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Abstract

Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important swine pathogens,
which causes reproductive failure in sows and respiratory disease in piglets. A major hurdle to control PRRSV is the
ineffectiveness of the current vaccines to confer protection against heterologous strains. Since both GP4 and M genes of
PRRSV induce neutralizing antibodies, in this study we molecularly bred PRRSV through DNA shuffling of the GP4 and M
genes, separately, from six genetically different strains of PRRSV in an attempt to identify chimeras with improved
heterologous cross-neutralizing capability. The shuffled GP4 and M genes libraries were each cloned into the backbone of
PRRSV strain VR2385 infectious clone pIR-VR2385-CA. Three GP4-shuffled chimeras and five M-shuffled chimeras, each
representing sequences from all six parental strains, were selected and further characterized in vitro and in pigs. These eight
chimeric viruses showed similar levels of replication with their backbone strain VR2385 both in vitro and in vivo, indicating
that the DNA shuffling of GP4 and M genes did not significantly impair the replication ability of these chimeras. Cross-
neutralization test revealed that the GP4-shuffled chimera GP4TS14 induced significantly higher cross-neutralizing
antibodies against heterologous strains FL-12 and NADC20, and similarly that the M-shuffled chimera MTS57 also induced
significantly higher levels of cross-neutralizing antibodies against heterologous strains MN184B and NADC20, when
compared with their backbone parental strain VR2385 in infected pigs. The results suggest that DNA shuffling of the GP4 or
M genes from different parental viruses can broaden the cross-neutralizing antibody-inducing ability of the chimeric viruses
against heterologous PRRSV strains. The study has important implications for future development of a broadly protective
vaccine against PRRSV.
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Introduction

Porcine reproductive and respiratory syndrome (PRRS), char-

acterized by reproductive failure in sows and respiratory disease in

piglets [1], is arguably the most economically important global

swine disease in the past two decades [2–5]. Since its recognition

in the United States in 1987 [6] and in Europe in 1990 [7], PRRS

has devastated the global pork industry. According to a 2011

study, PRRS is estimated to cost the U.S. pork industry

approximately $664 million per year, which is $104 million higher

than the previous 2005 estimate [2]. In 2006, the emergence of

highly pathogenic PRRS (HP-PRRS) in China and several Asian

countries with 20–100% mortality nearly crippled the world’s

biggest pork industry in China [8–10].

The causative pathogen of PRRS, porcine reproductive and

respiratory syndrome virus (PRRSV), along with equine arteritis

virus, lactate dehydrogenase-elevating virus of mice, and simian

hemorrhagic fever virus [11], are classified in the family Arteriviridae

of the order Nidovirales [11]. Two major genotypes of PRRSV have

been identified: the European type (type 1) and the North

American type (type 2) that share approximately 55–70%

nucleotide sequence identity [7,12–15]. Within the type 1

European PRRSV, there exist at least 3 distinct genetic lineages

[16], and similarly, at least 9 distinct genetic lineages were

identified within the type 2 North American PRRSV [17]. The

extensive antigenic and genetic variations among field strains of

PRRSV are largely responsible for the poor cross-protection of the

current vaccines against heterologous strains [18–20]. The

available modified live-attenuated vaccines (MLVs), which are

all based on single PRRSV strains, can provide effective protection

against homologous or genetically similar strains, but are not
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effective against the heterologous strains [21–23]. A biodegradable

nanoparticle-entrapped vaccine was shown to induce cross-

protective immunity against a heterologous PRRSV strain [24].

As the majority of field strains circulating in swine herds

worldwide are genetically different from the MLVs, it is imperative

to develop a second generation vaccine that can effectively protect

against both homologous and heterologous strains [25–27].

The genome of PRRSV is a single-strand, positive-sense RNA

molecule of approximately 15 kb with a 59 cap and 39 Poly(A) tail

[28–30]. At least 9 open reading frames (ORFs) have been

identified in the PRRSV genome: the ORF1a and ORF1b encode

the replicase polyprotein responsible for viral replication and

transcription, the ORFs2-4 encode virion-associated proteins GP2,

GP2b, GP3, and GP4, respectively [31–33], and the remaining

ORFs5-7 encode the major envelope (GP5), membrane (M), and

nucleocapsid (N) proteins, respectively [34–36]. Also, a small

ORF5a protein associated with PRRSV infection was recently

reported [37,38].

GP4 encoded by ORF4 is a minor structural protein of PRRSV

with 178 amino acids (aa) and a molecular mass of approximately

31 kDa [39]. GP4 interacts with GP2 and GP3 to form a multi-

protein complex important for viral infectivity [40–44]. It has been

demonstrated that the GP4 mediates interglycoprotein interactions

and together with GP2, serves as the viral attachment protein that

binds CD163 during virus entry [45]. It has also been shown that

GP4 is a GPI-anchored protein that co-localizes with the CD163

receptor in the lipid rafts and plays a role in the viral entry [46]. It

is known that neutralizing antibody is directed to GP4 and the

variable region in GP4 of type 1 European PRRSV induces

neutralizing antibody against homologous but not heterologous

virus strains [47–49]. The GP4-specific neutralizing antibody may

drive PRRSV evolution [50].

The M protein encoded by ORF6 is an unglycosylated

membrane protein of 18–19 kDa [28,30,34]. The M protein is

important in virus assembly and budding [51] and is linked to GP5

as heterodimers via a disulfide bond in the N-terminal ectodo-

mains [34,52]. The M protein is a key target for PRRSV

neutralization [53]. Co-expression of GP5 and M protein as

heterodimers significantly improves the potency of PRRSV DNA

vaccination [54]. Anti-M mAbs have been described, but the

neutralizing epitopes in M gene have not yet been identified

[53,55].

