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Abstract
BACKGROUND—Persistent pain is measured by means of self-report, the sole reliance on
which hampers diagnosis and treatment. Functional magnetic resonance imaging (fMRI) holds
promise for identifying objective measures of pain, but brain measures that are sensitive and
specific to physical pain have not yet been identified.

METHODS—In four studies involving a total of 114 participants, we developed an fMRI-based
measure that predicts pain intensity at the level of the individual person. In study 1, we used
machine-learning analyses to identify a pattern of fMRI activity across brain regions — a
neurologic signature — that was associated with heat-induced pain. The pattern included the
thalamus, the posterior and anterior insulae, the secondary somatosensory cortex, the anterior
cingulate cortex, the periaqueductal gray matter, and other regions. In study 2, we tested the
sensitivity and specificity of the signature to pain versus warmth in a new sample. In study 3, we
assessed specificity relative to social pain, which activates many of the same brain regions as
physical pain. In study 4, we assessed the responsiveness of the measure to the analgesic agent
remifentanil.

RESULTS—In study 1, the neurologic signature showed sensitivity and specificity of 94% or
more (95% confidence interval [CI], 89 to 98) in discriminating painful heat from nonpainful
warmth, pain anticipation, and pain recall. In study 2, the signature discriminated between painful
heat and nonpainful warmth with 93% sensitivity and specificity (95% CI, 84 to 100). In study 3,
it discriminated between physical pain and social pain with 85% sensitivity (95% CI, 76 to 94) and
73% specificity (95% CI, 61 to 84) and with 95% sensitivity and specificity in a forced-choice test
of which of two conditions was more painful. In study 4, the strength of the signature response
was substantially reduced when remifentanil was administered.

CONCLUSIONS—It is possible to use fMRI to assess pain elicited by noxious heat in healthy
persons. Future studies are needed to assess whether the signature predicts clinical pain. (Funded
by the National Institute on Drug Abuse and others.)

ALTHOUGH BIOMARKERS FOR MEDICAL conditions have proliferated over the past
50 years, objective assessments related to mental health have lagged behind. Physical pain is
an affliction associated with enormous cognitive, social, and economic costs,1 but pain is not
easy to ascertain. It is primarily assessed by means of self-report, an imperfect measure of
subjective experience. The capacity to effectively report pain is limited in many vulnerable
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populations (e.g., the very old or very young, persons with cognitive impairment, and those
who are minimally conscious). Moreover, self-report provides a limited basis for
understanding the neurophysiological processes underlying different types of pain and thus a
limited basis for targeting treatments to the underlying neuropathologic conditions. As a
result, current approaches to pain assessment focus on a convergence of biologic,
behavioral, and self-report measures.2

It is plausible that neurologic signatures (patterns of activity across brain regions) derived
from brain imaging could provide direct measures of pain intensity and be used to compare
analgesic treatments.3 We combined the use of functional magnetic resonance imaging
(fMRI) with machine learning 4,5 to develop a brain-based neurologic signature for
experimental thermal pain.

METHODS
PARTICIPANTS

The studies included a total of 114 healthy participants. Study 1 included 20 participants, 8
of whom were women; the mean (±SD) age was 28.8±7.5 years. Study 2 included 33
participants, 22 of whom were women; the mean age was 27.9±9.0 years. Study 3 included
40 participants, 21 of whom were women; the mean age was 20.8±2.6 years.6 Study 4
included 21 participants, 11 of whom were women; the mean age was 24.7±4.2 years.7 The
Columbia University institutional review board approved all the studies, and all participants
provided written informed consent. All the authors vouch for the accuracy and completeness
of the data and analyses reported and the fidelity of the studies to the protocols. See the
Supplementary Appendix, available with the full text of this article at NEJM.org, for
additional details.

STUDY DESIGN
In all four studies, we applied thermal stimuli in randomized sequences of varying intensity
(trials) to the left forearm of each participant during fMRI scanning. For imaging, we used a
1.5-T General Electric scanner in studies 1, 3, and 4 and a 3-T Phillips scanner in study 2.

