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Abstract
We analyze the Agatston score of coronary artery calcium (CAC) from the Multi-Ethnic Study of
Atherosclerosis (MESA) using semi-parametric zero-inflated modeling approach, where the
observed CAC scores from this cohort consist of high frequency of zeroes and continuously
distributed positive values. Both partially constrained and unconstrained models are considered to
investigate the underlying biological processes of CAC development from zero to positive, and
from small amount to large amount. Different from existing studies, a model selection procedure
based on likelihood cross-validation is adopted to identify the optimal model, which is justified by
comparative Monte Carlo studies. A shrinkaged version of cubic regression spline is used for
model estimation and variable selection simultaneously. When applying the proposed methods to
the MESA data analysis, we show that the two biological mechanisms influencing the initiation of
CAC and the magnitude of CAC when it is positive are better characterized by an unconstrained
zero-inflated normal model. Our results are significantly different from those in published studies,
and may provide further insights into the biological mechanisms underlying CAC development in
human. This highly flexible statistical framework can be applied to zero-inflated data analyses in
other areas.
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1. Introduction
The Multi-Ethnic Study of Atherosclerosis (MESA) (Bild et al., 2002) is an ongoing
longitudinal study of subclinical cardiovascular disease (CVD) involving a cohort of more
than 6,500 men and women from six communities in the United States (http://www.mesa-
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nhlbi.org/). It was initiated by the National Heart, Lung, and Blood Institute in July 2000 to
investigate the prevalence, risk factors and progression of subclinical CVD in a population-
based multi-ethnic cohort. Agatston score (Agatston et al., 1990), which measures the
amount of coronary artery calcium (CAC), is an important predictor of future coronary heart
disease events (Min et al., 2010; Polonsky et al., 2010). However, many healthy people may
have no detectable CAC; consequently CAC equals zero with substantial relative frequency,
but otherwise it is a continuous positive variable. That CAC has a mixture distribution with
an atom at zero hampers its analysis by standard statistical methods. Such data are referred
to as “zero-inflated” and require the development of more complex statistical models.

Zero-inflated data actually abound in many areas, for example, in health care cost studies
(Blough, Madden and Hornbrook, 1999), environmental science (Agarwal, Gelfand and
Citron-Pousty, 2002), ecological applications (Liu et al., 2011), etc. Among various models
for analyzing data with excess zeroes, the hurdle model (Mullahy, 1986) has been proposed
to handle both zero-inflation and zero-deflation in count data, which consists of two parts:
one binary model to determine whether the response outcome is zero or positive and a
second part conditional on the positive responses if the “hurdle is crossed”. On the other
hand, zero-inflated model (Lambert, 1992) that assumes an underlying mixture distribution
of probability mass at zero and some continuous or discrete distribution (e.g., normal,
Poisson) has been widely used to analyze zero-inflated continuous data (Couturier and
Victoria-Feser, 2010). Note that both the hurdle model and the zero-inflated model are
essentially equivalent to the two-part model (Kronmal, 2005; Welsh and Zhou, 2006) when
dealing with zero-inflated continuous data as the CAC score in MESA (see Min and Agresti,
2005, for discussion on comparing existing models for zero-inflated count data). Therefore
we will not distinguish the aforementioned two models and refer to the approach as the zero-
inflated model in the following discussion. Also note that the two-part model for zero-
inflated continuous data, with the probit link for the binary model part, is a special case of
the Heckman model (also known as Type II To-bit model, see Heckman, 1979; Amemiya,
1984). Most existing zero-inflated models are in the parametric setting, assuming that the
covariate effects are linear (on proper link scales). However, the assumption of linearity may
not hold in public health or medical research. Instead, semiparametric regression model
(Ruppert, Wand and Carroll, 2003) provides a powerful tool to describing nonlinear
relationships between the covariates and response variables in such situations. For instance,
Lam, Xue and Cheung (2006) used the sieve estimator to analyze zero-inflated count data
from a public health survey.

In zero-inflated data analyses, it is often of interest to examine whether the zero and non-
zero responses are generated by related mechanisms. In MESA, it may provide useful
insights into the biological process on whether or not the risk factors of CVD influence the
probability of having positive CAC and the progression of CAC when it is present in a
similar way, which could be statistically verified by introducing proportional constraints into
the zero-inflated model. Such constrained zero-inflated model can be interpreted by a latent
biological mechanism involving an unobservable random threshold and has been studied
mostly in a parametric framework. For example, Han and Kronmal (2006) considered
proportional constraints in two-part models in MESA to promote better understanding of the
mechanism that drives the zero-inflation in CAC, and to estimate the model parameters
more accurately (intuitively because fewer parameters need to be estimated in a constrained
model) as well. However, they did not take into account the nonlinear relationships between
some covariates and the response variable in MESA (McClelland et al., 2006). Ma et al.
(2010) incorporated proportional constraints in a semiparametric zero-inflated normal model
when analyzing the same data set, but they only considered an universal proportionality
parameter on all covariates, which is not flexible enough to handle more complicated zero-
inflation processes (see Section 2 for more discussion). Therefore, it becomes necessary to
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study a more flexible partially constrained semiparametric zero-inflated model to overcome
the limitations of the existing investigations. We note that similar techniques of imposing
proportional constraints on two sets of regression coefficients in complex models were
investigated by Albert, Follmann and Barnhart (1997); Moulton, Curriero and Barroso
(2002), among others.

