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Abstract. Immunotherapy is a growing therapeutic strategy in oncology based on the stimulation of
innate and adaptive immune systems to induce the death of tumour cells. In this paper, we have
developed a population semi-mechanistic model able to characterize the mechanisms implied in tumour
growth dynamic after the administration of CyaA-E7, a vaccine able to target antigen to dendritic cells,
thus triggering a potent immune response. The mathematical model developed presented the following
main components: (1) tumour progression in the animals without treatment was described with a linear
model, (2) vaccine effects were modelled assuming that vaccine triggers a non-instantaneous immune
response inducing cell death. Delayed response was described with a series of two transit compartments,
(3) a resistance effect decreasing vaccine efficiency was also incorporated through a regulator
compartment dependent upon tumour size, and (4) a mixture model at the level of the elimination of
the induced signal vaccine (k2) to model tumour relapse after treatment, observed in a small percentage
of animals (15.6%). The proposed model structure was successfully applied to describe antitumor effect
of IL-12, suggesting its applicability to different immune-stimulatory therapies. In addition, a simulation
exercise to evaluate in silico the impact on tumour size of possible combination therapies has been
shown. This type of mathematical approaches may be helpful to maximize the information obtained from
experiments in mice, reducing the number of animals and the cost of developing new antitumor
immunotherapies.
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INTRODUCTION

Immunotherapy is one of the different strategies that are
being pursued to improve cancer therapy. The goal of
immunotherapy is to eliminate tumour cells by enhancing
the effector mechanisms and/or neutralizing the inhibitory
pathways of the immune system (1). Dendritic cells (DCs) are
key organizers of the immune system due to their ability to

initiate T cell responses. Antigens are captured, processed
and presented to naïve T cells by dendritic cells. The
maturation status of the DCs defines the outcome of
interaction of the DC and the naïve T cells. If the DC
presents the antigen while receiving a danger signal that
induces its maturation, then the antigen presentation will be
accompanied by co-stimulatory signals and cytokines such as
interleukin 12 (IL-12) or interferon alpha. In this case, the T
lymphocytes will initiate an effector immune response that
might destroy tumour cells (2).

Anticancer therapeutic vaccines and treatments with
immune-stimulatory cytokines such as IL-12 are designed to
promote this process of antigen presentation to naïve T
cells (2–4), which is corrupted by tumours, leading to
antigen tolerance rather than antitumor immune responses
(5,6). The most promising anticancer vaccines combines the
targeting of the tumour antigen to the DCs, interacting
with a specific receptor expressed on the surface of the
DC, with a maturation signal. An example of this strategy
is the fusion of the adenylate cyclase of Bordetella pertussis
to the human papillomavirus E7 protein (CyaA-E7). The
adenylate cyclase is able to interact with the CD11b
present in many DCs, leading to the internalization of the
vaccine and to the antigen presentation by class I and class
II major histocompatibility molecules (7). CyaA-E7 vaccine
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proved to trigger a potent immune response able to induce
full tumour shrinkage; however, a therapeutic efficacy loss
was detected when large tumours were treated (8). This
antitumor therapeutic vaccine is now being tested in phase I
clinical trial with good results in term of safety and induction of
immune responses (http://www.genticel.com).

The intense preclinical and clinical research in immuno-
therapy is starting to translate into new approved drugs with a
clear benefit on the overall survival of patients with advanced
cancers (9). However, most of the immunotherapies that are
tested in clinical trials fail to replicate the successful results
obtained in preclinical animal models, indicating that a change
in animal experimentation paradigm in cancer immunotherapy
is needed in order to better predict the outcome in humans
(10,11).