Participants in study 1 underwent 12 trials at each of four intensities, which were calibrated
for each person: innocuous warmth (defined with the use of self-report by the participant as
level 1 on a 9-point visual-analogue scale [VAS], with a mean [±SD] temperature of
41.0±1.9°C) and three levels of painful heat (participant-defined levels 3, 5, and 7, with
mean temperatures of 43.3±2.1°C, 45.4±1.71°C, and 47.1±0.98°C, respectively). Each trial
consisted of a warning cue and anticipation period (8 seconds), stimulation (10 seconds),
and a pain-recall and rating period (4 seconds), with periods of rest before and after recall.

Participants in study 2 underwent a total of 75 trials across six temperatures (44.3 to 49.3°C
in 1°C increments). After each trial, participants judged whether the stimulus was painful.
They subsequently judged nonpainful warmth on a 100-point VAS and pain intensity on a
100-point VAS. Ratings were coded from 0 to 99 for nonpain-ful events and from 100 to
200 for painful events.

Participants in study 3 underwent 32 trials, consisting of 8 trials with each of four stimulus
types. We delivered noxious heat (46.6±1.7°C, denoted “painful”) and warmth that was near
the pain threshold (39.9±2.8°C, denoted “warm”) at temperatures calibrated for each person.
Each participant had recently experienced a romantic breakup and continued to feel
intensely rejected. During scanning, participants viewed an image of their ex-partner
(denoted as “rejecter” trials, which elicit social pain8) and an image of a close friend
(denoted as “friend” trials).
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Participants in study 4 received two intravenous infusions of remifentanil, a potent μ-opioid
agonist, during fMRI scanning in two series of trials. In the open-infusion series,
participants knew they received remifentanil, and in the hidden-infusion series, they were
told that no drug was delivered, even though it had been administered. Remifentanil doses
(mean dose, 0.043±0.01 μg per kilogram of body weight per minute) were individually
calibrated before the session to elicit analgesia without sedation, and we estimated the brain
concentration of the drug over time using a pharmacokinetic model.9 We conducted 36 trials
— 18 involving pain (mean temperature, 47.1±1.7°C) and 18 involving warmth (mean
temperature, 41.2±2.6°C) — during each of the two infusion series. Drug infusion began
partway through each series, after 6 trials, and ended after 24 trials. This design resulted in a
continuously varying concentration of the drug over time during each infusion series.

DERIVING THE SIGNATURE
In study 1, we used a machine-learning–based regression technique, LASSO-PCR (least
absolute shrinkage and selection operator-regularized principal components regression),10 to
predict pain reports from the fMRI activity. We selected relevant brain areas a priori using
the NeuroSynth meta-analytic databasei11 (see the Supplementary Appendix) and averaged
the brain activity for each intensity level within each participant.12–14 We used the signal
values from the voxels, each of which measured 3 mm3, in the a priori map to predict
continuous pain ratings, using leave-one-participant-out cross-validation4 (see the
Supplementary Appendix). The result was a spatial pattern of regression weights across
brain regions, which was prospectively applied to fMRI activity maps obtained from new
participants. Application of the signature to an activity map (e.g., a map obtained during
thermal stimulation) yielded a scalar response value, which constituted the predicted pain for
that condition.

We used permutation tests to obtain unbiased estimates of accuracy and bootstrap tests to
determine which brain areas made reliable contributions to prediction (Fig. 1). Stimulation
did not elicit head movement, and head-movement estimates did not predict pain (for a
description of head-movement analyses, see the Supplementary Appendix).

PREDICTING PAIN IN AN INDEPENDENT SAMPLE
In study 2, we tested the neurologic signature identified in study 1, with no further model
fitting, for the prediction of pain in individual participants, using data from a different
scanner. We also estimated activity maps and signature responses for individual trials, which
allowed us to use mixed-effects regression models to test the relationship between
neurologic signature responses and intensity judgments during trials involving painful and
nonpainful stimuli.

