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A major challenge of the postgenomic era is to understand how
human genes function together in normal and disease states. In
microorganisms, high-density genetic interaction (GI) maps are
a powerful tool to elucidate gene functions and pathways. We
have developed an integrated methodology based on pooled
shRNA screening in mammalian cells for genome-wide identifica-
tion of genes with relevant phenotypes and systematic mapping of
all GIs among them.We recently demonstrated the potential of this
approach in an application to pathways controlling the suscepti-
bility of human cells to the toxin ricin. Here we present the
complete quantitative framework underlying our strategy, includ-
ing experimental design, derivation of quantitative phenotypes
from pooled screens, robust identification of hit genes using ultra-
complex shRNA libraries, parallel measurement of tens of thou-
sands of GIs from a single double-shRNA experiment, and con-
struction of GI maps. We describe the general applicability of our
strategy. Our pooled approach enables rapid screening of the same
shRNA library in different cell lines and under different conditions
to determine a range of different phenotypes. We illustrate this
strategy here for single- and double-shRNA libraries. We compare
the roles of genes for susceptibility to ricin and Shiga toxin in
different human cell lines and reveal both toxin-specific and cell
line-specific pathways. We also present GI maps based on growth
and ricin-resistance phenotypes, and we demonstrate how such
a comparative GI mapping strategy enables functional dissection of
physical complexes and context-dependent pathways.
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The first human genome sequence was determined more than
10 years ago (1, 2), and the revolution in sequencing tech-

nology has facilitated the deciphering of hundreds more human
and cancer genomes since then (3, 4). The next frontier is the
development of strategies for the systematic elucidation of gene
function in health and disease contexts.
RNAi technology has facilitated genetic approaches in mam-

malian cells, but the analysis of genome-wide RNAi screens
remains challenging (5). Major confounding factors are false-
negative results caused by insufficiently active shRNAs and false-
positive results caused by off-target effects. Indeed, the challenges
of off-target effects have been highlighted recently in papers
by Schultz et al (6) and Adamson et al. (7), which show that
these effects can be pervasive in genome-wide screens and are
not robustly detected by some of the standard precautions
typically used.
Furthermore, even when hit genes are identified correctly,

effective follow-up to uncover their function often requires
intense effort. In yeast and other microorganisms, high-density
genetic interaction (GI) maps have been highly successful at
defining gene function, revealing functional relationships be-
tween previously uncharacterized genes and elucidating cellular
pathways (8–16). GIs quantify the effect that the loss of func-
tion of one gene has on the phenotype caused by the loss of

function of another gene. In GI maps, GIs are determined for
a large number of pairwise combinations of genes, and genes are
clustered based on the similarity of their GI patterns. The clus-
tering typically reveals groups of genes that encode physically
interacting proteins or act in a common pathway (17).
In human cells, such a systematic elucidation of the functional

interactions between human genes will be key to understanding
how combinations of genes cause common polygenetic diseases
and to developing precise therapies based on a patient’s genetic
background. Additionally, GI maps can detect rare synthetic
lethal gene pairs, which would be ideal drug targets for combi-
nation therapies that prevent the development of drug resistance
of rapidly evolving diseases like cancer.
We recently established a technology platform for constructing

high-density GI maps in mammalian cells based on pooled
shRNA screens and demonstrated its potential by using it to
identify pathways controlling the sensitivity of human cells to the
toxin ricin (18). Our two-step strategy integrates several key
innovations to address the challenges to the effective application
of RNAi-based approaches to study gene function in mammalian
systems. A primary genome-wide screen is conducted using an
ultra-complex shRNA library to identify genes of interest. A
double-shRNA library targeting all pairwise combinations of hit
genes from the primary screen then is used to measure genetic
interactions based on a pooled experiment.
Here, we describe a principled framework for collecting and

analyzing data and illustrate the broad potential of our approach.
We extract different quantitative, shRNA-intrinsic phenotypes,
such as growth or drug sensitivity, from pooled screens. We es-
tablish a strategy for robust identification of hit genes in pri-
mary screens. Individual shRNAs targeting these hit genes are
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selected to construct focused single-shRNA and double-shRNA
libraries. We demonstrate the use of focused libraries to compare
pathways controlling sensitivity of different human cell lines to
ricin and Shiga toxin. We describe our strategy for constructing
a high-density GI map based on pooled screening of a double-
shRNA library. We show how shRNAs with partial off-target
effects can be identified and removed fromGImaps. GI maps can
be constructed based on different quantitative phenotypes. As
described in Discussion, our strategy has several features that
distinguish it from array-based approaches in which individual
combinations of genes are targeted by interfering RNAs in sep-
arate wells (19–21). Importantly, the same double-shRNA library
can be screened rapidly for different phenotypes to compare
context-specific GI maps. We compare a growth-based GI map
and a ricin resistance-based GI map to illustrate how this

strategy facilitates the dissection of functional pathways in
different conditions and cellular states.