DNA shuffling, known as molecular breeding, accelerates

evolution of genes by mimicking the natural recombination

process [56–62]. Compared with natural recombination, DNA

shuffling can rapidly generate recombinants with new phenotypes

in a very short period of time [56]. In the traditional DNA

shuffling, the target gene fragments from selected parents are

digested with DNase I to produce a pool of short DNA fragments,

which are then reassembled by PCR to create a recombinant

library. Desired properties of the shuffled genes such as broadened

cross-neutralizing ability to heterologous virus strains can be

screened and identified [60]. In our previous work, we have

successfully attenuated PRRSV by shuffling its GP5 or GP5-M

together [63]. We also shuffled the GP3 gene and identified a

chimera that induced significantly higher levels of cross-neutral-

izing antibodies in pigs against a heterologous PRRSV strain [64].

Considering the important roles of GP4 and M proteins in

PRRSV immune responses and neutralization, in this present

study we molecularly bred PRRSV by traditional DNA shuffling

of the GP4 or M genes from 6 heterologous PRRSV strains. Three

GP4 gene-shuffled chimeric viruses and five M gene-shuffled

chimeric viruses were selected for further in vitro and in vivo

characterizations. The GP4 gene-shuffled chimera GP4TS14 and

the M gene-shuffled chimera MTS57 were found to acquire

significantly higher ability to elicit cross-neutralizing antibody

against two heterologous strains of PRRSV in pigs.

Materials and Methods

Ethics Statement
The pig experiment in this study was approved by the Virginia

Tech Institutional Animal Care and Use Committee (IACUC

permit no. 10-124-CVM). All experimental procedures and

animal care strictly follow the recommended guidelines by the

American Veterinary Medical Association and the National

Institutes of Health.

Cells, Viruses and Viral Genes
The BHK-21 and MARC-145 cells used for PRRSV rescue and

propagation were cultured in DMEM with 10% FBS [65]. The

type 2 PRRSV was classified into 9 distinct genetic lineages based

on the GP5 gene sequences [66]. Six representative strains each

from a different lineage or sublineage were selected for DNA

shuffling in this study: MN184B (Accession no. DQ176020,

lineage 1), VR2385 (Accession no. JX044140, lineage 5.1),

VR2430 (Accession no. JX050225, lineage 5.2), Chinese highly

pathogenic strain JXA1 (Accession no. EF112445, lineage 8.7),

FL-12 (Accession no. AY545985, lineage 8.9), and NADC20

(Accession no. JX069953, lineage 9) [64]. Phylogenetic analyses

based on the GP4 and M gene sequences of these six strains also

confirmed that the six selected strains for this study are genetically

distinct and separated into different lineages or sublineages

(Fig. 1).
The GP4 and M genes of VR2385 and FL-12 strains were

amplified from the full-length cDNA clones pIR-VR2385-CA [65]

and pFL-12, respectively [67]. The GP4 and M genes of strain

VR2430 were amplified by RT-PCR from the virus stock. The

GP4 and M genes of strains MN184B, NADC20 and JXA1 were

commercially synthesized (Genscript Inc).

DNA Shuffling of the GP4 and M Genes, Respectively,
from Six Genetically Distinct PRRSV Strains
For GP4 DNA shuffling, the DNA fragments of the GP4 genes

from the six parental strains of PRRSV (Fig. 1) were equimolarly

mixed with 1 mg DNA from each virus, and diluted to a 50 ml
reaction in 50 mM Tris?HCl, pH 7.4 and 10 mM MgCl2. The

DNA mixture was digested by 0.15 U of DNase I (Sigma) at 15uC
for 2 min. The reaction was stopped by adding 5 ml of 0.5 M

EDTA followed by 15 min incubation at 85uC for complete

inactivation. DNA fragments with the approximate sizes of 50–

150 bp were purified from 2% agarose gels using Qiaquick gel

extraction kit (Qiagen). To reassemble the GP4 gene, the purified

DNA fragments were subsequently added to the Pfu PCR mixture

consisting of 1X Pfu buffer, 0.4 mM each dNTP, 0.06 U Pfu

polymerase (Stratagene). A PCR program (95uC for 4 min; 35

cycles of 95uC for 30 s, 60uC for 30 s, 57uC for 30 s, 54uC for

30 s, 51uC for 30 s, 48uC for 30 s, 45uC for 30 s, 42uC for 30 s,

72uC for 2 min; and final incubation at 72uC for 7 min) without

primers was performed to reassemble the digested DNA

fragments. A 10 ml of the PCR products was run on an agarose

gel to evaluate the efficiency of the reassembly. PRRSV-specific

primer pair g4fu5F and g4fu3R (Table 1) were subsequently used
to amplify the GP4 genes from the shuffled products. The PCR

mixture contained 5 ml of reassembled products, 0.2 mM of each

primer, 41 ml of PfuUltra II Hotstart PCR Master Mix

(Stratagene). The PCR parameters included 4 min at 95uC; 25
cycles of 30 s at 95uC, 30 s at 55uC, 45 s at 72uC; a final 7 min at
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72uC. After amplification, a single band of the shuffled products

with an expected size of 576 bp was purified from 2% agarose gels.

The process of DNA shuffling of the M gene from 6 different

strains of PRRSV was essentially the same as that of GP4 gene

shuffling described above. The PRRSV-specific primers used for

amplifying the M genes after reassembly were mfu5F and mTS3R

(Table 1). After amplification, a single band of the M gene

shuffled products with an expected size of 492 bp was visualized

and purified from 2% agarose gels.