In this paper, we propose a partially constrained semiparametric zero-inflated model to
analyze the CAC score in MESA, which provides a highly flexible approach for delineating
the zero-inflated data generating process. Under the general partially constrained model
framework, the unconstrained and constrained zero-inflated models together make it
possible to shed new light on the relationship between the zero and non-zero data generating
processes, and the latter promotes estimation efficiency when the postulated constraint
holds. Cubic regression spline with shrinkage is adopted to estimate nonparametric
regression functions and to select important variables simultaneously. Because of the
complex model specification with a mixture distribution, a model selection procedure based
on cross-validated likelihood is implemented to examine the prediction performance of the
fitted models, and to choose the optimal zero-inflated model from multiple candidate models
with various partial proportional constraints, which avoids the problem of multiple testing
by treating each candidate model on equal basis. Estimation of the proposed zero-inflated
model and statistical inference will also be discussed. The outline of this paper is as follows.
We introduce the semi-parametric zero-inflated model methodology in Section 2. Simulation
studies are carried out to illustrate the proposed model estimation and selection methods in
Section 3. The analytical results of the MESA data analysis are presented in Section 4. Some
concluding remarks are discussed in Section 5.

2. Methods
2.1. Semiparametric zero-inflated model

Statistical analysis of zero-inflated data cannot proceed under the assumption of regular
probability distribution due to the high frequency of zeroes. If the non-zero responses are
continuously distributed, zero-inflated normal (ZIN) model can be utilized, which assumes a
mixture distribution of probability mass at zero and a normal distribution, after suitable
transformation. Suppose that given the covariate vectors Z = (Z1, …, Zm)′ and X = (X1, …,
Xk)′, the conditional distribution of the response variable Y is zero-inflated normal:

(2.1)

where the covariate effects of Z are parametric and those of X are nonparametric. The above
ZIN model consists of two parts:

(2.2)

links the non-zero-inflation probability p to the covariates via a link function g (e.g. logit or
probit function) in the binary part, and the linear part

(2.3)
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describes the covariate effects on the normal mean response μ. In the semi-parametric
setting, β0 and γ0 are two intercept terms, the regression coefficients β = (β1, …, βm)′ and
γ = (γ1, …, γm)′ correspond to the parametric effects in the two parts respectively, and hi,
si, i = 1, …, k, are two sets of nonparametric smooth functions. By setting some parametric
coefficients and/or some smooth functions to be identically zero, equations (2.2) and (2.3)
subsume the case that the two parts of the model involve different sets of covariates. Each
univariate smooth function hi(Xi) or si(Xi), i = 1, …, k, can be estimated nonparametrically
using cubic regression spline, which can be readily extended to high-dimensional smoother
using thin plate spline (Wood, 2003) to accommodate interaction between several
continuous predictor variables.

Equations (2.1), (2.2) and (2.3) formulate an unconstrained semiparametric ZIN model,
which assumes that the covariate effects on the probability of having a non-zero response
and the magnitude of the non-zero response may follow different data generating
mechanisms. However, an interesting research question arises as to whether the two
processes are related to some extent such that some covariates influence the two processes
similarly. The partially constrained zero-inflated modeling approach (Liu and Chan, 2011)
could be used to test the above hypothesis, which assumes that some of the smooth
components (operating on the same covariates) in (2.2) and (2.3) bear proportional
relationships with the constraints:

(2.4)

where  is the index set of the constrained smooth components; δi, i ∈  are unknown
proportionality parameters. The covariates corresponding to those smooth functions with
proportional constraints then affect the nonzero-inflation probability and the mean non-zero
response proportionally on the link scales. However, the other covariates with indices not in

 may have different impacts on the above two processes, which can be flexibly modeled
by the unconstrained components. Note that the unconstrained zero-inflated model is a
special case in the general partially constrained model framework with  = ∅.

We consider proportional constraints in the zero-inflated model not only because they may
result in more parsimonious models, but also because they may admit biological
interpretation connected to some latent threshold model. To illustrate this connection,
suppose that Y* is a latent response variable following the (μ, σ2) distribution. The
observed response Y is zero if the latent mean response μ is less than a random threshold T
which could be due to measurement error or limits of detection, and it is equal to Y* if μ
exceeds the threshold. Hence the non-zero-inflation probability p = Pr(Y = Y*) = Pr(T ≤ μ)
= FT (μ), where FT is the cumulative distribution function (CDF) of the random threshold
variable T. As a result, we would have g(p) = μ if the link function is taken as the inverse
CDF of T, which is, however, generally unknown. Nevertheless, according to Li and Duan
(1989), under some mild regularity conditions, any maximum likelihood-type estimator is
consistent up to a multiplicative scalar, even under a misspecified link function. More
specifically, if we use, for example, a logit link in (2.2), the parameter estimators in the
binary part are proportional to the true parameters in (2.3), i.e., β̂ = δγ, and ĥi = δsi, i = 1,
…, k, for some scalar δ. Alternatively, assuming the zero-inflation is caused by some other
biological characteristic depending on the covariates through ξ(Z, X), i.e., Y = 0 if ξ(Z, X) <
T, we may have partial proportionality among the parameters in the two parts. Based on this
latent biological process, we further relax the proportionality parameter to be possibly
different across the linear and smooth components, leading to the proposed partially
proportionally constrained zero-inflated model.

Liu et al. Page 4

Ann Appl Stat. Author manuscript; available in PMC 2013 June 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



As a closely relevant study in the literature, Ma et al. (2010) compared the unconstrained
semiparametric zero-inflated model to a fully proportionally constrained model, which

assumed (2.2) and , with τ being the universal proportionality
scale parameter. The fully constrained model is, however, quite inflexible and it cannot
handle the cases with non-identical sets of covariates in (2.2) and (2.3) or more complicated
zero-inflation mechanisms (e.g., ξ(Z, X) ≠ μ as discussed above). The partially constrained
semiparametric zero-inflated model, on the other hand, is more flexible by untangling the
constrained and unconstrained smooth components. In addition, when the postulated
proportional constraint holds, the more parsimonious partially constrained zero-inflated
model promotes estimation efficiency compared to its unconstrained counterpart. Compared
to a more recent study Liu et al. (2012) on similar problems in constrained semi-parametric
two-part model, our method is computationally more affordable and more flexible. In this
study, we shall focus on the statistical inference and model selection regarding proportional
constraints on the nonparametric smooth components, which has not been discussed in the
literature to our knowledge. Moreover, the estimation and inference methods proposed
below could be readily lifted to the cases where the parametric terms are also (partially)
constrained.

