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Abstract
Regulated actin dynamics play a central role in modulating signaling events at the immunological
synapse (IS). Polymerization of actin filaments at the periphery of the IS, coupled to
depolymerization near the center, generates a centripetal flow of the actin network and associated
movement of signaling molecules. A recent flurry of papers addresses the role of myosin II in
facilitating these events. Investigators agree that myosin II is present at the IS, where it forms
actomyosin arcs within the peripheral supramolecular activation cluster, a region corresponding to
the lamellum of migrating cells. However, there is substantial disagreement about the extent to
which myosin II drives IS formation and signaling events leading to T cell activation.

Introduction
Upon contact with an antigen presenting cell (APC), a T cell undergoes a series of rapid
cytoskeletal rearrangements that culminate in formation of an immunological synapse (IS)
[1,2]. The most notable of these is the initiation of robust actin polymerization at the
outermost edges of the contact [3,4]. Given the radial symmetry of the contact, this
polymerization, coupled with depolymerization near the center of the interface, creates a
dramatic centripetal flow of actin just under the T cell’s plasma membrane in the plane of
the IS. Actin flow is widely thought to provide much of the motive force for the centripetal
movement of signaling microclusters (MCs) [5–7]. This leads, over a period of several
minutes, to the formation of a mature IS containing an outer ring rich in integrins (termed
the peripheral supramolecular activation cluster or pSMAC [8]) and an inner region rich in
TCRs and associated signaling molecules (the central supramolecular activation cluster or
cSMAC [9]).
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At the leading edge of other cell types, the pushing force of actin polymerization-driven
retrograde flow is coupled with a pulling force generated by myosin II-dependent actin arc
contraction [10–13]. These two forces reside in structurally distinct zones, with actin
polymerization in the outer lamellipodium (LP) and actomyosin II arc contraction behind the
LP, in the lamellum (LM). The LP is composed largely of a branched actin network created
by Arp2/3-dependent nucleation at the plasma membrane:cytoplasm interface [14,15]. The
LM, on the other hand, is composed of linear actin arcs or fibers aligned roughly parallel to
the leading edge. These are probably created by formin-dependent nucleation and the
rearrangement of LP actin [11,16–18]. Dynamic imaging of GFP-actin in Jurkat T cells
engaged on planar stimulatory surfaces reveals robust Arp2/3-dependent actin retrograde
flow principally in a ring surrounding the pSMAC, termed the distal SMAC (dSMAC)
[3,19–22]. Based in part on these observations, Dustin hypothesized that the IS might
represent a radially symmetric version of the leading edge of a fibroblast, with the dSMAC
corresponding to the LP and the pSMAC corresponding to the LM [23,24] (Figure 1). In
comparison with these outer regions of the IS, the cSMAC is F-actin-poor, albeit not devoid
of F-actin [25,26]. Importantly, the LM is a zone of actomyosin II arc contraction, raising
the possibility that the centripetal transport of TCR and other signaling MCs is driven not
only by the pushing force of actin retrograde flow, but also by the pulling force of myosin
II-dependent contraction. Here, we briefly review a series of recent studies that provide
evidence for and against the existence of this latter mechanism and its contribution to MC
transport, IS formation and T cell signaling.

Organization of the actomyosin II network
Several labs have reported strong staining for endogenous myosin II1 at the IS usually
concentrated along with LM markers like tropomyosin in the pSMAC [27–31]. Moreover,
time lapse images of Jurkat T cells expressing fluorescently-tagged myosin II reveal
concentric, myosin II-rich “arcs” that first become prominent at the dSMAC/pSMAC
boundary and then move inward, eventually dissipating at the pSMAC/cSMAC boundary
[27,28]. While previous studies employing GFP-actin did not report corresponding actin arcs
in the pSMAC [3,20–22,32,33], these structures are seen in phalloidin-stained Jurkat T cells
without myosin II overexpression [27]. Moreover, they become much more obvious in live
cells using an indirect reporter for F-actin like F-Tractin [27,28]. Importantly, these actin
arcs exactly overlap the GFP-myosin II arcs in the pSMAC [25,26]. Together, these results
support the existence of actomyosin II arcs in the pSMAC region of the maturing IS. The
presence of these structures within the integrin-rich pSMAC is consistent with the fact that
the pSMAC’s counterpart in fibroblasts, the actomyosin II-rich LM, is the site of
pronounced, integrin-dependent attachment to the substrate [34–36].