Construction of Chimeric PRRSV cDNA Clone Libraries
with Shuffled GP4 and M Genes Respectively
The DNA-launched PRRSV infectious clone pIR-VR2385-CA

[65] was used as the backbone to clone the shuffled GP4 gene

fragments and the shuffled M gene fragments, respectively. To

insert the shuffled GP4 gene fragments into the full-length

infectious clone plasmid DNA utilizing the unique restriction sites

Bsr GI and Xbal I, we amplified two flanking fragments

respectively with two pairs of primers (Table 1), EcoRVF+g4fu5R
and g4fu3F+Rluc-7R, using the pIR-VR2385-CA plasmid DNA

as the template. Subsequently, a fusion PCR was used to link the

shuffled GP4 gene fragment with the two flanking fragments. The

fusion product was then cloned into the genomic backbone pIR-

VR2385-CA infectious clone to construct the chimeric PRRSV

libraries. The recombination efficiency of GP4 shuffling was

analyzed by sequencing the GP4 region with primer g3fu3F

(Table 1) from 45 randomly selected clones. The nucleotide

sequences of the shuffled GP4 regions were compared with those

of the six parental strains by clustalW method. The mutated

nucleotide sites different from the parental strains serve as the

markers to delineate regions of crossover. If the sequence is unique

to a particular parental strain between two crossover sites, then

that region between the two crossovers is derived from that

particular parental strain. The clones containing chimeric

sequences representing all six parental strains were identified.

Similarly, for constructing chimeric PRRSV libraries containing

the shuffled M genes, the primers Vg4fu5F+mfu5R and

mTS3F+Rluc-7R were used to amplify the two flanking fragments

of the shuffled M genes regions using the pIR-VR2385-CA

infectious clone plasmid DNA as the template. The two flanking

fragments were then fused to the shuffled M genes by a fusion

PCR. The fusion products containing the shuffled M gene were

subsequently cloned into the genomic backbone of the pIR-

VR2385-CA infectious clone by using restriction enzyme sites Acl

I and Xba I to construct the chimeric PRRSV libraries. A total of

65 clones were randomly selected and sequenced using primers

mseqF and mseqR (Table 1). Sequence analyses identified well-

shuffled clones containing sequences from all six parental strains of

PRRSV.

Chimeric Virus Rescue and Identification
To rescue the shuffled chimeric viruses, eight well-shuffled

chimeric clones (three clones from GP4 gene shuffled library and

five clones from M gene shuffled library) were transfected into the

BHK-21 cells, respectively, as described previously [65]. At 24 h

post-transfection, the supernatant of the transfected cells was

harvested and subsequently passaged onto MARC-145 cells.

Immunofluorescence assay (IFA) was used to identify the rescued

viruses by using anti-PRRSV N monoclonal antibody SDOW17

(Rural Technologies, Inc) [68–70]. The GP4 and M gene regions

from the rescued chimeric viruses were amplified and sequenced

to confirm that the chimeric viruses were successfully rescued.

Figure 1. Two phylogenetic trees based on the sequence of GP4 (Panel A) or M (Panel B) genes of selected type 2 PRRSV strains. The
six parental viruses (VR2385 JX044140, VR2430 JX050225, MN184B DQ176020, FL-12 AY545985, JXA1 EF112445, and NADC20 JX069953) used in the
DNA shuffling are indicated with boldface in the trees. The phylogenetic trees were constructed using the neighbor-joining method with bootstraps
of 100 replicates. The numbers above each branch indicate the bootstrap values (percentage of consensus support in bootstrap).
doi:10.1371/journal.pone.0066645.g001

Table 1. Oligonucleotide primers used in this study.

Primers* Sequence (59-39) Purpose

g4fu5F GGCAATTGGTTTCACCTAGAATGGCTGCGYCCYTTCTT Shuffled region

g4fu3R CCCCAACATACTTAAACATTYAAATKGCCARYANGRATGG Shuffled region

EcoRVF GGAGTTCTTGGTGTCCATTGTTG Flanking fragment

g4fu5R TCTAGGTGAAACCAATTGCC Flanking fragment

g4fu3F GAATGTTTAAGTATGTTGGGG Flanking fragment

Rluc-7R GGACAAACCACAACTAGAATGCAGTG Flanking fragment

g3fu3F GGTCGACGGCGGCAATTGGTTTC GP4 sequencing

Acl I 5R CACATAGCGTCAAGTTGTAAATCA GP4 sequencing

mfu5F CGGAACAATGGGGTCGTCCTTAG Shuffled region

mTS3R ACAGCTTTTCTGCCACCCAACACG Shuffled region

mfu5R CTAAGGACGACCCCATTGTTCCG Flanking fragment

mTS3F GTGTTGGGTGGCAGAAAAGCTGTYAARCAGGGAGTGGTAAACCTYGTYAAATATGCCAAATAA Flanking fragment

mseqF CGTTGGCGGTCGCCTGTCATC M sequencing

mseqR GCCGCTCACTAGGGGTAAAGTG M sequencing

*Primer orientations: F, Forward; R, Reverse.
doi:10.1371/journal.pone.0066645.t001
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In vitro Growth Characterization of the Shuffled Chimeric
Viruses
To analyze if the chimeric viruses with the shuffled GP4 or M

genes alter their growth characteristics in vitro, MARC-145 cells

seeded in 96-well plates as confluent monolayers, were infected

with the parental backbone strain VR2385 and chimeric viruses

containing the shuffled GP4 or M genes at the same multiplicity of

infection (m.o.i.) of 0.1, respectively. The infectious titers of the

viruses harvested at 6, 12, 24, 36, 48, 60, 72 and 84 hours post-

infection (hpi) were determined by IFA in MARC-145 cells and

quantified as 50% tissue culture infective dose per ml (TCID50/

ml). Triple independent repeats were performed in this study.

An Animal Study to Characterize the Chimeric Viruses
in vivo
To further analyze the growth characteristics of these eight

chimeric viruses in vivo and to evaluate their ability to induce

neutralizing and cross-neutralizing antibodies in pigs, a total of 32

specific-pathogen-free (SPF) pigs of 4 weeks of age that were

negative for PRRSV were divided into 8 groups of 3 pigs per

group for each of the 8 chimeric viruses (groups 1–8), and the

remaining 8 pigs were assigned as the positive and negative control

groups with 4 pigs per group. Pigs in groups 1–8 were each

inoculated with 2 ml of each of eight different chimeric viruses

intramuscularly (26105 TCID50/pig). Pigs in the positive control

group were intramuscularly inoculated with 2 ml of the parental

VR2385 virus (26105 TCID50/pig) and the pigs in the negative

control group were mock-infected with 2 ml cell culture media.