TESTING FOR SPECIFICITY
In study 3, we applied the signature to activation maps that resulted from physical sensation
(painful and warm conditions) and from viewing images related to social pain (rejecter and
friend conditions).6

RESPONSE TO ANALGESIC TREATMENT
In study 4, we tested the effects of stimulus intensity (painful vs. warm), administration of
remi-fentanil (drug concentration), and manner of drug administration (open vs. hidden) on
the signature response. For each of the open and hidden trial series, we estimated activation
maps for painful stimulation, warm stimulation, and the magnitude of changes in each that
followed the a priori time course of drug concentration from the phar-macokinetic model
(Fig. S5 in the Supplementary Appendix). Because the drug concentration was continuous
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over time, the binary classification of painful versus warm conditions was based on the
averages of the results of three trials before drug administration and three trials performed at
the peak drug concentration.

STATISTICAL ANALYSIS
We assessed the sensitivity and specificity of the signature for two kinds of decisions. In one
test, the discrimination of pain from no pain, we compared the signature-response value (i.e.,
the strength of expression of the signature pattern) for one condition with a threshold, with a
response over the threshold being classified as a pain response. Receiver-operating-
characteristic plots traced the tradeoff of sensitivity and specificity at different thresholds
(Fig. 1D), and the threshold that minimized overall classification errors is reported (Table
1).

In forced-choice discrimination, two activation maps from the same participant were
compared, and the image with the higher overall signature response (i.e., the stronger
expression of the signature pattern) was classified as associated with more pain. Forced-
choice tests are particularly suitable for fMRI because they do not compare the signature
response with a threshold that is fixed across persons. Therefore, they do not require people
to use the pain-reporting scale in the same way, and they do not require the scale of fMRI
activity to be the same across scanners (see the Supplementary Appendix). Sensitivity,
specificity, positive predictive value, and decision accuracy are all equivalent in the forced-
choice test. The MATLAB code for implementing all analyses is available at http://
wagerlab.colorado.edu/.

RESULTS
CROSS-VALIDATED PREDICTION OF PAIN

In study 1, the neurologic signature included significant positive weights in regions
including the bilateral dorsal posterior insula, the secondary so-matosensory cortex, the
anterior insula, the ventro lateral and medial thalamus, the hypothalamus, and the dorsal
anterior cingulate cortex (q < 0.05, corrected for the false discovery rate) (Fig. 1A, and
Table S1 in the Supplementary Appendix), which is consistent with the view of pain as a
distributed process.15,16 In a leave-one-participant-out cross-validation test, the neurologic
signature accurately predicted continuous pain ratings, with a mean (±SD) error of
0.96±0.33 points on the 9-point VAS and a prediction-outcome correlation coefficient of
0.74 (Fig. 1B).

The signature response increased nonlinearly with increasing stimulus intensity during
thermal stimulation, but as expected, it was uniformly low for the pain-anticipation and
pain-recall periods (Fig. 1C). To test the discrimination of painful from nonpainful warmth,
we compared painful conditions (> 45°C, a temperature level that activates specific
nociceptors17 and that was above the median temperature associated with reported pain)
with warm conditions (< 45°C, which was below the median temperature associated with
reported pain). Both sensitivity and specificity in the discrimination of pain from no pain
were 94% or more for comparisons of pain versus nonpainful warmth, pain versus
anticipation, and pain versus pain recall (Fig. 1D and Table 1).

Forced-choice tests showed 100% sensitivity and specificity for all three comparisons (Table
1), indicating that the signature response was always higher for painful stimulation than for
anticipation or recall within an individual participant. In addition, the signature
discriminated between relative differences in pain, with sensitivity and specificity of 93% or
more when pain ratings differed by 2 or more points on the 9-point VAS (see the
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Supplementary Appendix). Thus, the neurologic signature was sensitive and specific to pain,
with improved performance in the forced-choice test.

PAINFUL VERSUS NONPAINFUL HEAT
In study 2, the signature response increased mono-tonically across the six temperatures (Fig.
2A), with an expected nonlinear increase with temperature, and it correlated with both the
reported level of pain (r = 0.73) and the stimulus temperature (r = 0.65). Signature responses
increased with subjective intensity on a continuum across painful and nonpainful events
(Fig. 2B), a finding that is consistent with contributions by colocal-ized wide-dynamic-range
neurons and nociceptive-specific neurons.17-19 However, mixed-effects regression analyses
showed that the signature response increased more strongly with ratings of pain intensity
than with ratings of warmth intensity (β = 0.66, t = 2.58, P = 0.02) (Fig. 2B).

