body bending, is a
commonmode of propulsion used by animals in fluids, on land, and
even within sand. As such, it has been an excellent system for
discovery of neuromechanical principles of movement. In nearly all
animals studied, the wave of muscle activation progresses faster
than the wave of body bending, leading to an advancing phase of
activation relative to the curvature toward the tail. This is referred
to as “neuromechanical phase lags” (NPL). Several multiparameter
neuromechanical models have reproduced this phenomenon, but
due to model complexity, the origin of the NPL has proved difficult
to identify. Here, we use perhaps the simplest model of undulatory
swimming to predict the NPL accurately during sand-swimming by
the sandfish lizard, with nofitting parameters. The sinusoidal wave
used in sandfish locomotion, the friction-dominated and noniner-
tial granular resistive force environment, and the simplicity of the
model allow detailed analysis, and reveal the fundamental mech-
anism responsible for the phenomenon: the combination of syn-
chronized torques from distant points on the body and local
traveling torques. This general mechanism should help explain
the NPL in organisms in other environments; we therefore propose
that sand-swimming could be an excellent system with which to
generate and test other neuromechanical models of movement
quantitatively. Such a system can also provide guidance for the
design and control of robotic undulatory locomotors in complex
environments.

neuromechanics | resistive force theory | electromyography | movement |
biomechanics

Animal movement emerges from the complex interplay of
nervous and musculoskeletal systems with the environment.

Much progress has been made in understanding the neural control
patterns and motor systems responsible for effective locomotion
(1–7). Although the environment’s influence on neural control is
increasingly recognized (8, 9), challenges remain in understanding
how environments shape the control strategy of locomotion. Par-
ticular behaviors, gaits, and environments have revealed them-
selves to be amenable to detailed comparison of experiment and
theory to elucidate neuromechanical principles of control (4, 10–
12). Much progress has been made in the study of undulatory lo-
comotion, a movement strategy used by numerous, phylogeneti-
cally diverse animals, such as fish, snakes, worms, and sandfish
lizards (Scincus scincus) (13–18) (Fig. 1), to traverse fluids, solids,
and even sand.
In undulatory locomotion, a traveling wave of muscle activation

(and curvature) propagates from head to tail resulting in forward
movement. The forces produced on different “segments” of the
body can be decomposed into thrust and drag, and summing these
over the body at any instant in time determines the propulsion of
the animal. Many robots have also been built that use such a gait
(19–21). A feature of undulatory locomotion that is observed across
a range of animal sizes and environments is that the wave of muscle
activation travels faster than the wave of curvature (22–26). Con-
sequently, the relative phase of the muscle activation to the cur-
vature advances along the body. Physically, this means that more
posterior muscles begin activating earlier in the muscle strain cycle

(i.e., while the muscle is lengthening) and produce more negative
work than anterior muscles. The phenomenon of the advancing
neuromechanical phase is often referred to as “neuromechanical
phase lags” (NPL) (Fig. 1 C and D).
Two complementary modeling approaches are used to un-

derstand movement principles. The “bottom-up” approach (re-
ferred to as “anchoring” in ref. 27) integrates realistic models of
multiple biocomponents and the complex interactions among
them, as well as with models of the environment. For example,
a model (28) might incorporate tens to hundreds of muscles,
hundreds to thousands of neurons, chemical kinetics, and the
nonlinear couplings among them. Further complexity could be
added by coupling these models to fluids that are governed by
complex partial differential equations. In contrast, the “top-
down” approach (referred to as “templates” in ref. 27) identifies
coordinated components as one single element to generate re-
duced models and seeks general principles of system behavior.
Using the first approach, many multiparameter neuromechanical
models (10, 28–33) have been proposed to model undulatory
locomotion. Although such models qualitatively reproduce the
NPL in undulatory swimming, due to uncertainties about the
passive body properties and the hydrodynamical forces, as well
as the model complexity and number of parameters, it remains
a challenge to explain the origin of the phenomenon.
In this paper, we show that what might seem to be a specialized