2.2. Model estimation and inference
The proposed semiparametric zero-inflated model can be estimated by the penalized
likelihood approach, which, in the unconstrained case, maximizes the following penalized
log-likelihood function

where ℙn is the empirical measure of n observations,

 is the log-likelihood function for a single
observation, J(f) defines a roughness penalty functional of f, and λn,i, ϕn,i, i = 1, …, k, are
the smoothing parameters corresponding to each penalty term, which control the trade-off
between the smoothness of the function estimates and goodness-of-fit of the model. In this
study, cubic regression spline is adopted with roughness penalty J(f) = {f(2)(x)}2dx, where
f(2)(x) denotes the second derivative of a univariate function f(x). The spline estimate can be
represented as a linear combination of some basis functions:

, where , j = 1, …, K − 1 are fixed knots placed evenly (in
terms of percentiles) over the corresponding observed covariate values (see Durrleman and
Simon, 1989, for more discussion on the knots selection in cubic splines), (x)+ = x if x > 0
and (x)+ = 0 otherwise, θ= (θ0, …, θK)′ is the parameter vector. Accordingly, the roughness
penalty could be written as a quadratic form of the corresponding parameters, such that J(f)
= θ′Sθ, where S is the penalty matrix. The smoothing parameters can be selected by
generalized cross-validation (GCV) or similar procedures. Under the main regularity
conditions: (R1) The covariates {Z, X} and the true parametric coefficients β0, β, γ0, γ are
bounded; (R2) hi, si are non-constant and satisfy J(hi), J(si) < ∞; (R3) λn,i, ϕn,i = OP(n−2/5);
(R4) The Fisher information matrix is non-singular, plus some minor technical conditions,
the maximum penalized likelihood estimators of the smooth functions can be shown to be
n2/5 consistent, and the parametric coefficient estimators are n1/2 consistent and
asymptotically normal, using similar empirical processes techniques in Liu and Chan (2011).
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Statistical inference including construction of the confidence intervals for the parametric
coefficients and confidence bands for the smooth functions can be based on the observed
Fisher information matrix, which avoids computer-intensive bootstrap methods used in Ma
et al. (2010) and Liu et al. (2012). Monte Carlo studies reported in Liu and Chan (2011)
showed that such confidence intervals/bands enjoyed desirable empirical properties in that
their across-the-function coverage rates were close to their nominal levels. Estimation and
inference of partially constrained semiparametric zero-inflated model follows similar
procedure. More details of the estimation algorithm and theoretical results can be found in
Liu and Chan (2011).

As pointed out by Wood (2006), a disadvantage of the cubic spline smoother is that the
estimated smooth is never completely eliminated in the sense of having all corresponding
parameters estimated to be zero. In addition, linear components in the smooth function are
always un-penalized by the second derivative penalty. From variable selection point of view
(Huang, Horowitz and Wei, 2010), it may be desirable to have the smooth to be shrunk
completely to zero if the corresponding smoothing parameter is sufficiently large, and
preserve the curvature otherwise. Wood (2006) proposed to add an extra small amount of
ridge-type of penalty to the original penalty matrix, i.e., Sε = S + εI was used as the penalty
matrix with additional shrinkage. The parameters of a smooth function with large smoothing
parameter are set to be exactly zero. But otherwise the additional small fraction of identity
matrix has almost no influence on the cubic spline estimate if it is not shrunk to linearity by
the roughness penalty. With this slight adjustment, the resulting cubic smooth with
additional shrinkage behaves reasonably well in variable selection empirically, which is
illustrated in a simulation study in Section 3. In the following discussion, the cubic
regression spline with shrinkage is adopted to estimate the nonparametric covariate effects
as well as to select relevant variables simultaneously.

2.3. Partial-constraint selection
One remaining issue with the partially constrained zero-inflated model is to choose an
optimal model in terms of prediction performance from multiple candidate models with
various partial constraints (model (2.1) to (2.3) with constraint (2.4), note that different
index sets  correspond to different partially constrained models, including  = ∅, i.e., the
unconstrained model) and justify the selection procedure. Liu and Chan (2011) proposed a
model selection criterion for nonparametric zero-inflated model based on the marginal
likelihood, which is similar to the Bayesian information criterion (BIC) (Schwarz, 1978).
However, although the marginal likelihood criterion was shown to work well for zero-
inflated model selection both theoretically and empirically, it was derived for penalized
regression splines without additional shrinkage. Little is known about its behavior when
applied to the shrinkaged version of cubic spline, as we adopted in this study. Instead, cross-
validation works almost universally (Shao, 1993) for most model selection purposes, which
assesses the prediction performance of the models under comparison. The model selection
method is easier to implement in practice than the hypothesis testing approach used in other
studies (see, e.g, Han and Kronmal, 2006), which usually involves step-wise search and
whose complexity increases dramatically with the number of candidate models.

Among a variety of cross-validation methodologies (Arlot and Celisse, 2010), we use the
Monte Carlo cross-validation (MCCV) (Picard and Cook, 1984) to examine the out-of-
sample prediction performances of various partially constrained zero-inflated models under
consideration. In particular, the data are randomly partitioned into two disjoint sets, one of
which with a fixed fraction 1 − ν of the whole data (training set) are used to build the model,
and the remaining ν fraction of the data (validation set) are used to evaluate some goodness-
of-fit criterion (or equivalently, the risk) for each candidate model. The partition is repeated
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independently for B times and the out-of-sample prediction performance of each model is
estimated by taking the average over the B validation sets. Furthermore, because of the
complexity of the mixture zero-inflated distribution, the goodness-of-fit criterion need to be
chosen with caution. We propose to use cross-validated likelihood as the prediction
performance criterion, which is advocated in a probabilistic clustering problem using
mixture modeling (Smyth, 2000). The cross-validated (log−)likelihood of the kth candidate
model is defined as

where D denotes the original data,  is the validation set of the jth partition,  is
the maximum penalized likelihood estimator of the model parameter for the kth candidate
model estimated from the jth training set, and ℓ is the (log−)likelihood function evaluated on

. It can be shown that the expected value of the likelihood evaluated on an independent
validation data set is related to the Kullback-Leibler divergence between the truth and the
model under consideration (Smyth, 2000).