Serum samples from each pig were collected prior to inoculation

and weekly thereafter, and all pigs were euthanized at 43 days

post-inoculation (DPI).

Characterization of the Replication Kinetics and Antibody
Responses of Chimeric Viruses in Pigs
The infectious titers of the chimeric viruses in serum samples of

infected pigs were determined by IFA in MARC-145 cells as

previously described [64]. Briefly, serum samples were 10-fold-

serially-diluted (100, 1021 to 1026; 50 ml/well) to inoculate

MARC-145 cells. After incubation for 20 hours at 37uC, the cells

were stained with anti-PRRSV antibody SDOW17 [68–70] and

FITC-conjugated goat anti-mouse IgG (KPL,Inc) to determine the

viral titers. The viral titers in serum samples collected at 7 and 14

DPI were quantified as TCID50/ml.

Additionally, the GP4 or M gene shuffled regions of chimeric

viruses recovered from pigs at 14 DPI were amplified by RT-PCR

using primers g3fu3F+Acl I 5R for GP4 and mseqF+mseqR for M

(Table 1) with the following parameters: 95uC for 4 min; 40

cycles of 95uC for 30 s, 55uC for 60 s, 72uC for 90 s; and a final

incubation at 72uC for 7 min. The PCR products were purified

and sequenced. The IDEXX HerdCheck X3H ELISA for PRRS

was used to detect the anti-PRRSV antibody level in serum

samples (Iowa State University Diagnostic Laboratories, Ames,

Iowa).

Serum Virus Neutralization (SVN) Assay
To detect the neutralizing and cross-neutralizing antibody-

inducing ability of each chimeric virus to the homologous

(VR2385) and heterologous strains of PRRSV (VR2430,

MN184B, FL-12 and NADC20), respectively, the neutralizing

antibody (NA) titers against different virus strains were determined

at 43 DPI. Briefly, serum samples were serially 2-fold diluted in

DMEM media supplemented with 2% FBS. The diluted serum

samples, starting at 1:2 dilutions, were mixed with an equal

volume of the respective virus at a titer of 26103 TCID50/ml and

incubated for 1 h at 37uC. The mixtures were then added to a 96-

well cell culture plate with confluent monolayers of MARC-145

cells and incubated for another 1 h at 37uC. After removing the

inocula and washing the cells twice with PBS, 50 ml of fresh

DMEM media supplemented with 2% FBS was added to each

well. After incubation for 20 h at 37uC, the cells were fixed with

80% acetone (Sigma) and stained with an anti-PRRSV antibody

SDOW17 and FITC-conjugated goat anti-mouse IgG [68–70] by

IFA to detect evidence of virus replication. The neutralizing

antibody titers were expressed as the highest dilution that showed

a 90% or greater reduction in the numbers of fluorescent foci

compared to that of the serum samples from the negative control

group in the same dilution as described previously [33]. Three

independent tests were performed for each serum sample, and the

average neutralizing antibody (NA) titers of each shuffled virus

group (average of three pigs) were calculated and compared with

that of the backbone parental VR2385 group (average of four pigs)

by unpaired t test, with 95% confidence level.

To further assess the kinetics of neutralizing antibodies, the NA

titers in serum samples collected at 28, 35 and 43 DPI from pigs

infected with chimeras GP4TS14 and MTS57 were tested and

compared with that of the backbone parental virus VR2385.

Sequence Alignment of the GP4 and M Gene Regions of
the Chimeric Viruses
To analyze the potential correlation between amino acid

mutation and improved cross-neutralizing ability of the chimeras

in infected pigs, the GP4 and M amino acid sequences of the

chimeric viruses and their six parental viruses were aligned and

analyzed by clustalW method.

Statistical Analyses
The differences between the samples from the chimeric virus

groups and samples from parental strain VR2385 group were

evaluated by unpaired Student’s t test, with 95% confidence level.

Results

Generation of a GP4 Gene-shuffled PRRSV Library
The GP4 gene fragments from each of the six parental PRRSV

strains were digested by DNase I and reassembled by PCR without

primer. A PCR product with the expected size of 576 bp was

amplified with PRRSV-specific primers flanking the shuffled GP4

region using the reassembly products as the template. An

additional round of DNA shuffling process was iterated as

described previously [71,72] by using the shuffled DNA pool as

the parents to produce a well-shuffled library of the GP4 genes.

To insert the shuffled GP4 fragments into the backbone

PRRSV infectious clone pIR-VR2385-CA, two flanking fragments

(1104 bp and 1957 bp, respectively) amplified from the pIR-

VR2385-CA plasmid DNA were linked to the shuffled GP4

fragments by a fusion PCR. The unique restriction enzyme sites

Bsr GI and Xba I present in the flanking fragments were used to

clone the fusion product into the backbone PRRSV infectious

clone plasmid pIR-VR2385-CA to produce the GP4 shuffled

PRRSV infectious cDNA library.

Generation of an M Gene-shuffled PRRSV Library
Similar to the GP4 gene shuffling, the shuffled M gene

fragments were linked with two flanking fragments (950 bp and

896 bp, respectively) by a fusion PCR. The unique restriction

enzyme sites Acl I and Xba I present in the flanking fragments

were used to insert the shuffled M gene fragments into pIR-

Molecular Breeding of the GP4 or M Gene of PRRSV
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VR2385-CA plasmid DNA clone to produce the M gene-shuffled

PRRSV library.