Results
Integrated Platform for Genome-Wide Screening and Mapping of
Genetic Interactions. We have developed an integrated suite of
experimental and computational approaches to identify genes of
interest robustly using pooled shRNA-based screens in mam-
malian cells and to map genetic interactions between these genes
systematically to uncover functional relationships. This section and
Fig. 1 give an overview of our multistep strategy; the subsequent
sections provide the rationale, describe the details, and demonstrate
the performance of the individual steps.
First, we conduct a primary genome-wide screen (Fig. 1A) using

an ultra-complex shRNA library. Our current shRNA library tar-
gets each human protein-coding gene with ∼25 independent
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shRNAs and includes a large number (>1,000) of negative-control
shRNAs (18). The library is introduced into mammalian cells via
lentiviral infection at a low multiplicity of infection (∼0.3). A
fraction of this infected cell population is subjected to selection for
a phenotype of interest. Depending on the biological question, this
selection can consist simply of a period of growth under standard
conditions or growth in the presence of a drug, toxin, or other se-
lective pressure. Any method that physically isolates or enriches
cells based on a phenotype of interest, such as selection for cell
migration, cell size, or expression of a reporter gene by fluorescence-
activated cell sorting and other technologies, also can be used. The
frequencies of shRNA-encoding cassettes in the selected population
and an unselected control population are determined by deep se-
quencing. From these data, hit genes and shRNAs that effectively
target them are identified.
Next, individually barcoded lentiviral vectors for expression of

the shRNAs selected from the primary screen are constructed
(Fig. 1B). These vectors are pooled for batch retesting of the
shRNA phenotypes and can also be used to compare the role of
the targeted genes in different cell lines or with different selective
pressures.
Finally, the barcoded shRNA vectors are digested and ligated

in a pooled format to generate a library expressing all pairwise
combinations of double-shRNAs (Fig. 1C). The phenotypes of
these double-shRNAs are measured in a pooled screen, and
from these phenotypes, GIs are calculated. GI patterns of
shRNAs targeting the same gene then are averaged, and genes
are clustered based on their GI pattern to obtain a high-density
GI map. The same double-shRNA library can be screened for
different phenotypes or in different cell lines to generate a set of
GI maps. Comparison of these GI maps reveals condition- and
background-specific GIs and pathways.

Quantitative shRNA Phenotypes from Pooled shRNA Screens. De-
tection of hits in primary screens and construction of GI maps
requires a method for inferring underlying quantitative pheno-
types based on behavior in pooled growth experiments. We de-
veloped a principled framework to derive distinct phenotypes
that reflect shRNA-intrinsic effects from pooled shRNA screens.
The simplest experimental design for a pooled screen is a
growth-based screen in which the frequencies of knockdown cells
are compared between the starting time point (t0) and a later
time point in the screen (t). If cells are maintained in exponential
growth phase throughout the screen, and g is the growth rate of
WT cells, we define the effect of an shRNA X such that cells
expressing this shRNA have a growth rate of (1+ γX)g (Fig. 2A).
Thus, positive γX represents an increase in fitness, whereas
negative γX represents a decrease in fitness (Fig. 2B). γX can be
calculated from the shRNA frequencies determined by deep
sequencing and the observed growth parameters of the bulk cell
population (Methods). The γ values calculated in this way are
highly reproducible between independent screens (Fig. 2C), thus
facilitating direct comparison and averaging of data from screens
that were carried out separately. It also is possible to compare
samples taken at different time points (t1, t2, and so forth) to
ensure that enrichment of certain shRNAs was caused by con-
sistently higher growth rates rather than by rare jackpot effects
(Fig. 2D).
Many genetic screens address the growth of cells in the pres-

ence of a specific selective pressure, k, that inhibits the net growth
of WT cells, resulting in a diminished net growth rate, g – k (Fig.
2A). We define the resistance phenotype ρ of an shRNA such that
the growth rate of cells expressing shRNA X in the presence of
selective pressure is (1 + γX)g – (1− ρX)k (Fig. 2A). Full resistance
corresponds to ρX = 1, partial resistance to 0 < ρX < 1, and
sensitization to ρX < 0 (Fig. 2B). To determine ρX, frequencies of
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cells expressing shRNAs are compared in unselected and selected
populations (Methods).
When the selection experiment is designed, the selective

pressure should be titrated in preliminary experiments to obtain
a desired value of k. Larger selective pressures will enhance the
differential changes in cell frequencies. However, if the selective
pressure is so large that the population size decreases dramati-
cally, this population bottleneck will increase Poisson noise for
the frequency measurements and will increase the likelihood of
losing some species completely. We obtained good results with
k/g around 0.5 over a time corresponding to 8–12 doublings of
WT cells in standard conditions.
Experiments with modest differences in levels of selective

pressure show good reproducibility of ρ values in our hands (Fig.
2E), again allowing averaging of data from independent screens.
Very divergent levels of selective pressure, such as very different
concentrations of a drug or toxin, may interact with different
cellular pathways, and thus ρ values from experiments are not
necessarily comparable across a wide range of selective pressures.
Some biological problems, such as the drug treatment of a

cancer cell line that is resistant to this drug, require k ∼ 0, with
the goal of recovering shRNAs that resensitize the cells to the
drug. Definitions of quantitative phenotypes for this case and for
sorting-based screens are given in Methods.