In many mesenchymal cell types, the speed of centripetal actin flow is faster in the LP than
in the LM [10,11,37]. Consistent with this, in two studies of Jurkat T cells where flow speed
was measured under conditions where cytoskeletal organization in the pSMAC was clear
[27,28], the speed of actin retrograde flow in the LP/dSMAC was several fold faster than the
speed of inward actomyosin II arc movement in the LM/pSMAC (although the transition in
speed was reported to be rather abrupt in one study, and more gradual in the other). Yi et al.
simultaneously measured the speeds of TCR MC movements and actin flow in T cells
responding to activating planar lipid bilayers and found that the two rates were statistically
indistinguishable [27]. In other words, centripetal TCR MC transport was fast in the LP/

1Mice and humans possess three type II myosin heavy chains, myosin IIA (MyH9), myosin IIB (MyH10) and myosin IIC (MyH14).
Murine primary T cells express only myosin IIA [31], while human Jurkat T cells express both myosin IIA and myosin IIB [28]. Both
molecules are inhibited by treatment with blebbistatin [52]. siRNA experiments performed to date target only myosin IIA; myosin IIB
function has not be explicitly tested. For simplicity, we will use the general term “myosin II” throughout this review.
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dSMAC and slow in the LM/pSMAC, and there appeared to be little if any uncoupling of
MC movement from actin flow. This observation is at odds with the report of Kaizuka et al.
[20] that TCR MCs move inward at ~half the speed of actin, a result that has been cited
widely in support of the frictional coupling model of TCR MC/actin cytoskeletal interaction
[38–40]. While studies employing physical barriers to TCR MC movement have provided
strong support for this frictional coupling model, it may be that under unrestricted conditions
the coupling between actin flow and TCR MC movement is fairly tight. Finally, it’s worth
noting that not all signaling MCs are coupled to actin flow; MCs containing the adapter
protein SLP-76 actually move faster than actin flow in the pSMAC/LM region [28], pointing
to the existence of another transport mechanism for some molecules [28,41].

Myosin II function in MC transport and IS formation
While there is consensus that myosin II is enriched in the pSMAC region of the IS, efforts to
define its functional significance for MC transport and IS formation have yielded widely
disparate results (Table 1). On one end of the spectrum is a study by Ilani et al. [42], who
reached the conclusion that myosin II is essential for formation of a mature IS. These
authors used blebbistatin (BB) to inhibit myosin II motor activity, as well as inhibitors of
myosin regulatory light chain phosphorylation and siRNA-mediated myosin II knockdown
to probe myosin II function in bilayer-engaged Jurkat and human primary CD4+ T cells.
They presented evidence that myosin II plays major roles in the growth and centripetal
transport of TCR MCs, cSMAC formation and maintenance of sustained T cell-APC
contacts. Myosin II was also found to be required for key TCR signaling events, including
intracellular Ca++ elevation and tyrosine phosphorylation downstream of Lck.