and complex system, a lizard “swimming” in sand using an un-
dulatory gait, facilitates quantitative comparison between experi-
ment and theory, and helps explain the fundamental origin of the
NPL in undulatory locomotion in other environments. We base the
present work on our previous biological muscle activity mea-
surements (26), which revealed that the sandfish displays NPL
when targeting a particular behavior: escape. Using a template
approach, inputting kinematics of the lizard that confer swimming
speed and energetic benefits (34) into a previously developed
granular resistive force model of sand-swimming, and abstracting
the nervous system andmusculoskeletal system as a “black box,”we
are able to reproduce internal torque timing patterns (i.e., from
muscle contractions) with no fitting parameters. The simple kine-
matics combined with the relatively simple rheological features of
organism-fluidized sand allow us to analyze the model, and thus
make statements about general principles of neuromechanics in
swimming that are applicable to organisms and robots in other
environments.
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Model
Resistive Force Theory Model. Previously, we developed a granular
resistive force theory (RFT) model and a numerical simulation
that explained the swimming performance of the sandfish (18, 34,
35). The models showed that the lizards swim within a self-
generated “frictional fluid,” wherein frictional forces between
the granular particles dominate both body inertia and inertial
forces from the environment. As before, we prescribe body ki-
nematics (in the frame of the animal) based on the experimental
observation that the body position of a sandfish in the body
frame is approximately a single-period sinusoidal wave traveling
posteriorly (Fig. 2):

yb = A  sin
�
2π

�xb
λ
+

t
T

��
; [1]

where yb is the lateral displacement from the midline of a straight
animal, A is the amplitude, T is the period of undulation, λ is the

wavelength, t is the time, and xb is the distance along a line
parallel to the direction of the traveling wave measured from
the tail tip. Here, we normalize both the wavelength and period
to 2π such that 2π

λ =
2π
T = 1. Because the trunk of the sandfish is

quite uniform [with body width variations less than about 5%
from 0.1 snout-to-vent length (SVL) to 1.0 SVL] and the diam-
eter of the body decreases significantly after about 1.2 SVL, we
used a uniform body shape and took the total arc length (L) in
the model to be 1.2 times the average SVL (8.9 ± 0.3 cm) of the
animal. Dissection revealed after 1.2 SVL, the tail is composed
of mostly adipose tissue and a small amount of muscle; there-
fore, both the external and internal torques on the tail should be
minimal for the tail beyond 1.2 SVL. We neglected the variation
of the horizontal position xb of a segment within a cycle; thus, the
normalized position on the animal body, s 2πL , corresponded to
the horizontal position xb in the model, where s is the arc length
from the tail end. When a smaller amplitude was used, the wave-
length was kept as 2π.
For swimming in sand, the granular force,~F, on any infinitesimal

segment of the swimmer is independent of the segment speed (and
thus undulation frequency), proportional to its depth, and is a
function of the angle (ψ in Fig. 2) between the segment axis and its
velocity direction (the empirically determined granular force,~FðψÞ,
is shown in Supporting Information). The depth of a segment is
calculated assuming themodel sandfish swims with its center 3.5 cm
below the horizontal plane and at an entry angle of 22° [an average
value for the sandfish (18)]. The entry angle is the angle between
the horizontal plane and the plane in which the animal moves (26).
Because the estimated inertial force is negligible, the swimmer

moves in a way such that net external force and torque are ap-
proximately zero. In this study, we consider all 3 df in a plane,
namely, the forward (the only df in our previous RFT models),
lateral, and yaw motion (“recoil”), and we determine the veloci-
ties of the 3 df by solving the force/torque balance equations at
every instant of time. Because the motion of a point on the body is
the superposition of the prescribed and center of mass (CoM)

motions, the net external force, ~Fnetð _~R; θ_Þ, and net external tor-

que about the CoM, ~τnetð _~R; θ_Þ= ð0; 0; τnetÞ, are functions of the
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Fig. 1. NPL of the sandfish during sand-swimming. (A) Sandfish lizard resting on 0.3-mm-diameter glass particles. (B) Trace of an X-ray image of the sandfish during
subsurface sand-swimming at time t = 0.21 s in C and D. Opaque markers (black circles) are attached to the exterior midline to facilitate tracking. Electrodes are
implanted in epaxialmusculatureon the right side of the body at0.3 (magenta circle), 0.5 (green circle), 0.7 (blue circle), and 0.9 (yellow circle) SVL locations (where the
vent is just posterior to the pelvic girdle and the SVL is ∼0.75 of the total body length). (C and D) Electromyogram (EMG) recordings at 0.9 and 0.3 SVLs, respectively,
during sand-swimming. Gray regions indicate timeduration overwhich the rectifiedfilter EMG is above a threshold (equal to themeanof the rectified-filtered signal)
indicating muscle activation [more details are provided in the study by Sharpe et al. (26)]. The blue line shows the measured angle between consecutive markers (B).
The red circles show themaximum orminimum of the best second-order polynomialfit to the angle vs. time series for each half-cycle. Arrows indicate the difference
in time between the onset of muscle activation and maximal convexity. Note the different scales for EMG due to different electrode constructions.