Identification of Hit Genes from the Primary Screen. To address the
problems of false-positive and false-negative results in genome-
wide RNAi screens, we created an ultra-complex library that
targets each human protein-coding gene with ∼25 independent
shRNAs and contains a large set (>1,000) of negative-control
shRNAs (18). Qualitatively, the reasoning behind the use of such
libraries is that the large number of shRNAs targeting each gene
increases the likelihood of including several effective shRNAs,
which should reduce the false-negative rate. Requiring several
independent shRNAs targeting a gene to cause the phenotype of
interest to call the target gene a hit gene should reduce the false-
positive rate caused by off-target effects.
We reasoned that analysis of screening data based on hard cut-

offs for shRNA phenotypes and numbers of active shRNAs per
gene would discard much of the information contained in the rich
dataset. Instead, statistical evaluation of the phenotype distribu-
tion of all shRNAs targeting a given gene uses all available in-
formation to evaluate whether the gene is a hit. This concept also
underlies the RIGER approach (22). However, RIGER compares

shRNAs targeting a gene of interest with the entire set of shRNAs
targeting all genes, whereas an important innovation in our
strategy is the comparison of the shRNAs targeting each gene
with the negative control shRNAs (Fig. 3A). The large set of
negative control shRNAs provides the appropriate “null distri-
bution” by controlling for both the measurement noise and un-
intended off-target effects.
We compared two statistical tests that derive a P value for each

gene: The Mann–Whitney U test (MW test) and the two-sample
Kolmogorov–Smirnov test (KS test) generally yielded very similar
answers (Fig. S1A), with a few exceptions (Fig. S1 B and C). In our
experience, the MW test performed more robustly with noisy
datasets, and therefore we generally used the MW test.
The use of negative controls for statistical testing increased the

sensitivity of hit detection, as illustrated in Fig. S1D: Based on
a ricin resistance screen in K562 cells, the P value for a given
gene was calculated by comparing shRNAs targeting the gene
either with negative control shRNAs or with the distribution of
all shRNAs in the library. When negative controls were used,
more hits were significant at a false discovery rate (FDR) of 5%.
To obtain robust results, we estimate that ∼200 or more negative
control shRNAs are ideal (Fig. S1E).
To test the robustness of our approach for hit identification,

we conducted a ricin resistance screen using an shRNA library
targeting 1,079 genes each with 50 independent shRNAs and
randomly divided the shRNAs targeting each gene into two
“half-libraries.” P values for each gene were calculated sepa-
rately based on the results of each half-library (Fig. 3B). Genes
were called hits for a false-discovery rate (FDR) <5%. The
overlap in called hits (at an FDR rate below 5%) was highly
significant (P = 6 ×10−28, Fisher’s exact test for the example
shown in Fig. 3B; similar values were obtained in other random
divisions of the test library into half-libraries, as shown in Fig.
S1F). Our ultra-complex shRNA library also yielded robust
results when hits were called based on the RIGER algorithm in
its original version (based on the KS test) (Table S1 and Fig.
S1G). Our approach is validated further by the results obtained
in our pilot genome-wide screen for genes affecting ricin sus-
ceptibility, which identified a wide range of protective and sen-
sitizing hit genes with remarkable specificity and sensitivity (18).

Barcoding of Individual shRNAs and Comparative Screening of
Focused Libraries. After the genome-wide primary screen, the
next step in our strategy is the selection of shRNAs targeting hit
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genes for further characterization and inclusion in a double-shRNA
library. The selected shRNAs are individually cloned into the
barcoded vectors pMK1098 or pMK1200 (Fig. 4A and Methods)
and are pooled, and their phenotypes are confirmed in a batch
retest experiment. The resulting focused library also can be
screened for different phenotypes and in different cell lines. To
illustrate this strategy, we determined resistance phenotypes for
ricin in K562, HeLa, and Raji cells and for Shiga toxin in HeLa
and Raji cells. (K562 cells are not Shiga toxin-sensitive because
they lack the cell-surface receptor CD77.) These experiments were
carried out in replicate, using two or more shRNAs per gene, and
gene-based phenotypes were determined either by averaging ρs for
shRNAs targeting a gene (Fig. S2) or by calculating one-sample t
values representing the confidence that ρs for shRNAs targeting
a gene from both experimental replicates were different from
0 (Fig. 4B). Phenotype patterns across experiments were correlated
for functionally related and physically interacting genes. Although
many gene knockdowns were either protective or sensitizing in all
experiments, the results also suggest both toxin-specific pathways
(ARL1 and YIPF5 knockdown sensitizes to ricin but protects from
Shiga toxin; the p24 proteins TMED2 and TMED10, as well as the
COPII components SEC23B and SAR1A, show the opposite
pattern) and more complicated patterns, depending on both the
toxin and the cell line (as for the COPI complex).