On the other end of the spectrum are two papers from the Krummel lab, both of which argue
that myosin II plays no measurable role in MC transport or IS formation. Using the D10
murine T cell clone and murine primary T cell blasts, Jacobelli et al. [31] reported that while
inhibition of myosin II with BB inhibited cell polarity and motility prior to APC contact (see
also [43]), it had no effect on conjugate formation with antigen-specific APCs, or on
segregation of TCR and LFA-1 into prototypical cSMAC and pSMAC structures. On the
basis of these findings, the authors argued that myosin II activity is dispensable for
formation of the mature IS. While this first study addressed IS formation using only end-
point assays, Beemiller et al. [44] subsequently reported that the speed, degree of
centralization, and directional persistence of TCR MC transport were all normal in bilayer-
engaged mouse T cells pretreated with BB and in mouse T cells in which the myosin IIA
heavy chain gene was genetically deleted ex vivo (of note, these latter T cells contain ~20–
30% of the normal amount of myosin IIA). Based on experiments using low dose
Jasplakinolide to inhibit F-actin depolymerization, the authors argued that actin retrograde
flow, driven by polymerization at the IS periphery and depolymerization near the center, is
what drives inward TCR MC transport and cSMAC formation. Interestingly, this study
showed that while the central actin-poor zone created by actin depolymerization directly
overlaps the cSMAC in stationary T cells, in migrating T cells the cSMAC trails slightly
behind the actin-poor zone, and TCR MCs move toward the actin-poor zone rather than the
cSMAC.

Finally, bracketed by these studies are four reports that can be loosely grouped as arguing
for a significant albeit non-essential role for myosin II in MC transport and IS formation.
We say loosely because the magnitude of myosin II’s contribution, as well as the specific
function attributed to it, varies widely within this group of papers. On the “high” end of the
spectrum is work by Yi et al. [27]. In addition to showing the existence of actomyosin II arcs
within the pSMAC, these authors showed using BB that myosin II contributes significantly
to the centripetal flow of actin and TCR MCs in bilayer-engaged Jurkat T cells. Moreover,
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simultaneous inhibition of both myosin II and actin assembly resulted in a complete
cessation of actin flow and centripetal MC transport. Based on these and other observations,
Yi and colleagues concluded that the relatively fast pushing force of polymerization-driven
actin retrograde flow in the dSMAC and the slower pulling force of actomyosin II arc
contraction in the pSMAC cooperate in an interdependent fashion to drive centripetal TCR
MC transport at the IS at two distinct rates. While this work indicates that myosin II is not
absolutely required for TCR MC transport (MCs still move inward in the presence of BB,
albeit slowly and haphazardly due to the disorganization of actin arcs in the pSMAC), it
argues that the myosin II contributes significantly to the kinetics of MC transport and
SMAC coalescence.

On the “low” end of the spectrum is work by Babich et al. [28]. Like Yi et al., this group
found clear evidence for the existence of actomyosin II arcs in the pSMAC and quantitated
actin flow rates across the IS. However, using coverslip-engaged Jurkat and human primary
T cells, Babich and colleagues concluded that actin polymerization is the primary driver of
actin retrograde flow, since flow rate was not affected by various myosin II inhibitors or by
suppression of myosin II. While the authors did not measure TCR MC mobility, they
showed that inhibition of myosin II contraction using a Rho kinase inhibitor had no effect on
the centripetal transport of SLP-76 MCs (although further addition of Jasplakinolide led to a
complete cessation of both actin flow and SLP-76 MC transport). This raises the important
point that individual MC components may utilize distinct mechanisms for centripetal
movement. Although this study points to a minimal role for myosin II function, these
authors did present evidence that myosin II contributes to the maintenance of radial
symmetry at the IS.

In the third paper in this middle group, Kumari et al. [45] showed that suppressing myosin
IIA in bilayer-engaged primary mouse CD4+ T cells had a profound inhibitory effect on the
formation of the typical bull’s eye-patterned IS. Somewhat surprisingly, however, this effect
was not due to a defect in centripetal TCR MC transport, which slowed only slightly, but
rather to enhanced cell spreading (resulting in larger distances to traverse) and reduced
directionality of movement (formation of an organized pSMAC was also inhibited, albeit to
a lesser extent). Finally, Yu et al. [29] showed that inhibition of myosin II in bilayer-
engaged mouse primary T cells completely suppressed a transient (0–2 min) acceleration of
in inward actin flow and TCR MC movement that occurred immediately after contact with
the activating bilayer. After this early phase, however, myosin II played no obvious role in
retrograde actin flow or centripetal TCR MC movement. While myosin II inhibition caused
a slight delay in coalescence of the cSMAC, the authors concluded that polymerization-
driven actin retrograde flow acting across the entire IS provides the long-lasting driving
force for the centripetal transport of TCR MCs to the cSMAC.