τ
κ
κ ψ

Fig. 2. Diagram of the model. Magenta arrows represent velocity, and green
arrows represent forces from themedium. Signs of the torque (τ), the curvature
(κ), and the rate of change of curvature ( _κ) at ∼0.6 SVL on the body. Negative τ
corresponds to no muscle activation on the right side of the body (red thick
line). ψ indicates the angle between the segment axis and its velocity.
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CoM velocity _~R and rotation rate about the CoM θ_. For the CoM
movement, Newton’s laws give

~Fnet

�
_~R; θ_

�
= M~R€

~τnet
�
_~R; θ_

�
= _~L;

[2]

whereM is total mass and L is angular momentum. By setting the
inertial terms on the right sides of these equations to zero, the
CoM velocities ( _~R and θ_) can be numerically determined.

Torque Calculation in RFT. Because inertia is negligible, the net
torque due to the granular force on a portion (e.g., ½xb;   2π�) of
the sandfish body about any point of interest xb is also approxi-
mately zero. From this, we calculate the internal torque (i.e., the
torque generated by muscle) at xb:

~τmuscle +
Z2π
xb

~r ×~f   ds= _~L≈ 0

−τmuscle = τðxb; tÞ

=
Z2π
xb

n
ðz− xbÞ fyðz; tÞ− ½yðz; tÞ− yðxb; tÞ� fxðz; tÞ

o ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ y′b

2
q

dz;

[3]

where ~f is the granular force per unit length. We assume the
muscle must only overcome torque from resistive forces τ, thus,
internal passive body forces are small compared with external
resistive forces. This assumption was tested by performing in vivo
bending tests on an anesthetized animal (Materials and Methods
and Supporting Information) and measuring stiffness and damp-
ing coefficients at varying rotation rates; we estimate that the
maximal torques from elastic (0.094 ± 0.027 N·cm) and damping
(0.055 ± 0.034 N·cm) forces are over an order of magnitude smaller
than the maximal torque from resistive forces (4.1 N·cm). We also
assume the time lag between neural activation and muscle force
development is small compared with the sandfish undulation pe-
riod (≈0.5 s). We thus assume activation timing approximately
corresponds to “muscle” torque timing. Therefore, we use the
sign of τ to predict muscle activation (Figs. 2 and 3): Positive τ
(or negative τmuscle) corresponds to muscle activation on the right
side of the body.

Results and Discussion
We find that phase lags between internal torque and curvature
in the model can explain the NPL between the electromyogram
(EMG) and curvature seen in experiments. A traveling wave pat-
tern is displayed by τ, and positive τ occurs in a range close to that
of measured EMG activation (Figs. 3 and 4). Without corrections
from body passive forces or consideration of muscle physiology or
body structure, the average phase difference between the beginning
and ending of positive τ in the model compared with EMG onset
and offset in experiments is less than 5%, where 2π is the range of
possible phase lags (Supporting Information). A large portion of the
positive torque region overlaps with the region in which the cur-
vature decreases (negative _κ), but the positive τ region lags behind
the negative _κ region near the head and leads it near the tail. The
agreement between experiment and theory is striking, particularly
because our model has no fitting parameters; we posit this is largely
a consequence of the simple movement and the relatively simple
but strong environmental interaction.
To gain more insight into how the phase lags arise due to tor-

que contributions from different parts of the body, we consider
a simplified case in which amplitude is small, forward motion is
negligible, and the resistive force is viscous. This makes analytical

calculation of torque straightforward but does not change the
results qualitatively. In this simpler case, the torque from the fore-
aft forces is negligible, and only the lateral force (per unit length),
fyðx; tÞ= − c_yðx; tÞ= − cAcosðx+ tÞ, need be considered.
For simplicity and to separate the effects, we first neglect

yaw motion. The torque can be calculated analytically from
Eq. 3: τðx0; tÞ= ð2π − x0ÞsinðtÞ− cosðx0 + tÞ+ cosðtÞ. For exam-
ple, if we take two points x1 = π and x2 = π −Δ near the
middle of the body, we obtain τ1 = 3:7 Ac sinðt+ϕÞ and
τ2 = ð3:7+ 1:7ΔÞAc sinðt+ϕ− 0:29ΔÞ, where ϕ= 0:57. The NPL
are still captured because the phase difference between τ2 and τ1
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Fig. 3. NPL in the model. (A and B) Curvature (blue lines), torque (green
lines), and the predicted region of muscle activation (gray shaded region) from
the RFT model at two representative points indicated by black dots in Fig. 2
and gray vertical lines in C. (C) Torque as a function of time and position along
the body. Gray vertical bars indicate the predicted muscle activation durations
at two representative points. Solid and dashed black lines represent the time
when the maximal curvature and minimal curvature are reached, respectively.
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is a fraction (0.29) of Δ, the phase difference between κ1 and κ2.
The torque contribution can be approximately divided into three
parts, as follows:

τ1 =
Z2π
x1

fyðz; tÞðz− x1Þ  dz

≈ δ fyðx1; tÞδ=2|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
local

+
Z2π−δ

x1+δ

fyðz; tÞðz− x1Þ  dz

+ δ fyð2π; tÞð2π− x1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
head

τ2 =
Z2π
x2

fy ðz; tÞðz− x2Þ  dz

≈ δfyðx2; tÞδ=2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
local

+
Z2π−δ

x2+δ

fyðz; tÞðz− x2Þ  dz

+ δfyð2π; tÞð2π − x2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
head

;

[4]

where δ is a small length. The phase difference between the torque
contributions from local forces for the two points is Δ, which is the
same as the phase difference of other local variables (e.g., κ) on the
traveling wave (Fig. 5). In contrast, the phase of the torque trans-
mitted from a distant point on the body (e.g., the head) is the same
for both points (even though the magnitude differs). This synchro-
nized torque contribution can be thought of as either a standing
wave or a traveling wave with infinite speed. Because of the combi-
nation of the torques from local and distant forces and the contin-
uous forcedistribution, thenet phase difference between τ2 and τ1 is
less thanΔ and the torque wave speed is greater than the curvature
wave speed.A similar analysis can be performed if the integration is
done on the posterior side of the body (toward the tail).
The balance of torque on the body leads to an overall yaw

motion, whose phase is the same along the body. Superposition
of yaw motion and lateral motion of the body results in variation
of both the magnitude and phase of the lateral motion along
the body in the laboratory frame (See figure and derivation in SI
Text). However, the overall speed of the lateral displacement in
the laboratory frame is the same as the prescribed lateral dis-
placement (sinusoidal wave) in the body frame. Therefore, the
yaw motion only changes the relative phase between the curva-
ture wave and the apparent displacement (or force) wave locally.

Because the only requirement for this mechanism is a traveling
wave pattern of force, it predicts the NPL are general for torques
from distributed forces. As shown in Fig. 6A, localized elastic and
damping forces, by definition, have constant phase differences
with the curvature. In accord with previous studies (28, 30), our
calculations show that the relative phase between the torque from
inertial forces and curvature advances in the posterior direction.
However, the overall phase of the inertial torque advances by
about 0.4π compared with the sandfish EMG phase. The phase
lags persist if the granular resistive forces in the model are replaced
with viscous resistive forces, which low Reynolds number swimmers
like nematodes experience (13).
Although passive body forces are not responsible for the

NPL, they can still influence the observed pattern. For example,
we find that the inclusion of viscous forces in the body shifts the
phase of the torque in granular media toward the phase pattern
produced from only viscous forces (dashed-dotted red lines in
Fig. 6A); that is, the phase difference between the torque and _κ is
smaller and the torque wave speed is smaller, in accord with
previous studies in fluids (10, 29). This suggests that the small
internal viscous forces within the body may partially account for
the phase differences we observe between the torque from resistive
forces and EMG. For swimming in a fluid with a high Reynolds
number, the duration of muscle activation is generally smaller than
that observed for the sandfish (≈0.5 s) (23). Previous studies (e.g.,
ref. 29) suggest that the torque from external forces may be over-
come by passive elements of the body. The nearly 0.5 duty factor of
the muscle is evidence that resistive forces dominate in a granular
environment, and the slight decrease of the duty factor [a relatively
larger decrease is typical during swimming in fluids (23)] implies
passive forces play a small role in swimming of the sandfish.
Variations of locomotor kinematics also affect the timing of the

torque (Fig. 6B). For example, a downward entry angle [observed
in the animal experiments (26)] advances the phase of the torque
compared with the horizontal swimming case. This occurs be-
cause when the body is oriented downward, the head, which has
a more advanced phase, contributes more to the overall torque
due to its greater depth and correspondingly larger resistive
forces. Also, a larger number of periods (longer body and smaller
ratio of wave length to body length) both delays the phase of
torque and reduces the torque wave speed. The phase shift is due
to the contribution of the extra tail length, where the phase of the
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Fig. 5. Local and distant forces contribute to the torque on two points near
the middle of the body. Green arrows represent the forces on the body. The
red and orange arrows indicate the force adjacent to x2 and x1, respectively.
The blue arrow indicates the force at the head (Fh). Note that this is an
analysis for a small-amplitude case, and the lateral displacement is exag-
gerated in the figure for visibility.
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lines), viscous fluid force (solid black lines), inertial force (solid magenta
lines), damping force (dashed-dotted red lines), and elastic force from the
body (dotted blue lines). (B) Beginning and ending of positive torque when
the model sandfish swims in a horizontal plane (solid black line, control
case), at an entry angle of 22° (solid green line), at a small amplitude
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only the anterior portion (1 period of the wave) is shown in the figure. Gray
areas indicate negative _κ.
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force lags behind that at anterior positions. The effect of period
(body length) can be used to estimate the error in timing that may
occur due to neglecting the tail after 1.2 SVL: The error should be
a small fraction of the difference between the 1.2-period case and
the control case. Further, we found that a smaller undulation
amplitude reduced the variation in torque wave speed.
The time delay between EMG activation and force production