In trials involving painful heat, the neurologic signature strongly predicted pain intensity (β
= 0.20, t = 6.84, P < 0.001), even when we controlled for linear and nonlinear effects of
temperature (β = 0.13, t = 4.51, P < 0.001). In trials involving nonpainful heat, the
neurologic signature weakly predicted warmth intensity (β = 0.06, t = 2.04, P = 0.08) and
did not predict warmth intensity after adjustment for temperature (β = 0.05, t = 1.30, P =
0.22). These results suggest that the signature is related principally to the subjective
sensation of pain but also reflects the overall intensity of somatic stimulation to some
degree.

To assess discrimination performance, we averaged the neurologic signature response for
painful conditions (rating, ≥ 100; mean rating, 138 points) and nonpainful conditions (rating,
< 100; mean rating, 60 points) for each participant. Because the field strengths of the
scanners used in studies 1 and 2 differed (1.5 T vs. 3.0 T), we reestimated the signature-
response threshold for painful versus nonpainful events, which was estimated to be 1.32 in
study 2, as compared with 1.40 in study 1. The average signature response across trials
accurately discriminated painful from nonpainful conditions with 93% sensitivity and
specificity in the test of pain versus no pain (95% confidence interval [CI], 84 to 100 for
both comparisons), and with 100% sensitivity and specificity (95% CI, 100 to 100) in the
forced-choice test (Table 1).

The signature response also discriminated between clearly painful conditions and conditions
near the pain threshold (mean score, 150 vs. 98 points) with 88% sensitivity (95% CI, 77 to
97) and 85% specificity (95% CI, 72 to 95) in the test of pain versus no pain and with 100%
sensitivity and specificity in the forced-choice test. However, the signature response also
discriminated between intense nonpainful warmth and mild nonpainful warmth (Table 1),
suggesting that hyperalgesia or allodynia would be indicated by positive results of both the
test of pain versus no pain and the forced-choice test.

Finally, tests of forced-choice discrimination across painful temperatures showed good
performance, and tests across nonpainful temperatures showed poor performance,
supporting the use of for a temperature of 48.3°C versus 47.3°C, with 15 trials performed for
each condition. However, performance dropped to near-chance levels when low
temperatures were used (Fig. 2A, and the Supplementary Appendix).the signature to assess
nociceptive responses. Sensitivity and specificity were 90% (95% CI, 81 to 97) for a
temperature of 49.3°C versus 48.3°C, with only 4 trials performed at 49.3°C, and 100%

SPECIFICITY OF NEUROLOGIC SIGNATURE FOR PHYSICAL PAIN
In study 3, comparisons of rejecter versus friend and pain versus warmth yielded similar
levels of self-reported negative affect, and overlapping portions of many regions related to
pain intensity were activated, including the bilateral anterior in-sula, medial thalamus,
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secondary somatosensory cortex, and dorsal posterior insula.6 These findings provided a
good basis for a test of specificity.

The neurologic signature response was substantially stronger for physical pain than for any
of the other conditions (warmth, rejecter, or friend) (Fig. 3A) and predicted pain ratings (r =
0.68, P < 0.001, with a mean prediction error of 0.84 points). As in study 1, the signature
response predicted intensity ratings for noxious stimuli (r = 0.44, P < 0.01) but not
innocuous stimuli (r = 0.02, P > 0.90). With the use of the threshold derived from study 1,
the response for the discrimination between pain and no pain had 85% sensitivity (95% CI,
76 to 94) and 78% specificity (95% CI, 67 to 89) for pain versus warmth and 93%
sensitivity and specificity (95% CI, 86 to 98) for forced-choice discrimination, with similar
performance for the comparison of pain and rejecter conditions (P < 0.001 for all
comparisons) (Table 1). Discrimination between the rejecter and friend conditions was no
better than would be expected by chance (Table 1).

This observed specificity may be driven by finegrained differences in activity patterns in
regions activated by both physical and social pain, an explanation that is consistent with the
notion that different groups of neurons code for different affective events, or by differential
activation of sensory-system–specific regions (e.g., the secondary somatosensory cortex for
heat vs. the occipital cortex for images). If the first explanation holds, the pattern of
activation, rather than the overall level of activation of a region, is the critical agent of
discrimination.