Generation of Infectious Chimeric Viruses Containing
Shuffled GP4 or M Genes from 6 Different PRRSV Strains
by Traditional DNA Shuffling
Randomly selected individual clones including 45 clones from

the GP4-shuffled library and 65 clones from M-shuffled library

were each sequenced for the respective shuffled region. Based on

sequence analyses and comparison with the six parental virus

strains, three chimeric clones from GP4 shuffled library, desig-

nated as GP4TS14, GP4TS19 and GP4TS29, and five chimeric

clones from M shuffled library, designated as MTS1, MTS5,

MTS8, MTS11 and MTS57, were all identified to contain

sequences from all six parental virus strains (Fig. 2). These 8

chimeric viruses were selected for further in vitro and in vivo

characterization. The GP4 and M gene nucleotide sequences of

the chimeric viruses were compared to their six corresponding

parental viruses respectively (Fig. 3 and Fig. 4). The eight

chimeric viruses were successfully rescued from MARC-145 cells

that were infected with the supernatant of BHK-21 cells

transfected with DNA-launched PRRSV infectious clone contain-

ing the shuffled GP4 or M genes (Fig. 5A).

The shuffled chimeric viruses had similar levels of
replication in vitro with the backbone VR2385 virus
To determine if GP4 or M gene shuffling has any effect on the

replication ability of these eight chimeric viruses in vitro, we

determined and compared the growth kinetics of the chimeric

viruses with that of the backbone VR2385 virus in MARC-145

cells. The results indicated the replication levels of GP4-shuffled or

M-shuffled chimeric viruses were not significantly different from

that of the backbone VR2385 virus (Fig. 5B and 5C), suggesting
that the GP4 and M genes shuffling did not significantly impair the

replication ability of these chimeric viruses in MARC-145 cells.

The Shuffled Chimeric Viruses were Similar in General in
their Infection Dynamics to the Backbone VR2385 Virus in
Experimentally-infected Pigs
Pigs in the eight test groups 1–8 (3 pigs/group) were inoculated

with each of the 8 shuffled chimeric viruses, whereas the positive

and negative controls groups (4 pigs/group) were inoculated with

the backbone VR2385 virus and DMEM media, respectively. The

infectious titer of viruses in serum samples were determined by

IFA in MARC-145 cells at 7 and 14 DPI. There was no significant

difference between the titers of GP4-shuffled chimeric viruses and

that of VR2385 in serum samples collected at both 7 and 14 DPI.

The infectious virus titers of the M-shuffled chimeric viruses

(MTS1, MTS5, MTS8 and MTS57) were significantly lower than

that of backbone VR2385 virus at 7 DPI (p=0.0064, p=0.0015,

p=0.0130 and p=0.0014, respectively) (Fig. 6A). However, there

was no significant difference among the groups at 14 DPI

(Fig. 6B). The viremia was cleared at 21 DPI for the GP4TS14

and GP4TS29 groups, and at 28 DPI for the other groups. The

results of the infection dynamics and kinetics suggested the DNA

shuffling of GP4 or M gene did not significantly impair the viral

replication in vivo, even though the infectious titers of the M gene-

shuffled chimeric viruses were temporarily lower than that of the

backbone VR2385 virus at 7 DPI.

The Chimeric Viruses Elicited Similar Levels of Anti-PRRSV
Antibody Responses Compared to the Backbone VR2385
Virus in Pigs
The anti-PRRSV antibody responses in weekly serum samples

were tested by the IDEXX HerdCheck X3H ELISA kit and

displayed as sample-to-positive (S/P) ratio. Samples were consid-

ered positive if the calculated S/P ratio was equal to 0.4 or greater.

The results showed that pigs in all inoculated groups seroconvert-

ed at 14 DPI, and remained seropositive for the duration of the

study. The eight chimeric viruses induced similar levels of anti-

PRRSV antibody responses in pigs (data not shown). When

compared to the antibody titer (S/P ratio) of the backbone strain

VR2385-inoculated pigs, there was no significant difference

between shuffled chimeric virus groups and the VR2385 group

at any time point. The four pigs in the negative control group were

seronegative for anti-PRRSV throughout the study.

DNA Shuffling of GP4 or M Gene Broadens the Cross-
neutralizing Antibody-inducing Capability of Respective
Chimeric Viruses Against Heterologous Strains of PRRSV
To investigate if the DNA shuffling of GP4 or M gene from

different strains can produce chimeric viruses with an broadened

cross-neutralizing antibody-inducing ability against heterologous

strains, we determined and compared the anti-PRRSV specific

neutralizing antibody titers in sera collected at 43 DPI by a cross-

neutralization serum SVN assay with each of the five available

parental virus strains (VR2385, VR2430, MN184B, FL-12 and

NADC20), respectively. The NA titers were expressed as highest

times (‘‘n’’) of 2-fold serial dilution (2n or the power of 2) of the

serum sample that showed a 90% or greater reduction in the

number of positive fluorescent foci. In the SVN assay against the

backbone VR2385 virus, the average NA titer of serum samples

from positive control group was 4.33 (1:20), and the NA titer for

the chimeric virus groups were between 3 (1:8) to 4.22 (1:19)

(Fig. 7A), which were not significantly different from that of the

backbone VR2385 virus, suggesting that the GP4 or M gene

shuffling did not impair the neutralizing antibody-inducing ability

of the chimeric viruses against their respective backbone parental

strain.

In the SVN test against strain VR2430, which belongs to the

same lineage but a different sublineage with the backbone virus

VR2385 in the phylogenetic tree [66], the NA titers of chimeric

viruses GP4TS14 (4.89, 1:30), MTS1 (4.56, 1:24), MTS11 (4.67,

1:25) and MTS57 (4.83, 1:28) were higher than that of the

VR2385 group (4.42, 1:21), although the difference between

chimeric viruses and backbone VR2385 virus is not statistically

significant. However, the NA titers of chimeras MTS5 (3.56, 1:12)

and MTS8 (3.56, 1:12) groups were lower than that of VR2385,

and there was a significant difference between the chimera MTS8

group and VR2385 group (p=0.0114). The NA titers of the

remaining GP4TS19 and GP4TS29 groups were similar with that

of VR2385 group (Fig. 7B).