We (and we assume the reader as well!) are struck by the wide variation in results regarding
the functional significance of myosin II in TCR MC transport and IS formation (Table 1).
Some of the discrepancies could be due to significant differences in experimental
parameters, which include differences in cell type (Jurkat versus primary mouse T cells),
method of engagement (glass, bilayer, conjugate, anti-CD3 versus antigen-specific
stimulation), methods of analysis (end-stage assays versus dynamic data), type and degree of
myosin II inhibition (small amounts of myosin II in knockdown and knockout cells may be
functionally sufficient), off-target effects of chemical inhibitors, and differences in
visualization probes (GFP-actin versus F-Tractin).

Fortunately, there are several important points of consensus. First, it is now clear that the
dSMAC and pSMAC regions of the IS are analogous to LP and LM regions of other cells, a
useful insight since knowledge about other cell types can be brought to bear on T cell
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biology. Second, researchers agree that myosin II is recruited to the IS, and that it is
organized into arcs within the LM/pSMAC region. Finally, there is wide agreement that
actin polymerization in the LP region is a major driver of MC assembly and centripetal
movement. The debate is really over the degree to which myosin II contractility augments
this process, and the role that myosin II plays in TCR signaling (discussed below). The
preponderance of evidence indicates that while myosin II is not essential for IS formation, it
plays a supporting role. Most studies show that perturbation of myosin II leads to slowed
mobility and increased meandering of TCR MCs, and to delayed or defective formation of
compact cSMAC and/or pSMAC regions within the IS. The one notable exception to this is
the study by Beemiller et al., which showed no effects of BB treatment or partial myosin IIA
depletion on TCR MC speed, track length or straightness. Interestingly, this is the only study
to use CD8+ T cells, raising the interesting possibility that differences in actomyosin II
regulatory mechanisms contribute to the known differences in CD4+ and CD8+ T cell
triggering.

Myosin II function in T cell signaling
Importantly, four of the seven papers reviewed in detail above addressed not only the role of
myosin II in the dynamic architecture of the IS, but also its role in promoting TCR signaling.
Here again, results are divergent. Ilani et al. showed that treatment with BB led to an
immediate drop in intracellular Ca++ and reduced tyrosine phosphorylation of LAT and
Zap70 downstream of Lck. Yu et al. showed similar effects using ML-7 to inhibit MLCK
activity. Using myosin IIA siRNA, Kumari et al. showed inhibition of Src kinase
phosphorylation, but reported only blunting of Ca++ mobilization. Finally, Babich et al.
showed no effect of a Rho-kinase inhibitor on either Ca++ mobilization or tyrosine
phosphorylation, although addition of both Rho kinase inhibitor and Jasplakinolide, which
immobilizes the actin cytoskeleton, inhibited Ca++ signaling at the level of PLCγ1
phosphorylation.

