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Abstract. Tumor growth profiles were simulated for 2 years using the Wang and Claret models under a
phase 3 clinical trial design. Profiles were censored when tumor size increased >20% from nadir similar to
clinical practice. The percent of patients censored varied from 0% (perfect case) to 100% (real-life case).
The model used to generate the data was then fit to the censored data using FOCE in NONMEM. The
percent bias in the estimated model parameters determined with censored data was compared to the true
values. A total of 100 simulation replicates was used. For the Wang model, under clinical conditions
(100% censoring), the parameter related to tumor reduction SR was underpredicted by 30% and the
parameter related to tumor growth PR was underpredicted by ∼45%. Most of the variance components
in the model were within ±20% of the true values. However, biased parameter estimates in the Wang
model did not translate to biased tumor size predictions as the mean percent prediction error between
true and model predicted tumor size never exceeded 10%. For the Claret model, at 100% censoring, the
tumor growth parameter KL was unaffected by censoring. Both tumor shrinkage parameters, KD and λ,
were overestimated by ∼20% in both cases. Future research needs to be directed to develop less
empirically based models and to use simulation as a way to improve clinical oncology trials designs.
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INTRODUCTION

In studies with oncology drugs, efficacy is most often
reported as a response rate that is defined using criteria
(or some modification thereof) set forth by a collaboration
between the USA, European Union, and Canada, the
Response Evaluation Criteria in Solid Tumors (RECIST,
(1)). RECIST standardizes the definition for what defines
a complete response, partial response, stable disease, or
progressive disease and allows for comparison between
different clinical trials. Criteria for response are based on
measurable disease as evidenced by tumor size. For
instance, a complete response (CR) is defined as disap-
pearance of all target lesions. A partial response (PR) is
defined as at least a 30% reduction in tumor size from
baseline. Progressive disease is defined as a 20% increase
in tumor size from the nadir tumor size (which can also
be the baseline) since the start of therapy or by the
appearance of new lesions. Hence, in oncology clinical
trials, tumor size is measured prior to therapy to obtain a
baseline and is repeatedly measured over the course of
the trial, usually every 4 to 8 weeks, after initiation of
therapy. A patient is usually followed on-therapy for some
length of time or until progressive disease occurs, at which

time the patient is removed from the study or crossed
over to other therapies and/or palliative care.

A problem with using RECIST criteria is that what is
a longitudinal continuous variable, tumor size, is collapsed
into a categorical endpoint: CR, PR, etc., which is known
to be an inefficient use of data, can result in loss of
information, and is not as powerful as when the data are
treated as continuous (2). Therefore, interest has been
expressed in the modeling of tumor growth kinetics in
order to maximize the efficient use of information
collected during a clinical trial. Wang et al. (3) modeled
tumor growth in patients with non-small cell lung cancer
treated with different treatment regimens and related the
predicted reduction in tumor size at Week 8 after therapy
to overall survival. Their model was one of exponential
decline and linear growth

Y ¼ BASE� exp �SR� tð Þ þ PR� t ð1Þ

Where Y was tumor size, BASE was the baseline
tumor size, SR is the rate constant for tumor reduction, t
is time, and PR was the linear rate of growth. Bonate and
Suttle (submitted) used a modified Wang model that
included a quadratic growth term to model the tumor
size kinetics in renal cell carcinoma patients treated with
either pazopanib or placebo. Claret et al. (4) modeled
tumor size in patients with colorectal cancer treated with
either capecitabine or flurouracil and related change in
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Fig. 1. Relationship between tumor growth models to the two-parameter growth equation. Modified from Marusic (10)

Fig. 2. Simulated tumor size without measurement error for 30 subjects under different percent censoring
using the Wang Model with the docetaxel/cispatin dataset
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tumor size at 7 weeks after therapy to overall survival.
Their model was similar to Wang’s model

dY=dt ¼ KL� Y �KD� exp �ltð Þ � Exposure� Y ð2Þ

Where KL was the rate of tumor growth, KD was the
rate of tumor shrinkage, exp(-λt) exponentially decreases the
rate of tumor shrinkage over time at rate λ, and Exposure
was drug dose.