Mathematical models are useful tools to better under-
stand complex systems, such as the interaction between
immune and tumour cells, and identify plausible mecha-
nisms that can explain the observed clinical or preclinical
outputs (12). A variety of mathematical models have been
proposed to describe the interaction between the different
immune cell populations and the tumours (13–21). Among
others, we can highlight the works of de Pillis et al. (15) or
Cappuccio et al. (16) where the interaction between natural
killer, CD8+ T and tumour cells was described combining
literature and experimental parameters and latter used to
successfully propose more effective dosing regimens (22). A
more recent work was published in 2010 by Kronik et al.
(19), where a model able to predict response based on
partial data collected during early phases of the treatment
was developed and applied to real-time treatment
personalization (23).

On these bases, the objectives of this work were (1) to
develop a minimal mathematical model integrating the
different key mechanisms implied in tumour response to
characterize the observed outcomes after the administration
of the previously described CyaA-E7 vaccine to mice, (2) to
evaluate its general applicability by describing anti-tumour
activity of a different immune-stimulatory agent, and (3) to
show its potential as in silico evaluation tool for potential
combination therapies.

MATERIALS AND METHODS

Experimental Data

(a) Berraondo et al. (8) published data were used to
build the mathematical model. In their experiments,
5×105 tumour cells expressing human papillomavirus
E7 protein were injected into the shaved back of 5-
week-old female C57BL/6 mice (day 0). Mice were
treated with PBS on day 4 (control group, n019) or
with 50 μg of the CyaA-E7 vaccine based on the
fusion of the adenylate cyclase enzyme of Bordetella
pertussis to the oncogenic protein E7 expressed by
human papillomavirus. In C57BL/6 mice, the antigen
target CD11b, is expressed in around 75% of
dendritic cells (CD11c+) in the spleen (24). Six
different groups of mice received a single dose of
CyaA-E7 vaccine administered intravenously either

on day 4 (n015), 7 (n016), 11 (n014), 18 (n015), 25
(n014) or 30 (n015) after the injection of the
tumour cells (training dataset). Two independent
studies where PBS on day 4 (n023) or a single
dose of 50 μg of CyaA-E7 on day 25 (n011) were
saved to validate the model externally (validation
dataset).

(b) Medina-Echeverz et al. (25) published data were
used to test the applicability of the model developed
in a different immune-stimulatory scenario. In their
experimental setting, 5×105 MC38 cells were
subcutaneously injected to 5-week-old female
C57BL/6 mice. Subsequently, mice were treated
with either PBS (control group, n012) or with
10 μg of a plasmid codifying for murine IL-12
administered by hydrodynamic injection on day 23
(n021).

In both publications, tumour size measurements were
reported as the average of two perpendiculars diameters and
2 mm was considered as the minimum tumour size that could
be properly measure with the calliper. Mice with a tumour
size higher than 20 mm were sacrificed according to the
institutional guidelines for animal care.

Model Building and Selection

During the analysis, average of two perpendiculars
diameters as reported in the original publications, instead
of the tumour volume, was used to enable a better
comparison of small tumour sizes and to avoid formulating
any assumptions regarding tumour shape. Data were
logarithmically transformed and NONMEM VII software
using the Laplacian numerical estimation method was used
(26). Inter-animal variability (IAV) was modelled exponen-
tially and residual variability was modelled considering an
additive error in the logarithmic domain of the transformed
data.

Measurements of tumour size lower or equal to 2 mm
represented a considerable percentage of the reported values
(61.6%). Therefore, below limit of quantification (BQL) data
were not removed from the dataset neither assigned to an
arbitrary value (i.e., 0 or 2), they were considered during the
analysis instead and treated as censored information, therefore
maximizing the likelihood that the observation is indeed a BQL
data (27).

Selection between models was based on the evaluation of
different statistical and graphical criteria: precision of param-
eter estimates obtained from the analysis of 1000 bootstrap
datasets using the software Perl-speaks-NONMEM (PsN)
(28), goodness-of-fit plots, and minimum value of the
objective function value provided by NONMEM (MVOF)
and approximately equal to −2×log (likelihood) (−2LL).
Differences between two hierarchical (nested) models were
compared with a χ2 distribution in which a decrease of 6.63
points in −2LL was considered significant at the 1% level for
one extra parameter in the model (26). Non-nested models
were compared using the Akaike information criteria (AIC).
The model with the lowest value of AIC, given the precision
of model parameters and an adequate description of the data,
was selected (29).
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Data Evaluation, Biological Assumptions and Mathematical
Model

Exploratory analysis of the tumour size data used to
build the model (CyaA-E7 data) (Fig. 1) revealed four main
aspects to be considered during model building process:

(a) Tumour growth: in absence of vaccine administration,
tumours grew almost linearly without reaching a
plateau (Fig. 1a).