Other possible model selection criteria include the mean squared error (MSE) of the non-
zero responses, and the area under the receiver operating characteristic (ROC) curve (AUC,
larger is preferred as it indicates better prediction, see, e.g., Miller, Hui and Tierney, 1991)
of the binary indicators of zero responses. However, both MSE and AUC have limitations
when applied to zero-inflated data. In particular, the MSE only measures the risk for the
non-zero responses. Whereas the AUC takes into account of all validation samples, but it
fails to assess the accuracy of the predictive value of the nonzero response. Sometimes the
two criteria may point to different candidate models, which confounds the model selection.
In addition, the bias-corrected MSE (denoted as MSEc, it is not difficult to see that E(Y) =
pμ from (2.1)) of both the zero and non-zero data can be calculated for each validation set as

where  is the ith observed response in the validation set with nv samples, p̂i and μ̂i are the
corresponding estimated non-zero-inflation probability and mean non-zero-inflated response
from the fitted model respectively. A simulation study is carried out to evaluate the
performance in model selection between the partially constrained and unconstrained zero-
inflated models based on the cross-validated likelihood, AUC, MSE and MSEc in Section 3.
In practice, it suffices to set the MCCV replication size B to some number between 20 and
50 in most model selection problems in the parametric framework (Shao and Tu, 1995). In
the semiparametric setting as in our study, we repeat the partition with equal size (ν = 0.5)
for B = 100 times in the simulation study and B = 200 in the MESA data analysis because of
its much larger sample size.

3. Simulation study
Before applying the zero-inflated modeling approach to the MESA data analysis, we first
conduct a Monte Carlo study to examine the performance of the proposed model selection
method based on cross-validated likelihood, as well as other goodness-of-fit criteria

Liu et al. Page 7

Ann Appl Stat. Author manuscript; available in PMC 2013 June 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



discussed in the previous section. The out-of-sample prediction performance is evaluated for
two candidate models, i.e., the partially constrained zero-inflated normal model (with the
correct model specification) and its unconstrained counterpart.

The simulated data were generated based on three univariate test functions s1, s2 and s3 on
[0, 1]:

First, n independently uniformly distributed random variables X1, X2 and X3 were generated
on [0, 1]. A two-level factor covariate Z was set to be 0 for the first n/2 samples and 1 for
the rest. The true non-zero-inflation probability p and non-zero-inflated mean response μ
were generated by

(3.1)

(3.2)

where each smooth component was centered at the observed covariate values and denoted as
s̄j, j = 1, 2, 3, respectively. The non-zero-inflated responses , i = 1, …, n, were randomly
sampled from normal (μi, σ) distributions. The response variable was then “zero-inflated”
according to the indicator random variables Ei, which followed independent Bernoulli(pi)
distributions, i.e.,  if Ei = 1 and Yi = 0 if Ei = 0. The simulated data set is denoted as

. Note that the above data simulation procedure specifies a partially
constrained ZIN with proportional constraint on the s̄1(X1) component. But the covariate X2
affects the probability of non-zero inflation and the mean non-zero response with different
functional forms, namely s2 and s3 in equations (3.1) and (3.2) respectively. X3 is a
redundant covariate that has no impact in either p or μ.

For each simulated data set, we fitted the partially constrained ZIN and the unconstrained
counterpart, with nine evenly spaced knots for each cubic spline. We examined seven
sample sizes from n = 200 to 800, with two noise levels σ = 0.5 and 1. Figure 1 shows the
smooth function estimates by the partially constrained ZIN fitted to one simulated data set
with n = 400 and σ = 0.5. The estimated smooth functions by the unconstrained ZIN fitted to
the same data set are displayed in Figure 2. The wide confidence band (i.e., large standard
errors of the smooth function estimates) in the upper left panel of Figure 2 suggests the lack
of efficiency in estimating the logistic part (3.1) by the unconstrained ZIN as compared to
the constrained model, if the data were generated from the constrained model (see Liu and
Chan, 2011, Section 5, for more discussion on the estimation efficiency). It is worthwhile to
mention that in both the constrained and unconstrained models, the covariate effect of the
redundant variable X3 were completely shrunk to zero by the cubic regression splines with
shrinkage.

MCCV were conducted for B = 100 times with ν = 0.5 to evaluate the cross-validated
likelihood, AUC, MSE and MSEc for the constrained and unconstrained ZIN models. In
each of the aforementioned settings, 500 replications were performed and the success rates
in selecting the true model by each of the criteria were compared and summarized in Figure
3. As expected, the success rates of selecting the true model generally increase with the
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sample size for each criterion. Except for very small sample sizes (n = 200, 300, note that
they were zero-inflated data with nearly 50% zeroes), the cross-validated likelihood
outperforms all other three criteria. Especially for MSE of the non-zero data, the success
rates are significantly lower than the other three in each scenario, which suggests that it is
not a reliable measure of the overall prediction performance for zero-inflated model. On the
other hand, the bias-corrected version of MSE performs reasonably well. By comparing the
levels of error variance, the success rates are observed to be consistently higher across
different sample sizes for σ = 0.5 (left panel of Figure 3) than σ = 1 (right panel), except for
MSE. This seemingly implausible phenomena of MSE may be explained by the bias-
variance trade-off of the imposed constraint in the zero-inflated model. More specifically,
the constrained model is more parsimonious and hence has smaller estimation variance as
compared to the unconstrained model, which may also introduce bias. When the error
variance is reduced, the bias becomes more dominant than the estimation variance in the
MSE decomposition. Therefore, the unconstrained model tends to be more favored by MSE
when the error variance is smaller.