In early drug oncology drug development, various
models were examined and used to model tumor xenograft
data in nude mice implanted with human tumors (5–9). Such
analyses used models like the Gompertz, Logistic, Bertalanffy
models

dY=dt ¼ Y a � bLn Y
BASE

� �� �
Gompertz

dY=dt ¼ aY � bY2 Logistic
dY=dt ¼ aY2=3 � bY Bertalanffy

ð3Þ

All the models in Eq. (3) can be viewed as competition
between growth and reduction. While the models presented
in Eq. 1, 2, and (3) appear to be separate and distinct, i.e.,
non-nested, in fact they are all members of a generalized two-

parameter growth family (10)

dY=dt ¼ aYa � bYb ð4Þ

where different values of a, α, b, and β lead to different
models (Fig. 1). Close examination of Eq. (4) shows that the
Wang and Claret models are considered modifications of the
two-parameter growth model and should behave similarly.

It might be suspected that efficient estimation of all
parameters in the model will require tumor measurements
during both that part of the profile where the tumor is
shrinking and that part of the profile where tumor growth/
regrowth is occurring. In preclinical studies this requirement
is not a problem since tumor growth can be assessed
repeatedly while the tumor grows. In humans, however, it is
not ethical to allow tumor growth to continue unabated.
When a patient shows signs of persistent tumor growth, i.e.,
drug resistance, the patient is removed from treatment and
put onto another therapy or palliative care. Typically, patients
are removed from therapy when evidence of progressive
disease is present under RECIST criteria, i.e., when tumor
size increases 20% from nadir or new metastases occur. Such
censoring from cessation of therapy can result in tumor size

Fig. 3. Relative error between true and FOCE model fitted parameters for the Wang Model as a function of percent censoring using the
docetaxel/cisplatin combination data
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profiles that do not have sufficient data during the growth
part of the curve to efficiently estimate the growth-related
model parameters, a and α in Eq. (4). The purpose of this
analysis was to examine the effect of varying degree of
censoring on the ability to recover tumor size kinetic model
parameters accurately.

METHODS

Tumor size was simulated under the Wang model given
in Eq. (1). All model equations were explicitly defined in that
publication and implemented herein. All nine treatment
regimens studied by Wang et al. and whose model parameters
were presented in Table 2 of that publication were simulated
a total of 100 times using Monte Carlo methods. In each
simulation, a total of 300 virtual subjects were generated (to
mimic the approximately sample size of a phase 3 trial).
Simulated tumor size was assessed every 6 weeks for a period
of 2 years. From these complete profiles, the time to
treatment cessation (time to censoring) was calculated as
the time point where tumor size increased more than 20% on
two occasions compared to their nadir assessment. In clinical
practice, a single occasion may be used to declare disease
progression, but in these simulations two occasions were used
to ensure that the increase in tumor size on the first occasion

was not an artifact. The occurrence of new metastases or
death was ignored in these simulations. From these simulated
profiles, a dataset was generated that consisted of a mixture
of full profiles and profiles that were incomplete due to
disease progression. The percent of subjects with censoring
due to disease progression ranged from 0% to 100%. The 0%
case represents the best case possible, although a physical
impossibility. The 100% case represents the most realistic
situation for early oncology clinical trials where all subjects
eventually experience tumor progression. For those subjects
deemed to be in the censored group, all observations after the
time to censoring were deleted from the dataset. Figure 2
illustrates the profiles for 30 subjects where the percent of
censored data in the mixture ranged from 0% to 100%. The
model used to simulate the data was then used to fit the
dataset containing complete and censored profiles and the
relative error of the model parameter estimates from the true
value was calculated. The results were summarized using box
and whisker plots.