To test these alternatives, we assessed the neurologic signature response derived from
patterns within the dorsal anterior cingulate cortex, anterior insula and operculum, and
secondary somato-sensory cortex and dorsal posterior insula individually (Fig. 3B, 3C, and
3D). Each region was activated by social pain (rejecter vs. friend) overall. However, in each
region, the signature response reliably discriminated pain from the warm condition and pain
from the rejecter condition (mean sensitivity and specificity in the forced-choice test, 78%)
(Table S2 in the Supplementary Appendix) and performed at chance levels for the rejecter
versus friend condition (mean sensitivity and specificity, 58%), suggesting that the pattern
within these regions is critical for predicting pain.

REMIFENTANIL TREATMENT RESPONSE
Before drug infusion, in study 4, the signature response was greater for painful stimuli than
for warm stimuli in both the open-infusion trials and the hidden-infusion trials (t = 5.21 and
t = 4.84, respectively; P < 0.001 for both comparisons) (Fig. S6 in the Supplementary
Appendix). During infusion, the signature response was reduced in parallel with increases in
the drug effect-site concentration (t = −2.78 for trials with open infusion, and t = −2.77 for
trials with hidden infusion; P = 0.01 for both comparisons).

At the maximum drug concentration, remifen tanil was associated with a reduction of 53%
in the signature response, with no differences across the open and hidden infusions (P =
0.94). The sensitivity and specificity for the discrimination between painful and warm
stimuli in the forced-choice test were both 90% (95% CI, 79 to 100), with 95% sensitivity
(95% CI, 86 to 100) and 62% specificity (95% CI, 43 to 79) in the test of pain versus no
pain (P < 0.001) (Table 1). Lower accuracy was expected because preinfusion signature
responses in each condition were estimated from only three trials.

DISCUSSION
We identified an fMRI-based neurologic signature associated with thermal pain,
discriminates physical pain from several other salient, aversive events, and is sensitive to the
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analgesic effects of opi-oids. This signature consisted of interpretable, stable patterns across
regions known to show increased activity in association with experimentally induced pain,
hyperalgesic or allodynic states,20,21 experimentally induced acute pain in patients,22 and
experimentally induced tonic pain (pain caused by a stimulus of extended duration) in
healthy persons.23

The signature is distinguished from a general salience signal by its inclusion of somatic-
specific regions, such as the ventrolateral thalamus,24 the secondary somatosensory cortex,6

and the dorsal posterior insula,6 and by the identification of patterns of activity that are
specific to physical pain within regions that are activated across many psychological
processes (e.g., the anterior insula and the anterior cingulate cortex11). Specificity to pain at
the pattern level is consistent with findings that the anterior cingulate cortex and other
association regions contain nociceptive-specific neurons as well as neurons with other
properties25 and that machine learning can identify fMRI patterns with specific functional
properties.26

The neurologic signature is predominantly bilateral but shows evidence of contralateral
specificity in the primary and secondary somatosensory cortexes, an observation that is
consistent with previous work.15,27 These results build on previous studies16,28–31 by
showing a signature that has more than 90% sensitivity and specificity for pain at the level
of the individual person and that is consistently accurate across studies and scanners. The
forced-choice classification test we used could be translated into a test of hyperalgesia or
allodynia in clinical studies, although the signature has not been validated for clinical pain
and cannot currently be used in clinical tests.

If our findings are extended to clinical populations, brain-based signatures could be useful in
confirming pain in situations in which patients are unable to communicate pain effectively
or when self-reports are otherwise suspect. Such signatures could also help identify
functional neuropathologic disorders32 that may underlie or confer a predisposition to
chronic pain, even in the absence of overt structural lesions.33 More broadly, brain-based
signatures could accelerate the identification of neurophysiological subtypes of pain and
intermediate markers for treatment discovery.34 Such signatures could not, however, rule out
the presence of pain with a nonnormative neurophysiological basis.