(b) CyaA-E7 effect: the vaccine was able to induce a
strong therapeutic response, delayed in time, against
tumours expressing the protein and enabling a com-
plete tumour regression under favourable environment
conditions in most of the animals (Fig. 1b–d).

(c) Resistance: an abrogated response to the vaccine
efficacy was observed as tumour size at the time of
vaccine administration increased. That phenomenon
is particularly apparent in those groups receiving the
vaccine at times greater than day 11 after cell
inoculation (Fig. 1e–g). In fact, when vaccine was
injected 30 days after the start of the experiment,
tumour size profiles were very similar to those
obtained from the control group.

(d) Relapse: although complete tumour regression was
expected in those mice sensitive to the treatment,
tumour re-growth was observed in a small percent-
age of animals (Fig. 1b–d).

Taking into account previous knowledge of the system
and the observed tumour size profiles, the following assump-
tions were made:

(a) Tumour growth was considered to be independent of
tumour size.

(b) Given the absence of pharmacokinetic data of the
vaccine, and to describe its fate, a K-PD type of
approach (30) where the kinetics of the antigen is
inferred from the dynamics of the response observed
was used, assuming in this case that once the antigen
enters into the systemic circulation, it distributes fast
and it is eliminated following a first-order rate process.
Equation 1 (see below) represents the K-PD model
used.

(c) CyaA-E7 vaccine (VAC) was considered to trigger,
through an intermediate transit compartment
(TRAN), a vaccine signal (SVAC) able to reduce
tumour size by a term proportional to both the
vaccine signal and the tumour size (Ts). SVAC was
assumed to remain constant over time (parameter k2 in
Eq. 3 set to 0; see below), thus avoiding tumour re-
growth after vaccine clearance.

(d) Avaccine resistance explaining the decrease in vaccine
response was included in the model by incorporating a
regulator (REG) compartment controlled by tumour
size, and able to inhibit vaccine efficacy.

(e) And finally, the existence of a sub-population of mice
able to trigger only a temporal tumour response was
postulated to describe the relapse observed in a few
mice. To account for the two sub-populations, a
mixture model (31) was implemented at the vaccine
signal level by allowing the estimation of different

degradation constant rates for each sub-population
(k2 in Eq. 3; see below) and the probability of belonging
to each sub-population 1 [P(1)] or 2 [1−P(1)].

Figure 2 depicts schematically the final selected model
which is mathematically represented by the following set of
ordinary differential equations (1–5):

dVAC
dt

¼ � k1 �VAC ð1Þ

dTRAN
dt

¼ k1 �VAC� k1 � TRAN ð2Þ

dSVAC
dt

¼ k1 � TRAN� k2 � SVAC
k2 popl ¼ 0
k2 pop2 6¼ 0

� �
ð3Þ

dTs
dt

¼ l� k3 � REGg
50

REGg
50 þREGg � Ts� SVAC ð4Þ

dREG
dt

¼ k4 � Ts� k4 �REG ð5Þ

Where λ is the zero-order rate constant of tumour
growth, k1 represents the first-order rate constant controlling
vaccine elimination and transit between compartments, k2 is
first-order rate constant accounting for SVAC degradation, k3
is the vaccine efficacy second-order rate constant, and k4 is
the first-order rate constant controlling the regulator com-
partment dynamics. REG50 represents the amount in the
regulator compartment needed to inhibit vaccine activity by a
half, and γ the steepness of the k3 versus REG relationship.