All simulations and data analyses were conducted in
SAS, version 9.2 (SAS Institute, Cary, NC) and all model
estimation was conducted in NONMEM, version 7.2 (ICON
Development Solutions, Elliot City, MD) using first-order
conditional estimation (FOCE) after log–log transformation.
Two modifications of docetaxel/cisplatin simulation were

Fig. 4. Percent error in predicting tumor size over time as a function of percent dropout for theWangmodel using the docetaxel/cisplatin combination
data. Band represents the 5th and 95th percentiles. Solid line is the smoothed (LOESS fit) mean error using a smoothing parameter of 0.6

835Effect of censoring on tumor size modeling



done. First, instead of using FOCE, the SAEM algorithm with
mu-modeling was used to examine the effect of the estimation
algorithm on parameter bias. Second, where instead of
sampling every 6 weeks as might be typically done in a
clinical trial, an idealized sampling time of 1 week was
explored to see if model bias could be reduced with more
frequent sampling.

The same methodology was applied to the Claret et al.
model using the capecitabine phase 2 model having a dose of
1,255 mg/m2/day and using the model parameters reported in
Table 1. A modification of the Claret simulation was done
where instead of sampling every 6 weeks, sampling times of 4
and 8 weeks were explored to see what impact these sampling
times had on parameter bias.

RESULTS

Figure 3 presents a box and whisker plot of relative error
between the fitted model parameters and true values as a
function of percent censored for the Wang model using the
docetaxel/cisplatin combination data. When no censoring was
present, the parameter estimates were unbiased being just
within a few percent of true values. But as the percent of
censoring increased only BASE remain unbiased. Both SR
and PR were underpredicted as the percent of censoring

increased. At 100% censoring, which represents actual
clinical practice, SR was underpredicted by 30% and PR
was underpredicted by ∼45%. The between-subject variabil-
ity (BSV) related to BASE was unaffected by censoring. SR
BSV was affected by censoring at 100% censoring, but was
still <20% from the true value and not biased to any
significant extent. BSV for PR was underpredicted as
censoring increased and was close to 40% bias at 100%
censoring. To understand how the bias in the parameter
estimates under the Wang model affected the estimates of
tumor growth, the percent prediction error between true and
model predicted tumor size was calculated at every time point
and averaged within a simulation replication. The results from
100 simulations are shown in Fig. 4. The mean relative error
never exceeded more than 10%, which is the upper bound for
the measurement error of tumor assessments (11,12). With
100% dropout, some of the simulation replications exceeded
10% error, but only at later time points of a year of more.

Figure 5 presents the results for the paclitaxel/
carboplatin data. The same conclusions were drawn from this
analysis as with the docetaxel/cisplatin dataset. The results
were the same for all nine datasets:

& The BASE parameter was generally unaffected by the
degree of censoring;

& Both SR and PR were underpredicted as the degree of
censoring increased;

Fig. 5. Relative error between true and FOCE model fitted parameters for the Wang Model as a function of percent censoring using the
paclitaxel/carboplatin combination data
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& BASE and SR BSV were unaffected by the degree of
censoring, but PR BSV was significantly underpredicted.

In the simulations just presented, model parameters were
estimated with first-order conditional estimation within
NONMEM version 7.2. To determine whether the estimation
algorithm could have influenced the results, the docetaxel/
cisplatin analysis was repeated using the stochastic approximation
expectation–maximization (SAEM) algorithm within
NONMEM. All parameters were mu-modeled where appropri-
ate with NONMEM defaults used for burn-in. The SAEM
numerically approximates the likelihood using stochastic approx-
imation compared to the FOCE algorithm which linearizes the
model to approximate the likelihood. Figure 6 presents the results
using the SAEM algorithm. No difference between the simula-
tions was noted and it was concluded that estimation algorithm
had no effect on the analysis conclusions. The second modifica-
tion of the simulation was to explore the effect of sampling times
on parameter bias. Instead of sampling every 6 weeks, an
idealized sampling time of 1 week was chosen. Changing to the
more frequent sampling had no to little effect on parameter bias
(data not shown) indicating that the bias in the parameter
estimates was due to censoring and not due to sampling.