(36) might affect the phase lag timing of EMG activation, but we
argue that this delay is small compared with the typical period
of undulation for the sandfish (≈2-ms latency compared with
≈500-ms undulation period). If the time delay were significant
and approximately constant, the EMG/curvature phase relation
would change for different frequencies.

Conclusions
We developed a theory to explain the basic control signals needed
to generate a particular undulatory movement pattern in a sand-
swimming lizard. We abstracted the nervous/musculoskeletal sys-
tem by assuming that passive body forces are small and that internal
torque is synchronized with neural activation timing; this abstrac-
tion revealed that the NPL are intrinsic to undulatory locomotion,
provided that distributed forces, such as resistive or inertial forces,
playmajor roles. For undulatory locomotion in other environments,
the principle of the simultaneous response to distant torques should
also apply, although quantities, such as the phase of the force, will
differ from the sandfish case. Building on this principle could help
future studies explain other variations of the NPL.
Because we now have a system in which experiment and theory

are in quantitative agreement, we can begin to develop more de-
tailed models [i.e., anchors (27)] that answer specific questions
about nervous system control, muscle configuration, and mor-
phology, for example. As a case in point, it has been established
that the intersegmental coordination of neural oscillators along
the body of swimmers is influenced by sensory feedback (37).
Detailed models of central pattern generators, sensory neurons,
and muscles can be used to understand how external torque and
neural activation interact so that the intersegmental phase lags
produce single-period sinusoidal motion. As such, a hierarchy of
anchors can be used to generate testable hypotheses and un-
derstand actuation timing for animals in a variety of environments.
More broadly, we have demonstrated that the seemingly specific

and peculiar sand-swimming behavior could be an excellent system
in which to develop quantitative models of neuromechanics. Due
to relatively simple but dominant environmental interactions, the
neuromechanical control pattern is greatly constrained by the
environment. In addition, the granular RFT provides an excellent
model for interaction with the substrate; this is in contrast to lo-
comotion in true fluids, in which more complex theories (38) are
needed to compare experiments and models quantitatively. We
hypothesize that by studying subarenaceous animals within dry and
saturated granular substrates (e.g., those on the bottom of the
ocean floor), animal models with potentially fewer parameters can
be analyzed in detail. This, in turn, can help provide guidance for
the design and control of artificial undulatory locomotors in com-
plex environments (39–41). Better physical models can also improve
our understanding of the biological systems.

Materials and Methods
EMG Recordings. Previous work (26) using a micro-CT scan of a single sandfish
revealed 26 vertebrae in the trunk and more than 13 anterior caudal ver-
tebrae in the tail. The iliocostalis musculature was targeted for implantation
and is located on the dorsolateral portion of the trunk. Dissection revealed
qualitatively similar muscle morphology to that described for Iguana iguana
(42, 43), where iliocostalis musculature spanned ∼1 vertebrae.

Electrodes were implanted in one side of the body at 0.3 (magenta), 0.5
(green), 0.7 (blue), and 0.9 (yellow) SVLs (Fig. 1B), where the average SVL was
8.9 cm (n = 5 animals). EMG data used in this paper were taken from sandfish
swimming trials (n = 37). The EMG signal was filtered with a second-order
Chebyshev filter and rectified to facilitate EMG burst detection. A burst

threshold was set equal to the mean of this rectified filtered EMG trace. Burst
onset was defined as the time when the filtered EMG signal exceeded the
threshold and afterward remained above it for a minimum of 0.04 s. EMG
burst offset was defined as when the filtered EMG signal became lower than
the threshold and remained below it for at least 0.08 s (44). This burst de-
tection was necessary to exclude small voltage changes that did not constitute
an EMG burst, such as noise due to movement artifact. More details on the
EMG recording and analysis technique are provided elsewhere (26).