Before fMRI-based signatures for pain can be tested in medical decision-making settings,
the generalizability of our findings must be assessed. Pain classification may be less
accurate in patients than in healthy persons. Clinical use would require calibration across
persons, scanning protocols, and research sites. Of the tests studied, the test of pain versus
no pain is likely to be clinically useful in the broadest range of situations, but it is less
strongly predictive than the forced-choice test. Finally, pain-associated fMRI patterns may
differ according to body site,35,36 type of pain (visceral vs. cutaneous),37 and clinical cause,
potentially necessitating the development of multiple pain signatures. Nonetheless, our
findings represent a step toward developing neurologic signatures for multiple types of pain
and other cognitive and affective processes.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Prediction of Physical Pain on the Basis of Normative Data from Other Participants in
Study 1
Panel A shows the signature map, consisting of voxels in which activity reliably predicted
pain. The map shows weights that exceed a threshold (a false discovery rate of q < 0.05) for
display only; all weights were used in prediction. ACC denotes anterior cingulate cortex, CB
cerebellum, FUS fusiform, HY hypothalamus, IFJ inferior frontal junction, INS insula,
MTG middle temporal gyrus, OG occipital gyrus, PAG periaqueductal gray matter, PCC
posterior cingulate cortex, PFC prefrontal cortex, S2 secondary somatosensory cortex, SMA
supplementary motor area, SMG supramarginal gyrus, SPL superior parietal lobule, TG
temporal gyrus, and THAL thalamus. Direction is indicated with preceding lowercase letters
as follows: a denotes anterior, d dorsal, i inferior, l lateral, m middle, mid mid-insula, p
posterior, and v ventral. Panel B shows reported pain versus cross-validated predicted pain.
Each colored line or symbol represents an individual participant. Panel C shows the
signature response versus the pain intensity for heat, pain-anticipation, and pain-recall
conditions. Signatureresponse values were calculated by taking the dot product of the
signature-pattern weights and parameter estimates from a standard, single-participant
general linear model, with regressors for each condition. The estimates shown are derived
from cross-validation, so that signature weights and test data are independent. I bars indicate
standard errors. The receiver-operating-characteristic plots in Panel D show the tradeoff
between specificity and sensitivity. Lines are fitted curves, assuming gaussian signal
distributions. The test of pain versus no pain and the forced-choice test are shown by dashed
lines and solid lines, respectively. Performance on the forced-choice test was at 100% for all
conditions; thus, the lines are overlapping.
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Figure 2. Application of the Neurologic Signature in Study 2
Panel A shows the signature response across the temperatures used in study 2. The signature
response was defined as the dot product of the signature-pattern weights from study 1 and
the activation maps for each temperature within each individual participant. I bars show the
standard error for the within-participant data. The signature response increased with
increasing temperature, as did the level of reported pain. Percentages indicate the sensitivity
and specificity for adjacent temperatures in the forced-choice classification. Sensitivity and
specificity are equivalent for the forced-choice test and reflect the proportion of participants
for whom the prediction based on the signature response was correct. Panel B shows the
signature response as a function of reported intensity, for conditions rated as warm
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(nonpainful; orange) and those rated as painful (red). Loess smoothing was used to visualize
the relationship; shaded areas show bootstrapped standard errors. The vertical line (at 100)
divides conditions explicitly rated as painful from those rated as nonpainful, and the dashed
horizontal line (at 1.32) is the classification threshold that maximizes the classification
accuracy for painful versus nonpainful conditions. Panel C shows the discrimination
performance for comparisons of pain and no pain. Performance (circles) was generally better
than predicted by the gaussian model (dashed lines), suggesting a super-gaussian
distribution of the signature response. Discrimination in the forced-choice test showed 100%
sensitivity and specificity in all comparisons (data not shown).
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Figure 3. Application of the Neurologic Signature to Physical and Social Pain Stimuli in Study 3
Panel A shows the signature response in each condition. The dashed horizontal line shows
the threshold derived from the classification of pain versus warmth in study 1. I bars indicate
standard errors. Panel B shows the receiver-operating-characteristic plots for the forced-
choice test, assessed only from the pattern within a single region of interest. A physical-pain
signature would ideally show high sensitivity and specificity for pain versus warmth (orange
line) and pain versus rejecter (dark blue line) but chance performance for rejecter versus
friend (light blue line). The brain images (insets) show the positive (yellow) and negative
(blue) signature weights in each region of interest, with the magnitude of the weights
represented by the intensity of the color.
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