The system described by Eqs. 1, 2, 3, 4, and 5 showed the
following initial conditions at the time of cell inoculation: Ts0,
tumour size at baseline (a parameter to be estimated); the rest of
initial conditions VAC0, TRAN0, SVAC0, andREG0 were equal
to 0. At the time of vaccine injection, VAC0 was set to an
arbitrary value of 1 due to the absence of pharmacokinetic data.

Note that due to the fact that the proposed model has been
developed based on tumour size data only, and to preserve
model parameter identifiability, the processes reflecting vaccine
elimination and turnover of the vaccine elicited inhibitory signal
(SVAC) share the same parameter (k1).

Model Evaluation and Validation

A total of 1,000 datasets with the same study design
characteristics as the original one were simulated using the
inter-animal and residual variability of the model for each
animal group. Performance of the selected model was
graphically evaluated by exploring the simulated tumour size
time course, percentage of BQL over time and probability of
cure at the end of the study. Since data were pooled from
independent experiments and measurements were not
performed at the same times, observations were finally

799A Model for Cancer Vaccine Therapy in Mice



grouped in eight bins obtaining a similar number of observa-
tions per bin to facilitate model evaluation.

Visual predictive checks: The 50th percentile of the
simulated observations in each dataset were computed for the
different time intervals. Then, the 90% confidence interval of
the 50th percentile was obtained and plotted against the 50th

percentile of raw tumour size data.
Numerical Predictive Checks: for each simulated dataset

and group of treatment, (1) the probability of cure—calculated
as the ratio between the number of mice which predicted
tumour size was below the limit of quantification at the end of
the study and the total number of simulated mice— and (2) the
percentage of BQL data—obtained as the ratio between the
number of simulated BQL data over the total number of
measurements at different time intervals—were obtained and
compared with the corresponding values derived from raw data.

Applicability of the Mathematical Model

To describe tumour size dynamics from Medina-
Echeverz et al. (25) (Fig. 1h–i), the same set of equations
was used, now considering IL-12 as immune-stimulatory

agent, and estimating those parameters dependent upon the
tumour cell line (Ts0, λ and REG50) or upon the immuno-
therapeutic agent (k1) together with the corresponding inter-
animal variability.

The results were evaluated and graphically inspected as
previously described for the CyaA-E7 vaccine data.

Sensitivity Analysis

The relevance of the different model parameters on the
system was evaluated by increasing or decreasing a 10% one
parameter at a time and evaluating the impact on the
predicted tumour size on day 40 after CyaA-E7 vaccine
administration on day 25.

Generalization of the Model: Combination Therapy

Berkeley-Madonna software was used to evaluate the
effects on tumour size of administering CyaA-E7 vaccine in
combination with a theoretical drug. Different mechanism of
action and a range of efficacy or potency constant rate values
were evaluated (see Supplementary materials for a detailed
description of the simulated scenarios).

Fig. 1. Individual raw data profiles. a–g C57BL/6 mice were injected with 5×105 TC1 cells (n013–19 mice per
group) on day 0. A unique dose of PBS or of 50 μg of CyaA-E7 was intravenously administered on day 4, 7, 11, 18,
25 or 30 (yellow line) (8). h–i C57BL/6 mice were injected with 5×105 MC38 cells (n012–21 mice per group) on day
0. A unique dose of PBS or a hydrodynamic injection of 10 μg of a plasmid codifying for murine IL-12 was
administered on day 23 (yellow line) (25). Tumour size, computed as the mean of two perpendicular diameters, over
time is represented for each mouse and each dosing group included in the study; 2 mm was considered as the limit of
quantification (dashed line)
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RESULTS

Mathematical Model

In a first step, amodel describing unperturbed (i.e., absence
of the therapeutic agent) tumour growth was developed using
data from the control group only. A linear growth governed by
the l parameter and independent of Ts described data well. The
exponential model (which is dependent on Ts) provided also
proper model performance but the typical estimate of Ts0 was
2.4 mm, an unrealistic value given that the limit of tumour
detection was set to 2 mm. Other models frequently used in the
analysis of xenograft mice (32,33) were also tested in the current
analysis, but a worse model performance was observed.

