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Abstract
Benzobisthiazole derivatives were identified as novel helicase inhibitors through high throughput
screening against purified S. aureus (Sa) and B. anthracis (Ba) replicative helicases. Chemical
optimization has produced compound 59 with nanomolar potency against the DNA duplex strand
unwinding activities of both B. anthracis and S. aureus helicases. Selectivity index (SI = CC50/
IC50) values for 59 were greater than 500. Kinetic studies demonstrated that the benzobisthiazole-
based bacterial helicase inhibitors act competitively with the DNA substrate. Therefore,
benzobisthiazole helicase inhibitors represent a promising new scaffold for evaluation as
antibacterial agents.
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The increasing prevalence of antibiotic resistant strains of bacterial pathogens presents a
major unmet medical need. For example, the incidence of skin and soft tissue infections with
community acquired methicillin-resistant Staphylococcus aureus (MRSA) has increased
over five-fold since 2003.1 In addition, a recent report revealed that 28% of enterococci
cultured from 25 North American intensive care units (ICUs) were resistant to vancomycin
(VRE).2 The development of new antibiotics against underexploited targets with novel
mechanisms of action is a vital part of the solution to these problems because such
antibiotics will not be affected by preexisting target based resistance mechanisms. The
replicative DNA helicase is an essential component of the DNA replication pathway, acting
early and catalyzing a rate limiting step in replication, but it is currently untargeted by
antibacterial agents.

Replicative DNA helicase is a member of a drug-validated pathway and, along with gyrase,
topoisomerase IV, and DNA polymerase III, is essential to bacteria.3–7 The primary
structures of bacterial replicative helicases differ significantly from those of their eukaryotic
and human counterparts,8,9 indicating that bacteria-specific inhibitors of helicase may be
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developed. These features make it particularly attractive as a target for the discovery of new
antibacterial therapeutics.

The replicative DNA helicases from E. coli, S. aureus, and P. aeruginosa have been targeted
previously in anti-infective screens,10–17 but few hits have been described, and none have
progressed further in drug development due to poor potency and inadequate selectivity. Two
distinct X-ray crystal structures have been reported: one shows a hexameric DnaB helicase
in complex with a helicase binding fragment of primase,18 and another shows that the DnaB
hexamer adopts a closed spiral staircase quaternary structure in complex with ATP mimic
GDP-AlF4 and ssDNA.19 The two structures suggest that helicase may exist in both
inactivated and activated forms during the bacterial DNA replication process. Structure-
based approaches to target both the inactivated and activated forms of DnaB helicase may
aid in the discovery of novel bacterial DNA helicase inhibitors.

We have previously discovered a coumarin-based DNA helicase inhibitor series through a
high throughput screening campaign, and chemical optimization yielded compounds with
antibacterial activities against several Gram-positive species including multiple clinically
relevant ciprofloxacin-resistant MRSA strains.20,21 Herein we report chemical optimization
and biological evaluation of a novel series of DNA bacterial helicase inhibitors based on a
benzobisthiazole scaffold.

Benzobisthiazole derivatives were identified as novel inhibitors through high throughput
screening against S. aureus (Sa) and B. anthracis (Ba) helicases. The screening hit
compound 1 (Fig. 1) demonstrated antihelicase activities (IC50 (Ba) = 5 μM and IC50 (Sa) =
12 μM) and minimal cytotoxicity (CC50 > 100 μM). Initial investigation of structure-
activity relationships (SARs) focused on the benzamide portion of the benzobisthiazole
scaffold. Thirty-two analogs (compounds 4–35) with various substitutions on the phenyl
ring of the benzamide portion and twelve analogs (compounds 36–47) with phenyl ring
replacements were purchased from an outside vendor (Life Chemicals, Inc.). Their
biological activities were evaluated in a fluorescence resonance transfer (FRET)-based
helicase strand unwinding assay20 to measure concentration-dependent inhibition of Bacillus
anthracis DNA replicative helicase, and the results are summarized in Tables 1 and 2.