We also remark that the average discrepancies of all criteria between the unconstrained and
correctly specified constrained models decrease as the sample size increases, which suggests
that the relative predictive gain by the constrained ZIN diminishes with increasing sample
size. This is not surprising because as the sample size increases, the estimation error
becomes smaller relative to the intrinsic variabilities in the data. So if the data were truly
generated from a partially constrained zero-inflated model and the sample size is large, we
would benefit not as much on the estimation efficiency by fitting a constrained model as for
small to moderately large sample sizes. In situations where there are too few observations to
carry out an unconstrained semiparametric or nonparametric zero-inflated model analysis,
fitting a partially constrained model may provide an elegant alternative –a perspective
earlier advanced by Lambert (1992) within the parametric zero-inflated framework.

In summary, as illustrated by the Monte Carlo study, the cross-validated likelihood performs
very well in selecting the true model with over 90% success rate under mid to large sample
sizes (n ≥ 400), which provides strong justification for the proposed model selection
procedure.

4. MESA data analysis
4.1. Model specification

The MESA data consist of 6,672 participants 44 to 84 years old (after removing missing
values), among which 3,343 (50.1%) have zero Agatston scores of CAC. We use log(CAC
+1) as the response variable (the log-plus-one transformation is commonly used in many
applications to avoid long tails and preserve the zeroes), and the covariates include gender
(0-female, 1-male), race (0-Caucasian, 1-Chinese, 2-African American, 3-Hispanic),
diabetes mellitus (0-normal, 1-otherwise), cigarette smoking status (0-never, 1-former, 2-
current), age, body mass index (BMI), diastolic blood pressure (DBP), systolic blood
pressure (SBP), high-density lipoprotein (HDL) cholesterol and low-density lipoprotein
(LDL) cholesterol, of which the first four could be treated as factor predictors, and the rest
are continuous variables. Because approximately half of the CAC scores are zeroes, while
the remaining are positive and continuously distributed, we adopt a semiparametric zero-
inflated normal regression model for the response variable Y = log(CAC+1) (see Figure 4),
with the conditional response distribution as specified by (2.1). The covariate effect of BMI
was found to be linear in a preliminary analysis, hence it was modeled as a parametric term.
There was only slight interaction between HDL and LDL cholesterol levels, so they were
modeled additively for ease of interpretation. As a consequence, the probability of having
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positive CAC is linked via the logit function (it is referred to as logistic part and henceforth)
to the covariates as follows:

(4.1)

where β0 to β8 are the regression coefficients associated with the parametric terms; DM
stands for abnormal diabetes mellitus status; Cigf and Cigc are binary indicators of former
and current smoker respectively; hi, i = 1, …, 5, are unknown smooth functions. The mean
positive (transformed) CAC level is specified as follows (linear part):

(4.2)

where γ0 to γ8 are regression coefficients, si, i = 1, …, 5, are smooth functions possibly
distinct from hi. All univariate smooth functions in the logistic and linear parts above were
estimated nonparametrically using cubic regression splines with shrinkage and nine evenly
spaced knots to identify important risk factors, as discussed in Section 2.

The unconstrained ZIN model (4.1) and (4.2) assumes that the covariate effects on the
probability of having a positive CAC score and the mean positive (transformed) CAC may
be driven by different physiological processes. As discussed earlier, partially constrained
zero-inflated model could be used to test whether the two processes are related to some
extent. For example, we can add a proportional constraint h1 = δ1s1 to examine whether age
acts in a similar manner in affecting CAC from zero to positive, and from small amount to
large amount. By comparing the fitted partially constrained and unconstrained models based
on their cross-validated likelihoods, we can properly address interesting scientific
hypotheses as above, which may help elucidate the biological process responsible for CAC
development.

Table 1 lists some partially constrained and unconstrained ZIN models fitted to the MESA
data, with corresponding cross-validated (log−) likelihood, AUC, MSE and MSEc estimated
from B = 200 replications (given that the sample size is considerably larger than that in the
simulation study) of MCCV with equal size of training set and validation set (ν= 0.5). The
DBP effect was found to be completely eliminated in both the logistic and linear parts, and
hence it was treated as an unconstrained component. We did not include models with
constraints on the HDL and/or LDL components due to convergence problem. This suggests
that the HDL and LDL effects are likely to be very different in the two processes, namely,
the absence/presence of CAC and the level of CAC when it is present, such that forcing
them to be proportional on the link scales will cause numerical problems in the estimation.
Therefore, we considered four candidate semiparametric zero-inflated models in the MESA
data analysis: M1 - no constraint imposed, M2 - proportional constraint on age, M3 -
proportional constraint on SBP, and M4 - proportional constraints on both age and SBP
(with different proportionality parameters).

According to the cross-validated likelihood, the unconstrained ZIN model M1, has the best
prediction performance among all candidate models. The second best model is the
constrained model M3, which imposes a proportional constraint on the SBP component
(estimated proportionality parameter is 0.682 with standard deviation 0.157). Note that all
other three criteria, i.e, AUC, MSE, and MSEc, are very close, especially for M1 and M3.
This is expected because as discussed in the end of Section 3, the discrepancies between
these criteria would be very small with large sample size. In fact, the AUC and MSEc
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criteria (which are two reasonably reliable measures as demonstrated in the simulation
study) of M1 and M3 are so close that it is hard to discern any differences. However, there is
still some gain in the cross-validated likelihood by fitting an unconstrained ZIN as compared
to the constrained models. We also tried other values of the fraction ν between 0.5 and 0.85
with more data in the validation set (ν = 0.85 corresponds to 1000 samples in the training
set) to assess the robustness of the likelihood cross-validation procedure. The unconstrained
model was consistently selected under various sizes of the validation set. Therefore,
according to the prediction performance using cross-validation, the unconstrained model
performs better than the partially constrained models, which suggests that the covariates act
differently in predicting the presence of positive CAC and its severity when it is positive.
The above result is significantly different from existing studies including Han and Kronmal
(2006), Ma et al. (2010) and Liu et al. (2012) in the determination of proportional constraint
in zero-inflated models of CAC score in MESA.