In the SVN test against the heterologous strain MN184B, the

NA titers of all inoculated groups, which were between 0.44 (1:1)

and 3.83 (1:14), were lower than that against homologous

backbone strain VR2385. With the exception of chimeras

MTS5 and MTS8, the NA titers of the chimeric viruses groups

were equal or higher than that of backbone virus VR2385 group

(1.17, 1:2) with the NA titer of the chimera MTS57 group (3.83,

1:14) nearly 7 times higher than that of the VR2385 group

(p=0.0014) (Fig. 7C). The results of SVN test against the strain

FL-12 showed that the NA titer of chimera GP4TS14 group (2.89,

1:7) was significantly higher (p=0.0055) than that of the backbone

Molecular Breeding of the GP4 or M Gene of PRRSV
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strain VR2385 group (0.91, 1:2). Similarly, the NA titer of the

chimera MTS11 group was higher than that of VR2385, although

the difference was not significant (Fig. 7D). Importantly, the

results of SVN test against NADC20 virus revealed that the

chimeric viruses GP4TS14 and MTS57, which induced higher

cross-neutralizing antibody titers against MN184B and FL-12, also

induce significantly higher NA titers against NADC20 (p=0.0382

and p=0.046 respectively) (Fig. 7E), further indicating that the

DNA shuffling of GP4 or M gene produced chimeric viruses with a

broader cross-neutralizing antibody-inducing activity against

multiple heterologous PRRSV strains.

To further analyze the overall cross-neutralizing antibody-

inducing ability of the chimeric viruses, the average NA titers

against four heterologous strains (VR2430, MN184B, FL-12 and

NADC20) were composited and compared with that of the

backbone VR2385 virus group (Fig. 7F). The average NA titers of

the chimeras GP4TS14 and MTS57 groups were significantly

higher than that of the VR2385 group (p=0.0021 and p=0.0026,

respectively), and similarly, the average NA titer of the chimera

MTS11 group was also higher than that of VR2385 group, but the

difference between these two was not statistically significant. The

average NA titers of MTS5 and MTS8 groups against heterolo-

gous strains were significantly lower than that of VR2385

(p=0.0454 and p=0.0372 respectively). The other chimeric

strains elicited a similar level of cross-neutralizing antibodies, as

did VR2385. The neutralizing antibodies in the serum samples of

negative control group against each parental virus strain were

undetectable. The composite results of cross-neutralizing SVN test

further indicated that DNA shuffling of GP4 or M gene from

different strains contributed to a broadened cross-neutralizing

antibody-inducing ability of chimeric viruses GP4TS14 and

MTS57.

Figure 2. Schematic diagrams of the GP4 (Panel A) or M (Panel B) genes sequences in eight infectious chimeras (GP4TS14,
GP4TS19, GP4TS29, MTS1, MTS5, MTS8, MTS11 and MTS57) generated by DNA shuffling. Each pattern in the shuffled genes represents
one of the six different individual parental virus strains, which are shown at the bottom. The crossovers are delineated by the diversity of nucleotides
because of the incorporation of the sequences from different parental virus strains. Multiple patterns that are displayed at the same region of the
shuffled genes indicate that the sequence in this particular region was conserved at the corresponding parental virus strains. The numbers under the
arrows indicate the nucleotide position.
doi:10.1371/journal.pone.0066645.g002
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Figure 3. Nucleotide sequence alignment of the three GP4-shuffled chimeric viruses and their parents by clustalW method. The
sequence of the backbone virus VR2385 was shown on top, and only differences were indicated for other viruses.
doi:10.1371/journal.pone.0066645.g003
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Kinetics of the Appearance of Neutralizing and Cross-
neutralizing Antibodies in Experimentally Infected Pigs
To further evaluate the dynamics of neutralizing antibodies at

different time points post-inoculation, the NA titers against the

backbone homologous (VR2385) and three heterologous parental

strains (MN184B, FL-12, and NADC20) of the chimeras

GP4TS14 and MTS57 groups, which both acquired an improved

cross-neutralizing antibody inducing ability by DNA shuffling,

were compared with the NA titers of the backbone virus VR2385

at 28, 35 and 43 DPI. In the SVN test against VR2385, the NA

titers of the two chimeric groups and VR2385 group were similar

at all 3 time points, ranging from 1.92 (1:4) at 28 DPI to 4.33 (1:20)

at 43 DPI (Fig. 8A). In the SVN test against heterologous

MN184B, the NA titers of the three groups were all less than 1(1:2)

at 28 DPI. At 35 DPI, the NA titers of the two chimeric groups

were higher than that of the VR2385 group with a significant

difference between MTS57 and VR2385 groups (p=0.0026). At

43 DPI, only the NA titer of chimera MTS57 group was

significantly higher than that of the VR2385 (p=0.0014) (Fig. 8B).
The NA titers against FL-12 were undetectable until 35 DPI in

groups MTS57 and VR2385. The NA titers of GP4TS14 group

were significantly higher than that of VR2385 both at 35 and 43

DPI (p=0.0094 and p=0.0055, respectively) (Fig. 8C). When the

NA titers against NADC20 were compared among these three

groups, the results showed that the NA titers of chimeras

GP4TS14 and MTS57 groups were higher than that of VR2385

group at all three time points with a significant difference between

MTS57 and VR2385 groups at 35 DPI (p=0.0136). At 43 DPI,

the NA titers of the chimeric virus groups were significantly higher

than that of VR2385 group (p=0.0382 and p=0.046, respectively)

(Fig. 8D).