Figure 7 presents the results of the analysis of the
Claret model using the capecitabine data. Censoring had
no effect on estimation of parameters related to the
baseline tumor size. Mean KL was underestimated as
censoring increased but never exceeded ±20% from the
true value. Mean KD was consistently overestimated and
only at 100% censoring did the bias start to exceed +20%
from true value. Mean λ values were overestimated as
censoring increased but did not exceed +20% from true
values until 100% censoring. BASE BSV was precisely
estimated regardless of censoring. KL and KD BSV were
slightly biased and somewhat affected by censoring but no
significant estimation bias was observed at 100% censor-
ing. BSV for λ was affected by censoring, but surprisingly
bias decreased as the percent of censoring increased and
was unbiased at 100% censoring.

As a secondary simulation to understand the effect of scan
measurement time on parameter estimation, the Claret simula-
tion was modified. The original simulation assumed that tumor
measurements were made every 6 weeks. In the secondary
simulation, tumor measurements were made either every 4 or
8 weeks. Changing the tumor measurement time by ±2 weeks
had no effect on parameter estimation when compared to the
results of the original simulation (data not shown).

Fig. 6. Relative error between true and SAEM model fitted parameters for the Wang Model as a function of percent censoring using the
docetaxel/cisplatin combination data
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DISCUSSION

The results of these simulations show that currentmodels for
tumor kinetics in clinical studies may result in biased parameter
estimates when compared to true values. Baseline estimation
appears to be unaffected by censoring as would be expected since
censoring only occurs after the baseline measurements are
collected at the start of the clinical trial. After patients are
removed from the trial, either from the presence of new lesions,
tumor regrowth, or drug resistance, censoring occurs and the
information related to tumor growth is not present. It was
expected that tumor growth-related parameters, PR in the Wang
model and KL in the Claret model, in the presence of such
censoring would be difficult to estimate. But this was not exactly
the case. In the Wang model, parameters related to both tumor
growth and tumor regression were affected by censoring; mean
SR, mean PR, and PRBSVwere all significantly underpredicted.
Hence, parameters related to tumor growth, PR and PR BSV,
were underpredicted but so was the parameter related to tumor
shrinkage SR. In the Claret model, the parameters related to
tumor shrinkage KD and λ were biased and overestimated. The
mean parameter related to tumor growth KL was unaffected by
censoring, as were the variance components. It is difficult to
reconcile these differences. In the case of the Wang model, it

would appear that the bias in the tumor shrinkage parameters
were compensating for the bias in the tumor growth parameters,
but in the Claret model this was not the case as only tumor
shrinkage parameters were affected by censoring.

In terms of parameter estimation performance, the
Claret model seemed to perform “better” than the Wang
model. Less bias in the parameter estimates was noted with
the Claret model, which may have been due to the Claret
model being exposure driven, whereas the Wang model is
not, and that the Claret model has an additional estimable
parameter than the Wang model. The Wang model has time
as its sole predictor variable whereas the Claret model uses
drug exposure and time. The use of exposure in the Claret
model raises some interesting questions. In the simulation, it
was assumed that dose was a constant. In clinical practice, a
patient rarely remains on a single constant dose throughout
therapy. If a patient is not completely removed from
treatment after the occurrence of a dose-limiting adverse
event, doses are either decreased or interrupted while waiting
for the adverse event to resolve. Doses are then resumed at
either the same dose level or, more frequently, at a lower
dose in the hope of avoiding the recurrence of the adverse
event. The Claret model requires that the entire dosing
history of the subject be known. How these dose holidays or