4.2. Analytical results
We now present the results of the fitted unconstrained semiparametric zero-inflated model to
the MESA data, as selected by the model selection procedure based on likelihood cross-
validation. Table 2 lists the coefficient estimates of the parametric components. The model
results suggest that men have increased risk of having positive CAC and higher mean CAC
score when it is present, as compared to women. Both African- and Hispanic Americans
have reduced probability of having CAC, as compared with Caucasian. Chinese, African and
Hispanic Americans all have lower average CAC level when it is positive. Having abnormal
diabetes status will increase both the risk of positive CAC and its progression. Former
smokers are more likely to have CAC and, on the average, they have higher positive CAC
scores, as compared with non-smokers. Current smokers have even higher risk and mean
positive CAC level. BMI is linearly positively associated with both the probability of having
positive CAC (on the link scale) and CAC score if it is positive.

Among other related MESA studies, Han and Kronmal (2006) included only gender, race
and age as the covariates, and their parameter estimates are similar to ours in signs and
magnitudes, except that they found Chinese had significantly reduced risk of having positive
CAC, as compared to Caucasian. The above findings on the parametric components are
consistent with the unconstrained two-part model in Ma et al. (2010).

The estimated nonparametric smooth functions are displayed in Figure 5. Table 3
summarizes the significance test results of the nonparametric terms based on F tests with the
null hypothesis that the smooth function is identically zero over the observed domain. Age is
positively related to both the probability of positive CAC (p < 0.001) and positive CAC
level (p < 0.001). However, its effect in the positive mean response μ shows some curvature
at the right tail, suggesting that the age effect is not as strong in the old as in mid-aged
people. Elevated systolic blood pressure is associated with increased risk of having positive
CAC (p < 0.001) and higher CAC score when it is present (p = 0.003). Its effect on the
presence of CAC is nonlinear on the logistic scale, whereas it is almost linear in the positive
mean response part. The probability of having positive CAC decreases as the HDL
cholesterol level increases up to around 60 mg/dL, beyond which the risk then stays stable
(p < 0.001). Among the participants who have positive CAC scores, those with HDL
between 40 to 60 mg/dL were observed to have lower CAC levels, however, its influence is
not statistically significant (p = 0.128). LDL is a pronounced risk factor of CAC initiation (p
< 0.001). Nevertheless, the LDL effect on the extent and severity of CAC when it is positive
is completely eliminated by the shrinkaged cubic spline. The same was observed as to the
diastolic blood pressure effects in both logistic and linear parts (not shown in Figure 5).
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This study may significantly differ from published MESA studies concerning the
nonparametric covariate effects along the following perspectives. First, unconstrained
semiparametric zero-inflated model of Agatston score was found to have the best prediction
performance based on the likelihood cross-validation procedure. Second, the age effect on
the magnitude of CAC when it is positive, and the systolic blood pressure influence on the
probability of having positive CAC, were both observed to be nonlinear. Third, LDL was
shown to have no effect in predicting CAC level among those with positive CAC. And last,
diastolic blood pressure was found not to be a risk factor in human CAC development by the
cubic regression spline with shrinkage adopted in our study.

5. Discussion and conclusion
We have presented a highly flexible semiparametric regression model for analyzing zero-
inflated data. Possible partial proportional constraints, whose biological interpretation could
be traced to some latent threshold model under a possibly misspecified link function, were
considered to promote estimation efficiency and help to reveal the connection between the
zero and non-zero data generating processes. In order to choose the optimal model
specification among multiple candidate models with various partial constraints, a model
selection procedure based on cross-validated likelihood was used, which was empirically
corroborated by a simulation study. The proposed partially constrained zero-inflated model
framework makes it possible to provide evidence-based justification to address research
questions concerning the underlying mechanisms that drive the presence and magnitude of
the non-zero response. In particular, it can be used to identify closely related covariate
effects in the zero and non-zero data generating processes. We have adopted the cubic
regression spline with shrinkage to estimate nonparametric smooth functions and select
relevant variables simultaneously, which works well empirically in both simulation and real
data application. However, its theoretical properties still need to be investigated in the
future.

When applied to the MESA data analysis, the semiparametric zero-inflated modeling
approach indicates that the initiation of calcium in human coronary artery and the magnitude
of positive calcium (measured by Agatston score) in general population are better
characterized by an unconstrained zero-inflated model. It is statistically justified that the
initiators of coronary artery disease may be different from the factors that are related to
extent and progression of the disease which is reflected by the amount of CAC in those with
positive CAC scores. In particular, age and systolic blood pressure are both risk factors in
influencing the development of CAC from zero to positive, and from small to large amount.
But their effects show some extent of nonlinearity at certain stages. HDL and LDL
cholesterol levels both have pronounced nonlinear effects in predicting the presence of
CAC. However, only HDL has some impact (not statistically significant) on the extent of
CAC in those who have positive CAC scores. These results may reflect the fact that the
biological mechanisms underlying the initiation and progression of CAC are somehow
different. The partially constrained semiparametric zero-inflated modeling approach
(including the unconstrained case) with the model selection procedure based on likelihood
cross-validation can be applied widely to complex data analysis with zero-inflation problem.

Acknowledgments
We thank the investigators, the staff, and the participants of MESA for their valuable contributions1. We also thank
the editor, associate editor and two reviewers whose comments resulted in great improvement in the manuscript.

1A full list of participating MESA investigators and institutions can be found at http://www.mesa-nhlbi.org/

Liu et al. Page 12

Ann Appl Stat. Author manuscript; available in PMC 2013 June 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.mesa-nhlbi.org/


References
Agarwal DK, Gelfand AE, Citron-Pousty S. Zero-inflated models with application to spatial count

data. Environmental and Ecological Statistics. 2002; 9:341–355.

Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte MJ, Detrano R. Quantification of
coronary artery calcium using ultrafast computed tomography. Journal of the American College of
Cardiology. 1990; 15:827–832. [PubMed: 2407762]

Albert PS, Follmann DA, Barnhart HX. A generalized estimating equation approach for modeling
random length binary vector data. Biometrics. 1997; 53:1116–1124. [PubMed: 9290230]

Amemiya T. Tobit models: A survey. Journal of Econometrics. 1984; 24:3–61.

Arlot S, Celisse A. A survey of cross-validation procedures for model selection. Statistics Surveys.
2010; 4:40–79.

Bild DE, Bluemke DA, Burke GL, Detrano R, Diez Roux AV, et al. Multi-ethnic study of
atherosclerosis: objectives and design. American Journal of Epidemiology. 2002; 156:871–881.
[PubMed: 12397006]

Blough DK, Madden CW, Hornbrook MC. Modeling risk using generalized linear models. Journal of
Health Economics. 1999; 18:153–171. [PubMed: 10346351]

Couturier D, Victoria-Feser M. Zero-inflated truncated generalized Pareto distribution for the analysis
of radio audience data. The Annals of Applied Statistics. 2010; 4:1824–1846.

Durrleman S, Simon R. Flexible regression-models with cubic-splines. Statistics in Medicine. 1989;
8:551–561. [PubMed: 2657958]

Han C, Kronmal R. Two-part models for analysis of Agatston scores with possible proportionality
constraints. Communications in Statistics-Theory and Methods. 2006:3599–111.

Heckman JJ. Sample selection bias as a specification error. Econometrica. 1979; 47:153–161.

Huang J, Horowitz JL, Wei F. Variable selection in nonparametric additive models. The Annals of
Statistics. 2010; 38:2282–2313.

Kronmal, R. Recommendation for the analysis of coronary calcium data Technical Report. MESA
Coordinating Center, University of Washington; 2005.

Lam KF, Xue HQ, Cheung YB. Semiparametric analysis of zero-inflated count data. Biometrics. 2006;
62:996–1003. [PubMed: 17156273]

Lambert D. Zero-inflated Poisson regression, with an application to defects in manufacturing.
Technometrics. 1992; 34:1–14.

Li K-C, Duan N. Regression analysis under link violation. The Annals of Statistics. 1989; 17:1009–
1052.

Liu H, Chan KS. Generalized additive models for zero-inflated data with partial constraint.
Scandinavian Journal of Statistics. 2011; 38:650–665.

Liu H, Ciannelli L, Decker MB, Ladd C, Chan KS. Nonparametric threshold model of zero-inflated
spatio-temporal data with application to shifts in jellyfish distribution. Journal of Agricultural,
Biological, and Environmental Statistics. 2011:16185–201.

Liu A, Kronmal R, Zhou X, Ma S. Semiparametric two-part models with proportionality constraints:
Analysis of the multi-ethnic study of atherosclerosis (MESA). Statistics and Its Intreface. 2012 in
press.

Ma S, Liu A, Carr J, Post W, Kronmal R. Statistical modeling of Agatston score in multi-ethnic study
of atherosclerosis (MESA). PLoS ONE. 2010; 5:e12036. [PubMed: 20711503]

McClelland RL, Chung HJ, Detrano R, Post W, Kronmal RA. Distribution of coronary artery calcium
by race, gender, and age - Results from the multi-ethnic study of atherosclerosis (MESA).
Circulation. 2006; 113:30–37. [PubMed: 16365194]

Miller ME, Hui SL, Tierney WM. Validation techniques for logistic regression models. Statistics in
Medicine. 1991; 10:1213–1226. [PubMed: 1925153]

Min Y, Agresti A. Random effect models for repeated measures of zero-inflated count data. Statistical
Modelling. 2005; 5:1–19.

Min JK, Lin FY, Gidseg DS, Weinsaft JW, Berman DS, Shaw LJ, Rozanski A, Callister TQ.
Determinants of coronary calcium conversion among patients with a normal coronary calcium

Liu et al. Page 13

Ann Appl Stat. Author manuscript; available in PMC 2013 June 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



scan what is the “warranty period” for remaining normal? Journal of the American College of
Cardiology. 2010; 55:1110–1117. [PubMed: 20223365]

Moulton LH, Curriero FC, Barroso PF. Mixture models for quantitative HIV RNA data. Statistical
Methods in Medical Research. 2002; 11:317–325. [PubMed: 12197299]

Mullahy J. Specification and testing of some modified count data models. Journal of Econometrics.
1986; 33:341–365.

Picard RR, Cook RD. Cross-validation of regression models. Journal of the American Statistical
Association. 1984; 79:575–583.

Polonsky TS, McClelland RL, Jorgensen NW, Bild DE, Burke GL, Guerci AD, Greenland P. Coronary
artery calcium score and risk classification for coronary heart disease prediction. Journal of the
American Medical Association. 2010; 303:1610–1616. [PubMed: 20424251]

Ruppert, D.; Wand, MP.; Carroll, RJ. Semiparametric Regression. Cambridge University Press;
Cambridge: 2003.

Schwarz G. Estimating the dimension of a model. The Annals of Statistics. 1978; 6:461–464.

Shao J. Linear model selection by cross-validation. Journal of the American Statistical Association.
1993; 88:486–494.

Shao, J.; Tu, D. The Jackknife and Bootstrap. Springer-Verlag; New York: 1995.

Smyth P. Model selection for probabilistic clustering using cross-validated likelihood. Statistics and
Computing. 2000; 9:63–72.

Welsh AH, Zhou X. Estimating the retransformed mean in a heteroscedastic two-part model. Journal
of Statistical Planning and Inference. 2006; 136:860–881.

Wood SN. Thin plate regression splines. Journal of the Royal Statistical Society: Series B. 2003;
65:95–114.

Wood, SN. Generalized Additive Models, An Introduction with R. Chapman and Hall; London: 2006.