Dynamic Bending Tests. Three anesthetized sandfish (mass = 15, 16, and 25 g)
were gently clamped at ∼0.5 SVL and 0.6 SVL (Fig. 7A) with adjustable grips.
The grips were attached to a rigid platform and to a rotating platform, re-
spectively. A motor rotated the anterior region of the sandfish through ±15°
for three cycles at angular velocities of 1, 10, and 20°/s. The first and last half-
cycles were excluded from the analysis due to varying rotation velocities. The
anterior end of the sandfish was clamped to a platform with two strain gages
(KFG-3-120-C1-11L1M2R; Omega) used to record resulting torques. Signals were
amplified (INA125P; Digi-Key) by 5,000 before data acquisition and analyzed
using custom software (LabVIEW; National Instruments). Black points were
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Fig. 7. Experimental measurements of sandfish body elasticity and damping.
(A)Topviewof thesetup. (B) Representativework loopforanimal1withangular
velocities of 18=s (red), 108=s (blue), and 208=s (green). The direction is indicated
by the arrows, where the angle is initially zero and increases to ≈0.26 rad (15°),
decreases to≈−0.26 rad (−15°), and then returns to zero.Work loops are shown
for constant angular velocity (i.e., the systemhas reacheda steady state). Dotted
trajectories represent the experimentally recorded torque; solid curves are the
best polynomial fits. (C) Estimated average torque using calculated elastic (cir-
cles) and damping (triangles) coefficients is compared with the maximum τrms

due to external forces calculated from discrete element simulation (34) [0.62
body length (BL); dashed horizontal black line]. Average τrms values for 0.25 BL
(light gray dashed line) and 0.75 BL (dark gray dashed line) are also shown. For
animal 1 (red), animal2 (blue), and animal 3 (green), coefficientsweremeasured
for 1, 10, and 20°/s. In animal 4 (magenta), coefficients weremeasured for 1, 10,
20, 50, and 100°/s. The average angular speed of a sandfish segment is 240°/s
(dashedvertical orange line). (Inset) Zoomed-in regionofdata in themainfigure
(units are the same).
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marked on the animal midline at increments of 0.1 SVL. The best-fit line
through the markers circled in red was used to calculate the angle θ.

Body stiffness, K, was estimated using the slope of the best-fit line
through the torque-angular displacement curve (Fig. 7B) for a single cycle
(n = 8 trials each). Using a viscoelastic model (or Voigt model), the viscous
damping coefficient, c, was approximated by quantifying the viscous torque
(τv ) at zero angular displacement during steady-state rotation and dividing
by the angular speed (θ_), (i.e., c= τvðθ= 0Þ=θ_).

For the hysteretic damping model, the structural damping coefficient, h,
was proportional to angular displacement, θ, and π=2 out-phase. The value
of h was estimated by finding the torque at zero displacement during
steady-state rotation and dividing by the maximum angular displacement:
h= τhðθ= 0Þ=θmax. The loss factor was calculated as η=h/K. The area con-
tained within the work loop ðElossÞ was determined using polynomial fits to
the torque vs. angle curves for increasing and decreasing angles.

To interrogate stiffness and damping coefficients at higher speeds, we
repeated the experiment with one of the sandfish (animal 2; Supporting
Information) using angular speeds of 1, 10, 20, 50, and 100°/s and compared
the results of this experiment with previous results.

We substituted the values during sand-swimming (angular excursion of 30°
and angular velocity of 240°/s) and the average calculated K and c at 20°/s into
our viscous damping model to estimate torques during sand-swimming (Fig.
7C and Supporting Information). For hysteretic damping, we estimated the
damping torque at 240°/s by extending the trend line between calculated
torque from hysteretic damping and angular speed between 20 and 100°/s.

Pendulum Swing Tests. In the second technique, sandfish were modeled as
a physical pendulum to estimate K, c, and η at higher angular frequencies.
The same sandfish were used as in the previous experiment. Animals were
oriented vertically and clamped at ∼0.5 SVL. The tail of the sandfish was bent

upward and released, allowing the body to swing freely. The sandfish body was
modeled as a rigid cylinder, and the tail was modeled as a cone with uniform
density. The angular motion, θ, was fit to a damped harmonic oscillator:

Iθ€+ cθ_+Kθ+mgdCoM   sin ðθÞ= 0; [5]

where dCoM is the distance from the point of rotation to the center of mass,
m is the mass of the unclamped portion of the sandfish, I is the moment of
inertia, and θ

€
€ is the angular acceleration. Angular motion during the first

half-cycle after the tail was released was neglected due to large angles and
body bending. The value of θ was determined between the 0.5-SVL and 0.8-
SVL body positions.