Fig. 7. Relative error between true and FOCE model fitted parameters for the Claret Model as a function of percent censoring using the
capecitabine data
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dose changes are to be incorporated in the model and their
effect on the model parameters is unclear. KD and λ are
dependent on dose. Smaller doses should cause a slower rate
of tumor regression and a slower rate of tumor resistance.
Changes in dose should affect KD and λ but there is no way
to explicitly account for dose changes as the model is
currently formulated unless dose is used as a covariate on
KD and λ. Even then, with a change in dose, the effect on KD
and λ will not be instantaneous but will change slowly over
time. Further research needs to be done with the Claret
model in the presence of dose changes.

Surprisingly, even though the Wang model showed bias in
the parameter estimates, this parameter bias did not translate to
prediction bias in tumor size as themeasurement error was within
the expected bounds for tumor size assessment. It follows then
that if there was no bias in tumor size predictions at early time
points, one would not expect any degree of bias in prediction of
overall survival. Hence, the bias in the parameter estimates for
the Wang model appears to be of little clinical consequence.

That there were similarities in the results of the Wang and
Claret simulations should not be unexpected since they are both
members of the general class of two-parameter growth model as
shown in Fig. 1. These results are an outcome of the inability to
collect data during the tumor regrowth period after tumor
shrinkage reaches its nadir and not the result of numerical
estimation limitations since similar results were obtained regard-
less of whether FOCE or SAEM was the estimation algorithm
used byNONMEM.The inherent parameter bias of thesemodels
does not seem to be improved by more frequent collection of
tumor measurements since changing the sampling time to every
week had little to no effect on the parameter estimates. Nor is it
likely that improved estimation algorithms akin to time to event
models with censored data will be useful since those models are
predicated on a limited degree of censoring. In this case, everyone
is either censored after regrowth starts to occur or the drug shows
a complete response in which case there is no data upon which to
estimate regrowth parameters. Perhaps one solution is to look to
develop other models that are less sensitive to censoring. Today’s
models are largely empirical in nature. One can envision in the
future tumor growth models that are physiological in nature
incorporating tumor anatomy, physiology, and biochemistry.
Perhaps these models will be less sensitive to censoring because
they are less reliant on clinical data.

The original Wang and Claret models were developed to
estimate short term tumor regression and use this as a predictor
for long-term clinical outcome, i.e., survival. These models
(tumor growth-survival) do not have to be linked to be useful.
Indeed, only phase 3 studies have survival as an outcome. Many
cancer drugs are approved on an accelerated approval basis,
which do not require survival data as part of the dossier. Tumor
growth models are useful in and of themselves because they can
be used identify covariates that may be predictive of tumor
regression and could be used to prescreen for those patients
likely to benefit from the drug in clinical trials.

One limitation of the current human tumor growth
models is that in the prediction of progressive disease they
fail to account for the appearance of new tumors. More
realistic models of tumor growth should consider a hurdle type
model linked to a two-parameter growth model wherein a

probability of developing new lesions via a logistic regression-
type model is modeled and if the hurdle is not passed tumor
growth is still maintained. If the hurdle is passed, a new lesion has
developed, progressive disease has occurred, and the patient is
taken “off-study”. The models also fail to account for discontin-
uation due to adverse events or death without progression. These
events could also be modeled by a hurdle model, where the
hurdle is now a composite endpoint of any number of events that
could cause study termination, linked to a growth model. These
limitations do not invalidate the results of these simulations since
the simulations were designed to test the underlying growth
model and not represent the clinical situation.

In summary, results of tumor growth models should be
interpreted with caution because of the potential bias in their
parameter estimates. Both growth and shrinkage related
parameters can be affected by censoring when clinical trials
follow RECIST guidelines and take patients off therapy when
their tumors start to show regrowth after nadir or develop
new lesions. Future research needs to be directed to develop
less empirically based models and to use simulation as a way
to improve clinical oncology trials designs.
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