Substituents on the phenyl ring of the benzamide portion dramatically affected the
antihelicase activity of the benzobisthiazoles (Table 1). In general, compounds with bulky
substituents (compounds 2–6) were inactive vs B. anthracis helicase, while smaller
substituents, such as F, Cl, Br, CN, CH3, CO2CH3, OCH3, and OCH2CH3 were tolerated at
the 3- or 4-positions (compounds 7–20). Substituents at the 2-position of the phenyl ring
were not tolerated except for the 2-CH3 group (compound 25). Disubstitution at the 3,4- or
3,5-positions with CH3 or OCH3 groups on the phenyl ring was tolerated. For example,
compounds 29–32 with substituents 3,4-(CH3)2, 3,4-(OCH2CH2O), 3,4-(OCH3)2, and 3,5-
(OCH3)2 displayed 1.7–3.2 μM IC50 values vs B. anthracis helicase, while compounds with
disubstitution at the 2,4- or 2,6-positions (26–28) exhibited weak or no inhibitory activity.
Compound 33, with 3,4,5-(OCH3)3 substitution on the phenyl ring, showed the best potency
with an IC50 value of 0.7 μM in this initial investigation of probing the substitution effect on
the antihelicase activity.

The effect of replacement of the phenyl ring with various groups was also investigated in the
B. anthracis DNA helicase assay, and the results are shown in Table 2. Replacement of the
phenyl ring with alkyl, arylalkyl, naphthyl or heteroaryl groups (compounds 34–44)
significantly decreased potency, except for compound 45 with a pyrazine replacement,
which exhibited modest activity (IC50 = 28 μM).
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The most active B. anthracis helicase inhibitor, compound 33, also exhibited potent
inhibitory activity vs S. aureus DNA helicase (IC50 = 0.4 μM) without detectable
cytotoxicty (CC50 >100 μM), while compound 16, which bears a 3-OCH3 group on the
phenyl ring, inhibited S. aureus DNA helicase with an IC50 value of 6.6 μM. To evaluate the
SARs on the methylthio side of the benzobisthiazole core structure, we synthesized a series
of analogs of two precursors 33 and 16, by further transforming the methylthio group to
various amines, and the synthesis is shown in Scheme 1.

Commercially available aminobenzobisthiazole compound 46 was treated with
corresponding benzoyl chlorides, to yield amides 16 and 33.22 Treatment of compounds 16
and 33 with KMnO4 under acidic conditions produced sulfones 47 and 48, respectively,
which were treated with amines to produce benzobisthiazole analogs 49–63.23, 24 To
evaluate whether the amide bond was required for antihelicase activity, amino compound 46
was converted to benzylamino analog 64 through reductive amination, and an imine analog
65 was also synthesized through a condensation reaction (Scheme 2).25 The biological
activities of these analogs were evaluated vs both Bacillus anthracis and S. aureus DNA
replicative helicases, and cytotoxicities were measured in a serum free MTT assay21. Results
are summarized in Table 3.

Compared to the methylthio compound 16, methylamino analog 49 exhibited improved
biological activity vs both Ba and Sa DNA helicases, and its cytotoxicity (CC50) was greater
than 100 μM. Increasing the size of the alkylamino group revealed that propylamino was
tolerated; however, isopropylamino, cyclohexylamino and benzylamino compounds (51, 53,
54) showed significantly reduced activity, while the isobutylamino compound 52 displayed
modest inhibition vs both of the helicases. Interestingly, compounds 55–58, which bear
additional polar groups, such as N(CH3)2, morpholino, or OH groups through a linker
attaching to the aminobenzobisthiazole core, exhibited improved potency with IC50 values
ranging between 1.0–2.3 μM and 1.0–4.2 μM vs Ba and Sa helicases, respectively. This
finding suggests that the polar groups make additional, favorable interactions with the
helicase enzymes.