The GP4 or M Gene Shuffled Chimeric Viruses were
Genetically Stable in Pigs
The GP4 or M chimeric viruses recovered from infected pigs at

14 DPI were sequenced for the respective shuffled gene regions.

Sequence analyses showed that, with the exception of chimera

MTS5, the shuffled target gene sequences of the seven other

chimeric viruses recovered from infected pigs were identical to that

of the original virus inocula. For the chimera MTS5, there was a

‘‘C’’ to ‘‘T’’ silent mutation at nt position 243 of the M gene. The

results suggested that the chimeric viruses were genetically stable

in pigs during acute infection.

Figure 4. Nucleotide sequence alignment of the five M-shuffled chimeric viruses and their parents by clustalW method. The
sequence of the backbone virus VR2385 was shown on top, and only differences were indicated for other viruses.
doi:10.1371/journal.pone.0066645.g004

Figure 5. Rescue of infectious chimeric viruses from shuffled infectious clones and in vitro growth kinetics of the shuffled chimeric
viruses. Immunofluorescence assay (IFA) (Panel A) was performed with anti-PRRSV N protein monoclonal antibody (SDOW17) to confirm that the
chimeric viruses were successfully rescued in MARC-145 cells infected with the supernatant of BHK-21 cells transfected with eight individual clones
generated by DNA shuffling (GP4TS14, GP4TS19, GP4TS29, MTS1, MTS5, MTS8, MTS11 and MTS57). Parental backbone strain VR2385 and mock
infection were included as positive and negative controls, respectively. The growth kinetics of GP4-shuffled chimeric viruses (Panel B) and M-shuffled
chimeric viruses (Panel C) in MARC-145 cells were determined by measuring the infectious viral titers (TCID50/ml) at indicated time points post-
infection using the microtitration infectivity assay. The experiments were done in triplicate, and the bars indicated standard errors.
doi:10.1371/journal.pone.0066645.g005
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Amino Acid Mutations Introduced by DNA Shuffling in
Chimeric Viruses may Contribute to the Altered Cross-
neutralizing Capability of the Chimeras
To explore the potential correlation between amino acid

mutation and altered cross-neutralizing activities, the amino acid

sequences of the GP4 or M of the 8 chimeric viruses and six

parental viruses were compared and analyzed (Fig. 9). The results
showed that DNA shuffling introduced amino acid changes in all

eight chimeric viruses, and all of the mutated amino acid residues

were derived from parental strains, meaning that there was no new

amino acid residue created by recombination. Most of the

nucleotide changes are silent mutations with no change in amino

acid sequence, particularly in shuffled M gene chimeras. The

potential N-linked glycosylation sites of amino acid residues 37, 84,

120 and 130 in GP4 were conserved in all the parental and

chimeric viruses. The limited knowledge on the neutralizing

epitopes in GP4 and M genes of the type 2 PRRSV prevented

from further investigation on the potential relationship between

the epitope changes and cross-neutralizing activities. However,

sequence analyses showed that the serine residue at position 66 in

GP4 of chimera GP4TS14 was the only mutation that matched

both FL-12 and NADC20, when it was compared to the backbone

virus VR2385. Therefore, it is possible that the serine at position

66 in GP4 may contribute to the enhanced cross-neutralizing

antibody-inducing capability of chimera GP4TS14 against both

FL-12 and NADC20.

In the M gene, the amino acid region 151–174 which was

reportedly immunoreactive, was also conserved in parental and

chimeric virus strains, with the exception of MN184B. The region

flanking the arginine residue at position 70 of the chimera MTS57

is same as that of the MN184B and NADC20, which might

contribute to the altered cross-neutralizing antibody-inducing

ability of the chimera MTS57. It remains to be further determined

if these particular mutations in GP4 and M genes correlated with

any neutralizing epitope that contributed to the improved cross-

neutralizing antibody-inducing ability of the chimeric viruses

GP4TS14 and MTS57 against the heterologous PRRSV strains.

Discussion

PRRS is one of the most economically important global swine

diseases [2–4], and PRRSV shows extensive genetic and antigenic

diversity [21,22]. The antigenic variation mitigates the effective-

ness of virus recognition and subsequent immune responses.

Although the utilization of PRRSV MLV is an effective method to

provide immunological protection against homologous or genet-

ically similar strains, the protection by the MLVs against the

heterologous strains of PRRSV is limited [21,22,73]. Therefore,

enhancing the heterologous protection is a key for the develop-

ment of the next generation of vaccines against PRRSV [21,74].

DNA shuffling is a powerful tool to increase the viral evolutional

rate through random recombination and generate useful chimeras

with desired properties such as improved cross-neutralizing

antibody-inducing capability. This technology is especially useful

when the viral determinants of protective immunity and the

mechanism of protection are not fully understood, which would

prevent from designing novel vaccines by directly transplantation

of the desired epitope and immunogenic regions.

Our previous studies demonstrated that the DNA shuffling of

GP5 or GP5-M genes could lead to attenuation of PRRSV [63].

The chimeric viruses with shuffled GP5 or GP5-M replicated at

lower levels and formed smaller plaques in vitro, and showed

significant reductions in viral RNA loads in sera and lungs, and

decrease in gross and microscopic lung lesions in pigs. We also

showed that DNA shuffling of GP3 gene produced a chimera

GP3TS22 with a significantly higher level of cross-neutralizing

antibodies in pigs against a heterologous strain PRRSV FL-12

[64]. Since other structural proteins of PRRSV such as GP4 and

M have also been shown to induce neutralizing antibodies

[43,54,75], and since the GP4 is known to interact with PRRSV

receptor CD163 [45,46], it is important to investigate whether

DNA shuffling of GP4 and M gene can enhance the cross-

neutralizing antibody-inducing capability of chimeric viruses.