We also fit the motion using a hysteretic damping model:

Iθ€ + ð1+ iηÞKθ+mgdCoM   sin ðθÞ= 0: [6]

For both models, we used the small-angle approximation sinðθÞ≈ θ. Best-
fit parameters were determined using minimization techniques (MATLAB;
MathWorks). Both viscous and hysteretic models fit the angular displace-
ment trajectory well ðr2 < 0:9Þ. Experimental setup diagrams and detailed
results are provided in Supporting Information.

ACKNOWLEDGMENTS.We thank Paul B. Umbanhowar, Silas Alben, George
Lauder, Tom Daniel, and Robert J. Full for helpful discussions and Humaira
Taz for assistance with construction of the experimental apparatus. We
thank Elizabeth A. Gozal for providing the EMG analysis code (Spinal
Motor Output Detector). This work was supported by National Science
Foundation Physics of Living Systems Grants PHY-0749991 and PHY-
1150760, Army Research Laboratory Micro Autonomous System Technol-
ogies Collective Technology Alliance W911NF-11-1-0514, Army Research
Office Grant W911NF-11-1-0514, and the Burroughs Wellcome Fund.

1. Holmes P, Full RJ, Koditschek D, Guckenheimer J (2006) The dynamics of legged loco-
motion: Models, analyses, and challenges. SIAM Rev Soc Ind Appl Math 48(2):207–304.

2. Ijspeert AJ (2008) Central pattern generators for locomotion control in animals and
robots: A review. Neural Netw 21(4):642–653.

3. Alexander RM (2003) Principles of Animal Locomotion (Princeton Univ Press, Princeton).
4. Nishikawa K, et al. (2007) Neuromechanics: An integrative approach for un-

derstanding motor control. Integr Comp Biol 47(1):16–54.
5. Orlovsky GN, Deliagina T, Grillner S, Orlovskii G, Grillner S (1999) Neuronal Control of

Locomotion: From Mollusc to Man (Oxford Univ Press, New York).
6. Josephson R (1985) The mechanical power output of a tettigoniid wing muscle during

singing and flight. J Exp Biol 117:357–368.
7. Hof AL (1984) EMG and muscle force: An introduction. Hum Mov Sci 3:119–153.
8. Tytell ED, Holmes P, Cohen AH (2011) Spikes alone do not behavior make: Why

neuroscience needs biomechanics. Curr Opin Neurobiol 21(5):816–822.
9. Chiel HJ, Ting LH, Ekeberg Ö, HartmannMJ (2009) The brain in its body: Motor control

and sensing in a biomechanical context. J Neurosci 29(41):12807–12814.
10. Tytell ED, Hsu CY, Williams TL, Cohen AH, Fauci LJ (2010) Interactions between in-

ternal forces, body stiffness, and fluid environment in a neuromechanical model of
lamprey swimming. Proc Natl Acad Sci USA 107(46):19832–19837.

11. Dickinson MH, et al. (2000) How animals move: An integrative view. Science
288(5463):100–106.

12. Schmitt J, Holmes P (2000) Mechanical models for insect locomotion: Dynamics and
stability in the horizontal plane-II. Application. Biol Cybern 83(6):517–527.

13. Cohen N, Boyle J (2010) Swimming at low Reynolds number: A beginners guide to
undulatory locomotion. Contemporary Physics 51(2):103–123.

14. Gray J, Hancock G (1955) The propulsion of sea-urchin spermatozoa. J Exp Biol 32:
802–814.

15. Hu DL, Nirody J, Scott T, Shelley MJ (2009) The mechanics of slithering locomotion.
Proc Natl Acad Sci USA 106(25):10081–10085.

16. Lauder B, Lauder G (1995) Speed effects onmidline kinematics during steady undulatory
swimming of largemouth bass, Micropterus salmoides. J Exp Biol 198(Pt 2):585–602.

17. Sfakiotakis M, Lane D, Davies J (1999) Review of fish swimming modes for aquatic
locomotion. IEEE Journal of Oceanic Engineering 24(2):237–252.

18. Maladen RD, Ding Y, Li C, Goldman DI (2009) Undulatory swimming in sand: Sub-
surface locomotion of the sandfish lizard. Science 325(5938):314–318.

19. Wright C, et al. (2007) Design of a modular snake robot. Proceedings of the IEEE
International Conference on Intelligent Robots and Systems (IEEE) (San Diego), pp
2609–2614.

20. Crespi A, Ijspeert A (2008) Online optimization of swimming and crawling in an
amphibious snake robot. IEEE Transactions on Robotics 24(1):75–87.

21. Choset H, et al. (2000) Design and motion planning for serpentine robots. Proc SPIE
3990:148–155.

22. Jayne B, Lauder G (1995) Red muscle motor patterns during steady swimming in
largemouth bass: Effects of speed and correlations with axial kinematics. J Exp Biol
198(Pt 7):1575–1587.