Similarly, compared to the methylthio compound 33, methylamino analog 59 also displayed
improved helicase inhibitory activity (Ba helicase IC50 = 0.2 μM; Sa helicase IC50 = 0.2
μM) without detectable cytotoxicity (CC50 >100 μM), and selectivity indices (CC50/IC50)
were more than 500. Analogs 60–63 all inhibited Ba and Sa helicases with IC50 values
between 0.2–0.3 μM. Furthermore, compound 63 did not show cytotoxicity (CC50 >100
μM). Compounds 64 and 65, in which the amide linker was replaced with -NHCH2- and -
N=CH- linkers, lost activities vs both Ba and Sa helicases, suggesting that the amide bond is
required for inhibitor binding, probably because of favorable hydrogen bonding interactions.

To determine the mode of inhibition for the benzobisthiazole scaffold, a dilution series of
compound 49 was added to the helicase reaction in the presence of varying concentrations of
the two substrates, ATP and oligonucleotide. The IC50 value of compound 49 varied less
than 2-fold (2.0 to 3.8 μM) in response to changes in the ATP concentration (Fig. 2A), but
varied considerably (>6.5-fold) when oligonucleotide concentrations were altered (Fig. 2B).
These results suggest that compound 49 is noncompetitive with ATP but competitive with
the DNA substrate.26 Indeed, a Dixon plot (Fig. 2C) of the DNA variation results is
consistent with competitive inhibition with a Ki value of 2 μM, which is in good agreement
with the IC50 value at the lowest oligonucleotide concentration tested (3 nM). Similar results
were also obtained for compounds 59 and 63 in kinetic studies (data not shown). These
results indicate that helicase inhibitors with the benzobisthiazole scaffold act with a different
mechanism of action than the previously reported coumarin-based helicase inhibitors, which
are noncompetitive with both ATP and DNA.21 However, neither the coumarin nor the
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benzobisthiazole inhibitors have any significant effect on the single-strand stimulated
ATPase activity of S. aureus helicase at concentrations over 100-fold higher than their IC50
values (Fig. 2D).21 X-ray crystallography studies have revealed two distinct hexameric
DnaB helicase structures: one showed a flat structure without DNA and NTP association,
and the other formed a closed spiral staircase quaternary structure in complex with DNA and
ATP mimic GDP-AIF4, suggesting that the former structure represents an inactivated form
of DnaB helicase, and the latter one represents an activated form of DnaB helicase. The
coumarin type helicase inhibitors are kinetically noncompetitive with both DNA and ATP
substrates, suggesting that the coumarin-based inhibitors are likely bound to the inactivated
form of the helicase, while the benzobisthiazole derivatives exhibit competitive kinetics with
the DNA substrate, suggesting that the benzobisthiazole-based compounds may inhibit the
activated form of the bacterial helicase. Structural information for the inhibitor-DnaB
helicase complex is needed to further elucidate the mechanism of action of these small
molecule helicase inhibitors and provide guidance for the discovery of novel bacterial
helicase inhibitors.

In addition to potently inhibiting replicative helicase, many benzobisthiazole analogs also
inhibit the growth of bacterial cells (data not shown). However, the growth inhibition
manifests primarily as a reproducible lengthened lag phase, delaying exponential growth,
and is not sufficient to produce MIC values, possibly due to poor bacterial cellular
permeability and/or short half-life of the parent compounds in cells. Nonetheless,
incorporation of radiolabeled precursors into DNA in permeabilized preparations of B.
anthracis cells 27 was reduced significantly by compounds 62 and 63 with IC50 values of 10
and 17 μM, respectively (Fig. S1). These results indicate that the benzobisthiazoles inhibit
DNA synthesis in bacterial cells, and such inhibition could be responsible for the modest
growth inhibition observed in live cells.