Construction and Screening of Double-shRNA Libraries. To construct
a double-shRNA library from individually barcoded shRNAs, we

pooled active shRNAs (usually three shRNAs targeting each hit
gene) and negative-control shRNAs and created all pairwise
combinations of shRNAs by a pooled ligation strategy. In the
resulting double-shRNA plasmids, both shRNAs are processed
from minimal miR30a-contexts embedded in the 3′ UTR of the
same RNA-polymerase II–transcribed mRNA (Fig. 4C). The com-
binatorial barcode created by ligation uniquely identifies each
double-shRNA and is read out by deep sequencing. Thus far, we
have created square GI maps from double-shRNA libraries in
which the same set of shRNAs was present in the first and second
position. This strategy can be modified easily by using different
pools of shRNA plasmids to create the backbone and insert for
ligation. Thus, rectangular GI maps can be constructed in which one
dimension comprises “bait genes” representative of different cel-
lular pathways and the other dimension comprises a larger number
of “query genes,” which include genes of unknown function.
Pairwise combination of active shRNAs and negative control

shRNAs results in three classes of double-shRNAs: (i) pairs of
negative-control shRNAs, which are used to derive the WT
phenotype; (ii) pairs of one active shRNA and one negative-
control shRNA, which represent the individual phenotypes of
the single active shRNA (18); and (iii) pairs of two active
shRNAs (Fig. 1C). Importantly, shRNAs maintain their activity
in either position within our double-shRNA construct (18).
Pooled screening of the double-shRNA libraries allows the
measurement of tens or hundreds of thousands of double-shRNA
phenotypes in a single experiment.

EF1A PuroR T2A mCherry 5’mini-miR30
SP

N10N10

BstXI
3’mini-miR30
BstXI

KpnI

Pooled digest:
• AvrII + KpnI for insert
• XbaI + KpnI for backbone

Pooled ligation

shRNA
AvrII XbaI

A

B

EF1A PuroR T2A mCherry 5’mini-miR30
SP

AvrII

N10 3’mini-miR30shRNA N10 5’mini-miR30
SP

N103’mini-miR30shRNAN10

KpnI

XbaI

COMPARATIVE SCREENS WITH FOCUSED LIBRARY

DOUBLE-shRNA LIBRARY

INDIVIDUALLY BARCODED shRNAs

C

pMK1098 or pMK1200

Ricin Stx

K562 HeLa RajiRajiHeLa

G
en

es

Experiments

Cell line:

Treatment:

Ricin Stx

K
56

2

H
eL

a
R

aj
i

R
aj

i
H

eL
a

ProtectiveSensitizing TRAPPC1
TRAPPC11
RAB1A
TRAPPC8
TRAPPC13

SAR1A
SEC23B
TMED2
TMED10

COPA
ARCN1
COPB2
COPZ1

ARL1
YIPF5

Fig. 4. Cloning of hit shRNAs for focused comparative screens and construction of double-shRNA libraries. (A) shRNAs selected from the primary screen are
cloned individually into a minimal miR30 context flanked by N10 barcodes on either side. (B) The focused library of hit shRNAs can be screened rapidly in
different cell lines and for different phenotypes. Here, results are shown for ricin resistance in K562, HeLa, and RajiB cells and for Shiga toxin (Stx) resistance in
HeLa and RajiB cells. Functionally related groups of genes show related phenotypic profiles across experiments, as revealed by hierarchical clustering (applied
to the t statistic obtained from the phenotype distribution of shRNAs targeting a given gene in two experimental replicates). Highlighted examples of such
functional groups are discussed in the text. (C) A double-shRNA library is created by a pooled restriction digest and ligation strategy. In the resulting plasmids,
two shRNAs are expressed each from a miR30 context in the 3′ UTR of the same mRNA. A combinatorial barcode created at the junction uniquely identifies
each double shRNA. SP, primer binding site for deep sequencing.

Kampmann et al. PNAS | Published online June 5, 2013 | E2321

SY
ST

EM
S
BI
O
LO

G
Y

PN
A
S
PL

U
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1307002110/-/DCSupplemental/pnas.201307002SI.pdf?targetid=nameddest=SF2


Calculation of GIs from Double-shRNA Phenotypes.GIs generally are
defined as the deviation of observed double-mutant phenotypes
from the phenotype expected based on the two individual mutant
phenotypes. If the phenotype is directly related to fitness or
growth rate, the expected double-mutant phenotype commonly is
defined as product of the two single mutant phenotypes, al-
though other definitions exist, such as the sum definition (23).
For more complex phenotypes, such as the activation of a re-
porter gene, the expected double-mutant phenotype has suc-
cessfully been defined empirically for each gene (10): Based on
the assumption that strong GIs are rare, a fit of the observed
double-mutant phenotypes to a rationally chosen function is used
to define the expected phenotype, and GIs are quantified as
deviations from this fitted function.
In the case of our ricin resistance screen, the relationship be-

tween single-shRNA phenotypes and double-shRNA phenotypes

in combination with a given bait shRNA could be described
adequately by a linear function (Fig. 5A and Methods). We fit
linear functions for each bait shRNA and compared their slopes
with the slopes obtained with the product and sum definitions for
expected double-shRNA phenotypes (Fig. 5A and Fig. S3). The
fit for some baits agreed reasonably well with either the sum or
the product model, but for many others it deviated significantly.
Intriguingly, fit functions for shRNAs targeting the same gene
seemed to have more similar slopes than those for other shRNAs
with similar single-shRNA phenotypes (Fig. S3), indicating a possi-
ble biological relevance of the slopes.
To investigate which of the definitions would yield GIs cap-