What sense can be made of these disparate findings? With the exception of the work by
Babich et al, there is agreement that myosin II function is needed for optimal
phosphorylation of early signaling intermediates, beginning at least with ZAP-70.
Discrepancies about the involvement of Lck may be due to the stimulatory conditions used,
since Lck phosphorylation is affected by myosin II perturbation when T cells are stimulated
with pMHC [29,45], but not with anti-TCR [42], and pMHC engages CD4, which signals
strongly through Lck. In the case of Ca++ mobilization, it is important to consider possible
off-target effects of the inhibitors used. Of note, the Ca++ data in the Ilani paper are based on
treatment of cells with BB, which has known cytotoxic effects at the wavelengths used for
Ca++ measurements [46]. Similar concerns apply for the Yu et al. paper, since ML-7 is
structurally similar to ML-9, an inhibitor that was recently shown to inhibit Ca++ influx in a
myosin-independent manner [47]. Thus, if we consider only studies where siRNA or other
inhibitors are used, it seems that Ca++ responses are either unaffected or blunted. Given that
Ca++ signaling depends on tyrosine phosphorylation events, it makes sense that the response
should be blunted under conditions where phosphorylation is diminished. Finally, the lack of
signaling defects in the Babich et al. paper may be attributable to the use of stimulatory
ligands immobilized on glass surfaces vs. the mobile ligands used in all other studies.
Evidently, the requirement for myosin II activity is context dependent – an effect that could
reflect either differences in tension-based signaling mechanisms or the ability to
continuously form new contacts with TCR ligands.
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Conclusions and future directions
Recent studies clearly show that actomyosin II arc-like structures exist in the pSMAC, but
controversy remains about their functional significance. While it seems reasonable to
assume that the disruption of these structures would have some measurable effect on IS
formation and T cell signaling, this effect could be relatively small and context dependent.
Perhaps the field needs to look for additional readouts. One obvious area would be effects
on integrin dynamics and function, given the tight structural and functional association
between myosin II and integrin-based adhesions in other cell types [48,49]. Indeed, several
groups have already shown a reduction in the phosphorylation of the mechanosensing
protein CasL in myosin II-inhibited cells [29,45], consistent with significant myosin II-
dependent force generation at the IS. Interestingly, Yi et al. [27] showed that an
accumulation of integrin clusters at the inner aspect of the LM/pSMAC depends on
actomyosin II contraction. Moreover, loss of myosin II has been linked to defects in de-
adhesion from ICAM1 [50], and treatment with BB was recently shown to decrease
mechanosensitivity in mouse T cells [51]. Importantly, any myosin II-dependent
mechanotransduction in T cells would involve the ability of actomyosin II structures to
generate tension through adhesive contacts between T cell and APC. Therefore, future
efforts to define the role of myosin II in mechanotransduction will require detailed studies in
cell conjugates where, unlike in bilayer-engaged T cells, there is a significant resistance to
the movement of integrin clusters in the plane of the membrane. Moreover, the force
generated by the physical coupling of myosin II contractile arrays to integrin clusters may be
highly variable as the T cell adapts to differences in substrate stiffness, ligand mobility and
other parameters. If so, understanding such adaptation may ultimately resolve current
controversies regarding the role of myosin II at the IS [52].
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Highlights

• F-actin and myosin II form arcs at the immunological synapse.

• IS domains correspond to the lamellipodium and lamellum of other cells.

• Researchers disagree about the magnitude of myosin II’s role in IS formation
and T cell signaling.

• The magnitude of myosin II’s contribution may be context dependent.
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Figure 1. Organization of the actomyosin II network at the IS
The cartoon highlights the close relationship between the organization of the actin
cytoskeleton in migrating mesenchymal cells (right) and in the radially symmetric IS of T
cells (left). Specifically, the T cell’s dSMAC and pSMAC correspond to lamellipodial (LP)
and lamellar (LM) actin structures seen in mesenchymal cells, respectively. The insets show
the distinct organization of F-actin in these two zones, with branched filament arrays
dominating the dSMAC/LP and actomyosin II arcs/fibers dominating the pSMAC/LM (red,
F-actin; green, myosin II filaments). These latter structures may be difficult to discern using
GFP-actin because GFP-actin is a poor substrate for formin-dependent actin nucleation [53],
which probably plays an important role in the assembly of LM (i.e. pSMAC) actin [13].
While F-actin reporters like F-Tractin that highlight these actin arcs could in principle
augment their formation (although see [27]), the fact that these structures are seen in
untransfected, phalloidin-stained cells supports their existence.
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