In conclusion, we have identified a novel class of potent and selective benzobisthiazole-
based bacterial DnaB helicase inhibitors through high throughput screening. Subsequent
structure-activity relationship analysis and chemical optimization led to substantial
improvement of biological activity and identification of nanomolar compounds with
selectivity indices of more than 500. To the best of our knowledge, these compounds are the
most potent bacterial replicative helicase inhibitors reported to date. Further optimization of
the benzobisthiazole-based helicase inhibitors may provide a novel small molecule drug for
antibacterial therapy.
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Figure 1.
The structure of HTS hit 1.
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Figure 2.
Mode of inhibition of benzobisthiazole 49. A dilution series of compound 49 was examined
in the FRET-based S. aureus helicase assay20 with varying concentrations of ATP (A) or
DNA (B) to determine IC50 values. Data were plotted in GraphPad Prism 5.0 using 4-
parameter curve fitting. (C) The results from varying DNA are also shown in a Dixon plot
(1/V vs [I]). (D) Compounds 49 and 59 failed to exhibit significant inhibition of the single-
stranded DNA stimulated ATPase activity of S. aureus helicase as detected by malachite
green.21
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Scheme 1.
Reagents and conditions: a, benzoyl chlorides, CH2Cl2, yields 31–95%; b, aq. KMnO4,
glacial HOAc, dioxane, 73% for 47, and 44% for 48; c, R2R3NH, DMF, 80–100 °C, yields
20–83%.
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Scheme 2.
Reagents and conditions: a, 3,4,5-trimethoxybenzaldehyde, Na(OAc)3BH, glacial HOAc,
DMSO, r.t., 48%; b, 3,4,5-trimethoxybenzaldehyde, toluene, reflux, 67%.
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Table 1

Bacillus anthracis helicase inhibition by benzobisthiazole compounds 1–33.

Compd. R IC50 Ba Helicase (μM)

1 3-N[-(C=O)CH2CH2(C=O)-] 5.0

2 4-N(CH2CH3)2 >100

3 4-tBu >100

4 4-OPh >100

5 4-OiPr >100

6 4-SO2N(CH2CH3)2 >100

7 4-CH3 7.6

8 4-CN 11.0

9 4-OCH2CH3 6.9

10 4-Cl 5.0

11 4-COOCH3 3.7

12 4-N(CH3)2 2.4

13 4-OCH3 2.2

14 4-N[-(C=O)CH2CH2(C=O)-] 1.3

15 3-N(CH3)2 36.0

16 3-OCH3 12.5

17 3-Cl 5.3

18 3-F 3.3

19 3-NO2 2.8

20 3-Br 2.3

21 2-OPh >100

22 2-Cl >100

23 2-Br >100

24 2-F ~50

25 2-CH3 6.6

26 2,4-(OCH3)2 >100

27 2,6-(OCH3)2 >100

28 2,6-F2 64.5

29 3,4-(CH3)2 3.2
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Compd. R IC50 Ba Helicase (μM)

30 3,4-(OCH2CH2O) 3.0

31 3,4-(OCH3)2 2.1

32 3,5-(OCH3)2 1.7

33 3,4,5-(OCH3)3 0.7

Bioorg Med Chem Lett. Author manuscript; available in PMC 2014 June 15.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Li et al. Page 13

Ta
bl

e 
2

B
ac

ill
us

 a
nt

hr
ac

is
 a

nd
 S

ta
ph

yl
oc

co
cu

s 
au

re
us

 h
el

ic
as

e 
in

hi
bi

tio
n 

by
 b

en
zo

bi
st

hi
az

ol
e 

co
m

po
un

ds
 3

4–
45

.

C
om

pd
.