turing useful biological information, we compared the average
Pearson correlation of GI patterns between pairs of shRNAs
targeting either the same genes or genes encoding members of
the same known protein complex and other pairs of shRNAs.
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Fig. 5. Derivation of genetic interactions from double-shRNA phenotypes. Data from growth and ricin resistance screens in K562 cells. (A) Genetic inter-
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single mutant phenotypes or can be derived empirically by linearly fitting (red) the relationship between single shRNA phenotypes and double-shRNA
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on the linear fit for expected double-shRNA phenotypes. (B) Comparison of biologically meaningful information obtained using the different definitions of
expected double-shRNA phenotypes. Average correlation z-scores of GIs between shRNAs targeting the same gene (orange), compared with shRNAs tar-
geting different genes (light gray), and shRNAs targeting genes encoding subunits of the same protein complex (purple) compared with others (dark gray).
(C and D) GI patterns are compared for shRNAs targeting the physically interacting proteins WDR11 and C17orf75 to detect off-target effects. (C) Hierarchical
clustering of GI patterns (excerpt of dataset), heatmap display of GIs from negative (cyan) to positive (yellow). (D) Distribution of correlation coefficients of GI
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for the shRNA denoting the column. Phenotypes of individual shRNAs are listed. (F) In the ricin resistance double-shRNA screen, lack of high GI correlation for
shRNAs targeting the same gene was more common for shRNAs with weaker phenotypes. The absolute values of ricin resistance, |ρ|, are binned; numbers
refer to the upper bounds of the bins, and the last bin contains all cases exceeding the previous bound, as indicated by the > sign. Numbers of shRNAs passing
or failing the intragene GI correlation cutoff of z = 0.8 are shown as orange and gray bars, respectively. The percentage of active shRNAs per bin is indicated
by the red line.
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We reasoned that an appropriate definition of GIs should lead to
higher GI correlation for shRNA pairs targeting the same genes
or genes encoding subunits of a physical complex than for others,
because related functions of genes typically are reflected in
similar GI patterns.
For GIs based both on growth and ricin resistance in K562

cells, the fit-based definition resulted in better differentiation of
intragene and intracomplex shRNA pairs from other shRNA
pairs than obtained with either the product or sum definition
(Fig. 5B). We therefore used this definition for further analysis.
It is likely that the best definition for GIs needs to be determined
individually for other types of screens; the criterion we have
presented here will be a useful tool for evaluating and comparing
different possible definitions.

Exclusion of shRNAs with Partial Off-Target Effects. The high Pear-
son correlation between GI patterns of independent shRNAs
targeting the same gene (Fig. 5B) is to be expected if the shRNA
phenotypes are caused predominantly by the depletion of the
intended target gene. However, we observed exceptions to this
rule for some genes, such as C17orf75. Among the three shRNAs
targeting C17orf75, only the GI patterns for C17orf75_i and
C17orf75_ii were highly correlated; C17orf75_iii showed only
a partial similarity in the spectrum of GIs and had a low corre-
lation with both C17orf75_i and C17orf75_ii (Fig. 5 C–E). In
cases like these, we assumed that the highly correlated shRNAs
were acting through the intended target, whereas the shRNA
with the divergent GI pattern had partial off-target effects. In the
case of C17orf75, this assumption is supported by the observa-
tion that C17orf75_i and C17orf75_ii also show a more corre-
lated GI pattern than C17orf75_iii with shRNAs targeting
WDR11 (Fig. 5E); WDR11 and C17orf75 encode physically
interacting proteins (18).
To minimize the impact of off-target effects on the GI map, we

excluded from further analysis shRNAs that lacked sufficient
correlation with the other shRNAs targeting the same gene. To
define sufficient correlation, we chose an empirically determined
threshold of z = 0.8 on the basis of the normalized distribution
of GI correlation coefficients for the shRNA.
An alternative explanation for the lack of strong GI pattern

correlation between shRNAs targeting the same gene is low
signal-to-noise caused by a weak phenotype. This is not the case
for C17orf75_iii, which has a phenotypic strength comparable to
that of the correlated shRNAs C17orf75_i and C17orf75_ii (Fig.
5E). However, in the ricin resistance dataset, there was a global
trend for shRNAs with weaker phenotypes to be more likely to
lack sufficient GI correlation (Fig. 5F).
The example of C17orf75_iii highlights the importance of

using several shRNAs per gene: Even for bona-fide hit genes,
shRNAs that show the expected phenotype individually and may
effectively knock down the intended target gene can have addi-
tional off-target effects. Different off-target effects will be rele-
vant, depending on the assayed phenotype, and it is unlikely that
any given shRNA has no off-target effects whatsoever. The ap-
proach outlined above allows the exclusion of shRNAs from GI
maps specifically based on off-targets relevant for the phenotype
of interest.