23. Wardle C, Videler J, Altringham J (1995) Tuning in to fish swimming waves: Body
form, swimming mode and muscle function. J Exp Biol 198(Pt 8):1629–1636.

24. Gillis G (1998) Environmental effects on undulatory locomotion in the American eel
Anguilla rostrata: Kinematics in water and on land. J Exp Biol 201:949–961.

25. Williams L, et al. (1989) Locomotion in lamprey and trout: The relative timing of

activation and movement. J Exp Biol 143:559–566.
26. Sharpe SS, Ding Y, Goldman DI (2013) Environmental interaction influences muscle

activation strategy during sand-swimming in the sandfish lizard Scincus scincus. J Exp

Biol 216(Pt 2):260–274.
27. Full RJ, Koditschek DE (1999) Templates and anchors: Neuromechanical hypotheses of

legged locomotion on land. J Exp Biol 202(Pt 23):3325–3332.
28. McMillen T, Williams T, Holmes P (2008) Nonlinear muscles, passive viscoelasticity and

body taper conspire to create neuromechanical phase lags in anguilliform swimmers.

PLOS Comput Biol 4(8):e1000157.
29. Cheng J, Pedley T, Altringham J (1998) A continuous dynamic beam model for

swimming fish. Philos Trans R Soc Lond B Biol Sci 353(1371):981–997.
30. Bowtell G, Williams T (1991) Anguilliform body dynamics: Modelling the interaction

between muscle activation and body curvature. Philos Trans R Soc Lond B Biol Sci

334(1271):385–390.
31. Chen J, Friesen WO, Iwasaki T (2011) Mechanisms underlying rhythmic locomotion:

Body-fluid interaction in undulatory swimming. J Exp Biol 214(Pt 4):561–574.
32. Pedley TJ, Hill SJ (1999) Large-amplitude undulatory fish swimming: Fluid mechanics

coupled to internal mechanics. J Exp Biol 202(Pt 23):3431–3438.
33. Fang-Yen C, et al. (2010) Biomechanical analysis of gait adaptation in the nematode

Caenorhabditis elegans. Proc Natl Acad Sci USA 107(47):20323–20328.
34. Ding Y, Sharpe SS, Masse A, Goldman DI (2012) Mechanics of undulatory swimming in

a frictional fluid. PLOS Comput Biol 8(12):e1002810.
35. Maladen RD, Ding Y, Umbanhowar PB, Kamor A, Goldman DI (2011) Mechanical

models of sandfish locomotion reveal principles of high performance subsurface

sand-swimming. J R Soc Interface 8(62):1332–1345.
36. Daley MA, Biewener AA (2003) Muscle force-length dynamics during level versus in-

cline locomotion: A comparison of in vivo performance of two guinea fowl ankle

extensors. J Exp Biol 206(Pt 17):2941–2958.
37. Marder E, Bucher D, Schulz DJ, Taylor AL (2005) Invertebrate central pattern gener-

ation moves along. Curr Biol 15(17):R685–R699.
38. Rodenborn B, Chen CH, Swinney HL, Liu B, Zhang HP (2013) Propulsion of micro-

organisms by a helical flagellum. Proc Natl Acad Sci USA 110(5):E338–E347.
39. Hirose S (1993) Biologically inspired robots: Snake-like locomotors and manipulators

(Oxford Univ Press, Oxford).
40. Roper D, Sharma S, Sutton R, Culverhouse P (2011) A review of developments towards

biologically inspired propulsion systems for autonomous underwater vehicles. Pro-

ceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering
for the Maritime Environment 225(2):77–96.

41. Colgate J, Lynch K (2004) Mechanics and control of swimming: A review. IEEE Journal

of Oceanic Engineering 29(3):660–673.
42. Carrier D (1990) Activity of the hypaxial muscles during walking in the lizard Iguana

iguana. J Exp Biol 152:453–470.
43. Ritter D (1996) Axial muscle function during lizard locomotion. J Exp Biol 199(Pt 11):

2499–2510.
44. Hochman S, et al. (2012) Enabling techniques for in vitro studies on mammalian spinal

locomotor mechanisms. Front Biosci 17:2158–2180.

10128 | www.pnas.org/cgi/doi/10.1073/pnas.1302844110 Ding et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1302844110/-/DCSupplemental/pnas.201302844SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1302844110/-/DCSupplemental/pnas.201302844SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1302844110/-/DCSupplemental/pnas.201302844SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1302844110/-/DCSupplemental/pnas.201302844SI.pdf?targetid=nameddest=STXT
www.pnas.org/cgi/doi/10.1073/pnas.1302844110