R
1

IC
50

 B
a 

H
el

ic
as

e 
(μ

M
)

34
cy

cl
op

ro
py

l
>

10
0

35
C

H
2P

h
47

36
C

H
2C

H
2P

h
>

10
0

37
>

10
0

38
>

10
0

39
>

50

Bioorg Med Chem Lett. Author manuscript; available in PMC 2014 June 15.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Li et al. Page 14

C
om

pd
.

R
1

IC
50

 B
a 

H
el

ic
as

e 
(μ

M
)

40
>

10
0

41
2-

fu
ra

n
10

2

42
2-

th
io

ph
en

e
90

43
>

50

44
>

50

45
2-

py
ra

zi
ne

28

Bioorg Med Chem Lett. Author manuscript; available in PMC 2014 June 15.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Li et al. Page 15

Ta
bl

e 
3

B
ac

ill
us

 a
nt

hr
ac

is
 a

nd
 S

ta
ph

yl
oc

co
cu

s 
au

re
us

 h
el

ic
as

e 
in

hi
bi

tio
n 

by
 b

en
zo

bi
st

hi
az

ol
e 

co
m

po
un

ds
 1

6,
 3

3 
an

d 
49

–6
5.

C
om

pd
.

R
1

R
2

IC
50

 B
. a

nt
hr

ac
is

 H
el

ic
as

e 
(μ

M
)

IC
50

 S
. a

ur
eu

s 
H

el
ic

as
e 

(μ
M

)
H

eL
a 

C
C

50
 in

 S
F

M
 (
μ

M
)

16
S-

C
H

3
3-

O
C

H
3

12
.5

6.
6

12
.4

49
N

H
-C

H
3

3-
O

C
H

3
0.

5
2.

2
>

10
0

50
N

H
-p

ro
py

l
3-

O
C

H
3

1.
1

1.
3

<
0.

08
; 1

5.
6

51
N

H
-i

so
pr

op
yl

3-
O

C
H

3
65

.0
80

n.
d.

52
N

H
-i

so
bu

ty
l

3-
O

C
H

3
13

.0
9.

0
44

53
N

H
-c

yc
lo

he
xy

l
3-

O
C

H
3

90
>

10
0

n.
d.

54
N

H
-B

n
3-

O
C

H
3

75
>

10
0

n.
d.

55
N

H
C

H
2C

H
2N

(C
H

3)
2

3-
O

C
H

3
1.

0
1.

0

56
3-

O
C

H
3

0.
5

2.
2

9.
6

57
3-

O
C

H
3

2.
3

3.
0

>
10

0

58
N

H
C

H
2C

H
2O

H
3-

O
C

H
3

2.
2

4.
2

>
10

0

33
S-

C
H

3
3,

4,
5-

(O
C

H
3)

3
0.

7
0.

4
>

10
0

59
N

H
-C

H
3

3,
4,

5-
(O

C
H

3)
3

0.
2

0.
2

>
10

0

60
N

H
C

H
2C

H
2N

(C
H

3)
2

3,
4,

5-
(O

C
H

3)
3

0.
2

0.
2

<
0.

78

Bioorg Med Chem Lett. Author manuscript; available in PMC 2014 June 15.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Li et al. Page 16

C
om

pd
.

R
1

R
2

IC
50

 B
. a

nt
hr

ac
is

 H
el

ic
as

e 
(μ

M
)

IC
50

 S
. a

ur
eu

s 
H

el
ic

as
e 

(μ
M

)
H

eL
a 

C
C

50
 in

 S
F

M
 (
μ

M
)

61
3,

4,
5-

(O
C

H
3)

3
0.

2
0.

2
5.

7

62
3,

4,
5-

(O
C

H
3)

3
0.

2
0.

2
2.

8

63
N

H
C

H
2C

H
2O

H
3,

4,
5-

(O
C

H
3)

3
0.

2
0.

3
>

10
0

64
>

10
0

>
10

0
n.

d.

65
>

10
0

>
10

0
n.

d.

Bioorg Med Chem Lett. Author manuscript; available in PMC 2014 June 15.