In this present study, the GP4 or M gene of six different strains

of PRRSV from different lineages or sublineages were shuffled by

DNA shuffling. Eight well-shuffled chimeric viruses including

three GP4-shuffled chimeras and five M-shuffled chimera were

successfully rescued. We further demonstrated that, in MARC-145

cells, the replication levels of these eight chimeric viruses were

similar to that of their backbone strain VR2385 virus, suggesting

that the DNA shuffling of GP4 or M did not significantly impair

the replication ability of these eight chimeric viruses in vitro.

Similarly, in experimentally-infected pigs, the infection dynamics

and replication levels of GP4 shuffled viruses were similar with that

of backbone virus VR2385, although the serum viral titers of M

gene-shuffled viruses MTS1, MTS5, MTS8 and MTS57 were

Figure 6. Infectious virus titers in sera of pigs experimentally-
infected with eight chimeric viruses, with the backbone virus
VR2385 or with cell culture media at 7 (Panel A) and 14 (Panel
B) days post-inoculation (DPI). The asterisk (*) sign indicated a
significant difference between the chimeric virus and backbone strain
VR2385.
doi:10.1371/journal.pone.0066645.g006
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Figure 7. Neutralizing antibody titers against homologous and heterologous strains of PRRSV in serum samples of pigs
experimentally infected with eight chimeric viruses or with the backbone virus VR2385, respectively: (A-E): Neutralizing antibody
(NA) titers in serum samples collected at 43 DPI from pigs infected with indicated chimeric viruses or VR2385. In vitro cross-
neutralization SVN test of respective serum samples was performed against the five available parental virus strains used in the DNA shuffling
including VR2385, VR2430, MN184B, FL-12 and NADC20, respectively. F: The average NA titers against all four heterologous strains (VR2430, MN184,
FL-12 and NADC20). The NA titers against the heterologous strains in pigs infected with chimeric viruses were averaged and summarized individually,
and compared with that in pigs infected with VR2385. The NA titers were calculated as the highest 2-fold dilution (2n) of the serum sample that
showed a 90% or greater reduction in the number of positive fluorescent foci, compared to that of the serum samples from the negative control
group in the same dilution. Three independent experiments were performed for each test, and the average NA titer for each group of pigs (3 pigs in
test groups and 4 pigs in control groups) was shown in the figure. The error bars indicate standard errors. The asterisk (*) signs indicate a significant
difference between the group of chimera pigs and the backbone parental strain VR2385. One asterisk (*) signs indicate p,0.05 and two asterisk (**)
signs indicate p,0.01. The p values are shown above the asterisk signs.
doi:10.1371/journal.pone.0066645.g007
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significantly lower than that of backbone virus VR2385 at 7 DPI,

but there was no difference observed at 14 DPI. The chimeric

viruses elicited similar levels of anti-PRRSV antibody responses

compared to the backbone VR2385 virus in pigs.

Most chimeric viruses still induce similar levels of neutralizing

antibodies against the backbone virus VR2385, which is expected

and consistent with our previous results from the shuffling of the

GP3 genes [64]. Although the majority of the GP4 or M gene

sequences in the chimeras are from other PRRSV strains, the

sequences of the unshuffled regions in the chimeras are the same as

that of the backbone strain VR2385, which also contain

neutralizing epitopes, thus contributing to the induction of

neutralizing antibodies against the backbone strain VR2385 or

the genetically-similar strain VR2430.

Importantly, in this study we identified a chimera GP4TS14

with the shuffled GP4 gene that showed a significantly increased

cross-neutralizing antibody-inducing capability against heterolo-

gous strains FL-12 and NADC20. Furthermore, the average

neutralizing antibody titer in pigs infected by the chimera

GP4TS14 against heterologous strains were also significantly

higher than that induced by the backbone strain VR2385.

Similarly, an M gene-shuffled chimera MTS57 was also found

to induce a significantly higher level of cross-neutralizing antibody

against heterologous strains MN184B and NADC20. Sequence

analyses of the shuffled viruses revealed that the serine mutation at

position 66 of GP4 and the arginine mutation at position 70 in M,

both located at the ectodomains of GP4 and M [76], could

potentially be related to the enhanced cross-neutralizing antibody-

inducing capability of the chimeras against heterologous strains.

However, a recent report argued that the major envelope protein

surface epitopes were disassociated with the virus neutralization

[77]. So it remains to be determined if these positions are located

within or near the neutralizing epitopes, directly or indirectly

influence the neutralizing antibody induction of chimeras.

The results of this study further demonstrate that the DNA

shuffling of PRRSV structural proteins can be used to enhance the

capability of chimeric viruses to induce broad cross-neutralizing

antibody against heterologous strains. It is well known that the

neutralizing antibodies play a critical role in the immunological

control of many viral infections, and thus are crucial for anti-

PRRS immunity [78]. Passive transfer of anti-PRRSV neutralizing

antibodies was shown to confer sterilizing immunity against

PRRSV viremia [79]. Therefore, rationale design of chimeric

viruses with enhanced cross-neutralizing antibody-inducing capa-

bility may lead to the eventual development of a broadly protective

vaccine against PRRSV.

Figure 8. Kinetics of neutralizing antibodies in serum samples collected at 28, 35 and 43 days post-inoculation (DPI) from pigs
experimentally infected with chimeric viruses GP4TS14 and MTS57 or with the backbone virus VR2385, respectively. The NA titers in
serum samples at 28, 35 and 43 DPI from pigs experimentally infected with chimeras GP4TS14 and MTS57 or with VR2385 were examined by an
in vitro serum virus neutralization test against four parental virus strains VR2385, MN184B, FL-12 and NADC20, respectively (A–E). Each test was
performed in triplicate, the average NA titers of 3 or 4 pigs in each group are shown in the figure and the bars indicate standard errors. The asterisk (*)
signs indicate a significant difference between the chimeric virus and the parental strain VR2385. One asterisk (*) signs indicate p,0.05 and two
asterisk (**) signs indicate p,0.01. The p values are shown above the asterisk signs.
doi:10.1371/journal.pone.0066645.g008
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