Functional Dissection of Pathways and Complexes by Comparative GI
Mapping. To construct GI maps, we average GIs for sufficiently
correlated shRNAs targeting the same gene and cluster genes
based on the Pearson correlation between their GI patterns. To
make GIs more easily interpretable, we display GIs as buffering
or synergistic (SI Text and Fig. S4). An important advantage of
our pooled screening approach is the ease with which the same
double-shRNA library, once constructed, can be screened for
different phenotypes, or in different cell lines. We constructed
GI maps for the same set of genes based on K562 cell growth

(Fig. 6A and the fully labeled version in Fig. S5) and ricin re-
sistance (Fig. 6B and the fully labeled version in Fig. S6). Both
GI maps recapitulated many known functional groups of genes.
These included pathways (such as the small GTPase ARF1 and
its nucleotide exchange factor GBF1, or a cluster including ri-
bosomal proteins and a translation initiation factor), as well as
physical complexes (such as GARP, ILF2/3, and the WDR11/
C17orf75 complex).
Notably, shRNAs for the double-shRNA library were chosen

based on their ricin resistance phenotype (ρ), and some had only
very minor effects on growth (γ). Consequently, the amplitude of
GIs was much lower for the growth-based GI map than for the
ricin resistance-based GI map (Fig. 6 A and B). Despite the
lower signal for individual GIs, correlation between GI patterns
was highly reproducible (Fig. S7A), and clustering of related
genes in the growth-based GI map was robust (Fig. 6A).
Although most GI correlations and clusters were very similar

in the growth-based and ricin resistance-based GI maps, there
were intriguing exceptions. Surprisingly, knockdown of the small
ribosomal subunit RPS25 caused ricin resistance, whereas
knockdown of large ribosomal subunits sensitized cells to ricin
(18). In the ricin-based GI map, the GI pattern of RPS25 was
highly correlated with ILF2 and ILF3, genes encoding two sub-
units of a heterodimeric complex with roles in transcription,
mRNA processing, and translation (24). In contrast, RPS25 was
mostly uncorrelated with ILF2/3 in the growth-based GI map
(Fig. 6C). Furthermore, RPS25 shows a strongly buffering GI
with ILF2/3 in the ricin-based GI map (Fig. S6) but not in the
growth-based GI map (Fig. S5). Conversely, ILF2 and ILF3
showed highly correlated GI patterns and buffering GIs in both
GI maps (Fig. 6C). Together, these results suggest that RPS25
and ILF2/3 have related or joined functions in ricin-intoxicated
cells but that RPS25-unrelated roles of ILF2/3 are relevant for
survival and growth in the absence of ricin.
A second example is our identification of two functionally dis-

tinct TRAPP complexes, which differentially interact with COPI
and COPII vesicle coats (18). Our biochemical validation experi-
ments suggest that the COPI-interacting complex mTRAPPII
contains the specific subunits TRAPPC9 and TRAPPC10, whereas
the COPII-interacting complex mTRAPPIII specifically contains
TRAPPC8, TRAPPC11, TRAPPC12 and TRAPPC13 (18). The
clue for the existence of these complexes came from the obser-
vation that TRAPPC9 was anti-correlated with other TRAPP
components in the ricin-based GI map (Fig. 6D). The functional
specialization would not have been detected in the growth-based
GI map, where TRAPPC9 correlates with the other TRAPP
components (Fig. 6D). Although we could demonstrate bio-
chemically that the distinct TRAPP complexes exist in the absence
of ricin (18), their distinct roles in the cell did not affect growth
differentially, whereas they had opposing effects on ricin
susceptibility.
These findings illustrate the value of interrogating the same set

of GIs under different conditions, a concept previously proposed
on the basis of differential GI maps (or “dEMAPs”) obtained in
yeast by determining growth-based GIs under different con-
ditions and subtracting them from each other (16). More re-
cently, more robust results were obtained using differential
phenotypes from treated and untreated yeast replicates to cal-
culate GIs (25). Similarly, here we propose defining a differential
phenotype (such as ricin resistance, which is quantified by com-
paring growth in the presence and absence of ricin) and de-
termining GIs based on this differential phenotype. Although the
resulting map theoretically should be identical to a differential
GI map, determining differential phenotypes for each experi-
mental replicate before calculating GI maps clearly improves the
reproducibility of the resulting GI maps (Fig. S7A). GI maps
based on differential phenotypes also reveal context-dependent
pathways more clearly (Fig. 6 C and D) than growth-based GI
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maps derived from different conditions (Fig. S7 B and C). In the
future, systematic comparison of GI maps obtained for a wide
range of specific phenotypes (Fig. 1C) should enable important
insights into the dynamic nature of cellular networks.