Liu et al. Page 14

Ann Appl Stat. Author manuscript; available in PMC 2013 June 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig 1.
Estimated smooth functions fitted by the partially constrained zero-inflated normal model,
with n = 400 and σ = 0.5. The solid lines show the cubic regression spline estimates, with
the dashed lines representing the 95% point-wise confidence bands. The gray dots denote
the true functional values.
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Fig 2.
Estimated smooth functions with 95% point-wise confidence bands (dashed lines) fitted by
the unconstrained zero-inflated normal model, with n = 400 and σ = 0.5. The gray dots
denote the true functional values.
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Fig 3.
Model selection performance of the cross-validated likelihood, AUC, MSE and MSEc.
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Fig 4.
Histogram of log(CAC+1) from MESA.
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Fig 5.
Nonparametric smooth function estimates of the fitted unconstrained zero-inflated normal
model defined by equations (4.1) and (4.2). The dashed lines constitute 95% point-wise
confidence bands. The DBP effects are estimated to be zero in both the logistic and linear
parts (not shown).

Liu et al. Page 19

Ann Appl Stat. Author manuscript; available in PMC 2013 June 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Liu et al. Page 20

Ta
bl

e 
1

C
om

pa
ri

so
n 

of
 c

an
di

da
te

 z
er

o-
in

fl
at

ed
 n

or
m

al
 m

od
el

s 
fi

tte
d 

to
 th

e 
M

E
SA

 d
at

a 
ba

se
d 

on
 M

on
te

 C
ar

lo
 c

ro
ss

-v
al

id
at

io
n 

w
ith

 B
 =

 2
00

 a
nd

 ν
 =

 0
.5

. “
✓

”
de

no
te

s 
th

e 
pr

op
or

tio
na

l c
on

st
ra

in
ed

 s
m

oo
th

 c
om

po
ne

nt
; “

×
” 

de
no

te
s 

un
co

ns
tr

ai
ne

d 
sm

oo
th

 c
om

po
ne

nt
.

M
od

el
A

ge
D

B
P

SB
P

H
D

L
L

D
L

lo
gl

ik
A

U
C

M
SE

M
SE

c

M
1

×
×

×
×

×
−

50
18

.5
0.

79
2.

59
4.

38

M
2

✓
×

×
×

×
−

50
34

.9
0.

78
2.

60
4.

42

M
3

×
×

✓
×

×
−

50
22

.3
0.

79
2.

61
4.

38

M
4

✓
×

✓
×

×
−

50
34

.6
0.

78
2.

60
4.

42

Ann Appl Stat. Author manuscript; available in PMC 2013 June 24.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Liu et al. Page 21

Ta
bl

e 
2

C
oe

ff
ic

ie
nt

 e
st

im
at

es
 o

f 
th

e 
fi

tte
d 

un
co

ns
tr

ai
ne

d 
ze

ro
-i

nf
la

te
d 

no
rm

al
 m

od
el

 d
ef

in
ed

 b
y 

eq
ua

tio
ns

 (
4.

1)
 a

nd
 (

4.
2)

L
og

is
ti

c
L

in
ea

r

E
st

im
at

e
SE

p-
va

lu
e

E
st

im
at

e
SE

p-
va

lu
e

In
te

rc
ep

t
−

1.
13

0.
18

<
 0

.0
01

3.
46

0.
19

<
 0

.0
01

M
al

e
0.

91
0.

06
<

 0
.0

01
0.

67
0.

06
<

 0
.0

01

C
hi

ne
se

−
0.

13
0.

10
0.

20
9

−
0.

28
0.

10
0.

00
4

A
fr

ic
an

−
0.

79
0.

07
<

 0
.0

01
−

0.
37

0.
07

<
 0

.0
01

H
is

pa
ni

c
−

0.
63

0.
08

<
 0

.0
01

−
0.

34
0.

08
<

 0
.0

01

D
M

0.
25

0.
07

<
 0

.0
01

0.
27

0.
06

<
 0

.0
01

C
ig

f
0.

37
0.

06
<

 0
.0

01
0.

19
0.

06
0.

00
2

C
ig

c
0.

61
0.

09
<

 0
.0

01
0.

31
0.

09
<

 0
.0

01

B
M

I
0.

03
0.

01
<

 0
.0

01
0.

02
0.

01
0.

00
2

Ann Appl Stat. Author manuscript; available in PMC 2013 June 24.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Liu et al. Page 22

Ta
bl

e 
3

N
on

pa
ra

m
et

ri
c 

sm
oo

th
 f

un
ct

io
n 

es
tim

at
es

 o
f 

th
e 

fi
tte

d 
un

co
ns

tr
ai

ne
d 

ze
ro

-i
nf

la
te

d 
no

rm
al

 m
od

el
 d

ef
in

ed
 b

y 
eq

ua
tio

ns
 (

4.
1)

 a
nd

 (
4.

2)
. E

D
F 

st
an

ds
 f

or
ef

fe
ct

iv
e 

de
gr

ee
s 

of
 f

re
ed

om
.

T
he

 p
-v

al
ue

s 
ar

e 
ba

se
d 

on
 F

 te
st

s 
fo

r 
si

gn
if

ic
an

ce
.

L
og

is
ti

c
L

in
ea

r

E
D

F
F

 s
ta

ti
st

ic
p-

va
lu

e
E

D
F

F
 s

ta
ti

st
ic

p-
va

lu
e

s(
A

ge
)

2.
4

81
6.

6
<

 0
.0

01
2.

7
11

6.
7

<
 0

.0
01

s(
D

B
P)

N
A

N
A

N
A

N
A

N
A

N
A

s(
SB

P)
1.

7
31

.1
<

 0
.0

01
1.

0
7.

2
0.

00
3

s(
H

D
L

)
3.

0
19

.5
<

 0
.0

01
2.

8
1.

8
0.

12
8

s(
L

D
L

)
2.

2
38

.0
<

 0
.0

01
N

A
N

A
N

A

Ann Appl Stat. Author manuscript; available in PMC 2013 June 24.