Discussion
We have developed an integrated technology platform for
functional genomics in mammalian cells based on quantitative
pooled shRNA screens. First, we identify genes of interest in
a pooled genome-wide screen. Our key innovations for the pri-
mary screen are the ultra-high coverage (∼25 shRNAs per gene)
and the extensive set of negative-control shRNAs, which allow us
to detect hit genes with great sensitivity and robustness. Second,
we construct high-density GI maps based on pooled screening of
a double-shRNA library targeting all combinations of hit genes
from the primary screen. Many of the quantitative strategies
presented here also will apply to other methodologies interfering
with gene expression, such as variations of the bacterial CRISPR
system (26).
Our pooled double-shRNA strategy has the important limi-

tation that only certain phenotypes can be assayed: those based
on cell growth and survival under different conditions and

phenotypes that can be used for the physical separation of cells.
Although fluorescence-coupled phenotypes can be the basis for
separation of cells by flow cytometry, complex phenotypes are
assayed more readily in an arrayed screening format, where each
gene pair is knocked down in a separate well by a combination of
interfering RNAs (19–21).
However, our pooled shRNA-based strategy also has several

advantages over arrayed approaches. Pooled screens subject all
cells to an identical environment and selective pressure, thus
removing major sources of experimental variability. They can be
carried out in standard cell culture vessels, obviating the need for
specialized high-throughput equipment for screen setup and
phenotype readout. The knockdown mediated by siRNAs is
transient, whereas cells stably expressing shRNAs can be subjected
to longer continuous screens, which are relevant for investigating
biological processes such as senescence or proliferation of cancer
cells. Furthermore, shRNAs can be expressed at levels that do not
saturate the cellular RNAi machinery (27); this feature is an im-
portant prerequisite for maintaining knockdown efficiency in the
double-shRNA format, whereas siRNAs can cause side effects
by saturating the cellular machinery (28). Importantly, pooled
screens using suspension cell lines or adherent cell lines growing
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on microcarriers can be scaled up seamlessly in simple stirrer flasks
or more sophisticated bioreactors without increasing the time
required for the screen, whereas the time required for the se-
quential setup and phenotype readout of well-based screens
scales linearly with the number of GIs. Because the number of GIs
increases as the square of the number of genes under in-
vestigation, scalability is a criterion of paramount importance for
the construction of larger GI maps. Finally, once a double-
shRNA library is constructed, it can be screened rapidly in a va-
riety of cell types (including primary patient cells) or under a va-
riety of different selective pressures (such as different drugs).
Here, we demonstrate biological findings obtained by com-

paring GI maps based on different phenotypes (effects on growth
versus ricin susceptibility). In the future, comparative GI map-
ping can provide a 3D dataset of GIs across multiple different
cell types or primary cells from different individuals or pheno-
typic readouts. Growth-based and resistance-based maps could
be combined with richer phenotypic read-outs (e.g., induction
of a transcriptional response, turning on a signaling pathway, a
switch from latent to lytic phases of a viral infections, or cell
migration). Together, these maps should yield fundamental
insights both into the rewiring of cellular pathways in different
contexts and, conversely, into the functional consequences of
complex differences in genetic and epigenetic background.

Methods
Cell Culture. K562 and Raji B cells were grown in RPMI-1640 medium sup-
plemented with 10% (vol/vol) FBS, glutamine, and penicillin/streptomycin.
HeLa cells were grown in DMEM supplemented with 10% (vol/vol) FBS,
glutamine, and penicillin/streptomycin. Lentiviral production and infection
was carried out as previously described (18).

shRNA Libraries. We have previously described the design and production of
shRNA libraries (18). Briefly, an shRNA-expressing cassette was stably in-
tegrated in the genome of human cell lines by lentiviral transduction. shRNAs
were expressed in a minimal miR30 context (29, 30) in the 5′ UTR of a tran-
script encoding puromycin resistance and mCherry, driven by the human EF1A
promoter. In our genome-wide shRNA library, each human annotated protein-
coding gene was targeted by ∼25 independent shRNAs, which were designed
using the shRNA retriever (29) or si/shRNA selector (31) programs. This library
also contained >1,000 negative control shRNAs with a matching base fre-
quency distribution but not targeting any human transcript.

Barcoded shRNA vectors. We previously described cloning of individual
shRNAs into pMK1098 (18). pMK1098 was used for all experiments described
in this study. The miR30a context in pMK1098 is based on the design in vector
pSM2 (29) and contains a mutation creating an EcoRI site in a motif recently
shown to be important for efficientmiRNA processing (32). For future studies,
we therefore constructed a new vector, pMK1200, which is identical to
pMK1098, except that the mutation is eliminated to restore theWT sequence
of miR30a at that position. The sequence of the mini-miR30a context in
pMK1200 is as follows: 5’-CCTAGG-N10-GACTCGAGAAGAAGGTATATTGCTG-
TTGACCCAGAGCGTTGG-stuffer-CCACTGCCTTGGGCCTCGGACTTCAAGGGGT-
CAGTCACACTCTTTCCCTACACGACGCTCTTCCGATCT-N10-TCTAGA-3’. (BstXI sites
are shown in bold, the nucleotide differing from pMK1098 is underlined.)

Pooled Screens. The number of cells for each screen was chosen based on the
complexity of the shRNA library. The average representations were ∼1,000
cells per shRNA element for primary screens, ∼50,000 cells per shRNA ele-
ment for screens with focused shRNA libraries, and ∼4,000 cells per double-
shRNA element for double-shRNA screens. The double-shRNA library used
here encompassed ∼37,000 different shRNA combinations. Frequencies of
shRNA-encoding cassettes in a population of cells were quantified by deep
sequencing (18). For growth phenotypes, a cell population harvested at t0
was compared with the untreated cells at the end of the screen, which
typically lasted ∼12 d. For toxin resistance screens, toxin-treated and un-
treated cells were grown for the same number of days and compared. Toxin-
treated cells were subjected to rounds of 24-h toxin treatment followed by
recovery periods until pretreatment doubling rates were achieved. The fol-
lowing doses were typically used: ricin (Vector Laboratories): 0.5 ng/mL
(standard dose in K562 cells and HeLa cells), 0.8 ng/mL (high dose in K562

cells, Fig. 2E) and 40 ng/mL (in Raji B cells); Shiga toxin (Toxin Technology):
1.5 pg/mL (in HeLa cells and Raji B cells).

Determination of shRNA Phenotypes from Pooled Screens. During exponential
growth, the number of WT cells, NWT, will increase over time as:

NWT
�
t
� ¼ NWT

�
t0
�
·2gt

where g is the growth rate of WT cells (Fig. 2A). We define the effect of
shRNA X on NX(t), the growth of cells expressing X, as γX, such that

NX
�
t
� ¼ NX

�
t0
�
·2ð1þγXÞgt :

γX can be calculated from the change in frequency of cells expressing X
compared with WT cells as quantified by deep sequencing:

γX ¼ 1
gt

log2
NXðtÞ=NWT ðtÞ
NXðt0Þ=NWT ðt0Þ:

Note that the observed growth rates represent the net result of cell pro-
liferation and cell death andmay not always be constant over the time course
of the experiment, depending on the dynamics of the selection procedure.
The growth rate of WT cells, g, is determined by exploiting the fact that the
cell population contains some fraction of cells (typically 10–20%) that have
not been infected with the shRNA-mCherry–expressing construct. g is cal-
culated by measuring the growth of the bulk population (using standard cell
counting and viability assays) and correcting for differences in growth be-
tween the WT cells and the bulk population by tracking the fraction of
mCherry-negative subpopulation using flow cytometry.

For screens carried out in the presence of selective pressure, we define
a selective pressure k such that:

NS
WT

�
t
� ¼ NS

WT

�
t0
�
· 2ðg−kÞt :

For k < g, cells grow with a reduced net rate (because of growth inhibition
or cell death); for k > g, the population decreases because of net cell death.
We define the resistance that an shRNA X confers to the selective pressure
as ρX, such that

NS
X

�
t
� ¼ NS

X

�
t0
�
·2½ð1þγXÞg−ð1−ρXÞk�t :

To determine ρX, frequencies of cells expressing shRNAs are compared in
unselected (U) and selected (S) populations:

ρX ¼ 1
kt

log2
NS

X

�
t
��

NS
WT

�
t
�

NU
X

�
t
��

NU
WT

�
t
�:

Frequencies at t0 need not be measured to calculate ρX as long as the
unselected and selected populations are separated from a common parent
population at t0. However, k needs to be calculated as the reduction in
growth rate that WT cells experience under selective conditions compared
with standard conditions. As with g (see above), we calculate k by measuring
bulk population growth and monitoring the fraction of mCherry-negative
cells for both the unselected and selected populations.

In experiments with k ∼ 0, ρX is not a useful measure, and instead we use
the differential growth metric δX, defined as:

δX ¼ 1
gt

log2
NS

X

�
t
��

NS
WT

�
t
�

NU
X

�
t
��

NU
WT

�
t
�:

Selection does not have to be growth-based; it also can rely on physical
separation methods such as fluorescence-activated cell-sorting or cell-
migration assays. If the separation always is carried out according to the
same protocol, differential enrichment eX represents a directly compa-
rable metric of phenotype:

«X ¼ log2
NS

X

�
t
��

NS
WT

�
t
�

NU
X

�
t
��

NU
WT

�
t
�:

Definitions for Expected Double-shRNA Phenotypes. For shRNAs X and Y with
individual phenotypes ϕX and ϕY (where ϕ can be γ, ρ, or δ as defined above),
the expected phenotype for the double-shRNA XY is ϕX + ϕY according to
the sum definition and is (1 + ϕX) · (1 + ϕY) − 1 according to the product
definition. To derive the expected double-shRNA phenotype from a linear
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fit, all single-shRNA phenotypes were plotted against the phenotypes of the
same shRNAs paired with X, as in Fig. 5A, and fit by linear regression. We
forced the linear function fX to assume ϕX for a single-shRNA phenotype of
0 (WT). Thus, the only degree of freedom for each bait was the slope of the
linear fit. Similarly, we fit a linear function fY describing the relationship
between all single-shRNA phenotypes and the phenotypes of the same
shRNAs paired with Y. fX(ϕY) and fY(ϕX) generally agreed well, and we
defined the fit-based expected double-shRNA phenotype as the average of
fX(ϕY) and fY(ϕX).

Data Analysis. We developed custom scripts in Python/Numpy for most data
analysisandplotting,whichwillbemadeavailableonrequest.WeusedQVALUE

(33) for Q value (FDR) calculation. Genes were clustered hierarchically based on
Pearson correlation of GIs in Cluster (34) and visualized by TreeView (35).
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