Parameter estimates of the selected model are summa-
rized in Table I. IAV was found significant for λ (p<0.01) but
not for TS0 (p>0.01).

Once the unperturbed tumour growth was characterized,
the effect of the CyaA-E7 vaccine over tumour growth was
introduced into the model integrating the information gath-
ered from the exploratory analysis of the observed profiles
(training dataset, see “Materials and Methods” section), and
the previous knowledge of the system.

To account for the observed delay in the response to the
CyaA-E7, a transit compartmental model, originally proposed

to describe drug absorption process and where the optimal
number of transit compartments can be estimated as a model
parameter (34), was tested. The model described the data
adequately, but number of transit compartments could not be
estimated with precision. Therefore, intermediate (transit)
compartments were included one at a time, and the AIC and
model performance of the models with the different number of
compartments was compared. Two transit compartments, where
the signal in the second would be responsible for inducing
tumour shrinkage (SVAC), proved to be enough to describe the
data successfully (ΔAIC of −1097, −96 and −3 points compared
with no delay, one or three transit compartments, respectively).
A simpler model describing the delayed effect incorporating a
lag time was also evaluated, but model description was worse
(ΔAIC0109 points compared with two transit compartments).

The introduction of a mixture model at the level of
SVAC disappearance allowed us to describe the relapse
process and its frequency within the studied population
(15.6% when considering only dosing at 4, 7, 11 days where
resistance can be neglected). It was assumed the existence of
two sub-populations, one with a permanent (k200) vaccine
signal, while in the other, the treatment would elicit a
transient (k2≠0) vaccine signal. Considering a “tumour size
threshold” below which permanent cure would be achieved or
simple variability in drug efficacy or drug elimination

Fig. 2. Schematic representation and population performance of the mathematical model selected. After VAC administration and through a
transit compartment (TRAN), the vaccine triggers a signal (SVAC) able to decrease tumour size (Ts). Two different populations (responders
and non-responders) at the level of the SVAC elimination were identified. An inhibition of vaccine efficacy induced by a regulator
compartment (REG) controlled by tumour size was detected. The behaviour of the different model compartment over time for both
populations, along with the percentage of inhibition (%INH) induced by REG over k3 versus the amount in the regulator compartment under
no vaccine administration, and highlighting the REG amount at relevant time points, are presented. k1 first-order rate constant controlling
vaccine elimination and transit between compartments; k2 first-order rate constant accounting for SVAC degradation; λ zero-order rate
constant of tumour growth; k3 the vaccine efficacy second-order rate constant; k4 the first-order rate constant controlling the regulator
compartment dynamics; REG50 amount in the regulator compartment needed to inhibit vaccine activity by a half; γ the shape of that inhibitory
process. TAD time after dose (vaccine) administration. Tdose day of vaccine administration
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parameters were also evaluated to describe tumour relapses;
however, those assumptions presented convergence problems.

Regarding the reduced treatment efficiency observed when
vaccine administration was delayed, an inhibition of the vaccine
efficiency rate (k3) as a function of the current tumour size was
introduced. Inhibition of the constant rate controlling the
appearance of the signal vaccine (k1) or a simple drug efficacy
decay with time were also explored but a worse fit was obtained
in both cases (ΔAIC of 268 or 1436, respectively). Different
models were tested to account for the inhibitory effect,
observing the lowest AIC and overall better model performance
when the Hill function was implemented (Eq. 4). Finally,

inclusion of a regulator compartment to delay the inhibitory
effect of the tumour further improved the description of the data
(ΔAIC0−101 points compared with no delay).

With regard to random effects, our data supported the
inclusion of inter-animal variability in λ andREG50 (ΔAIC0−356
points compared with no IAV). Table I summarizes the estimates
of parameters that characterize the final selected model schemat-
ically represented in Fig. 2. Note that in Fig. 2 the dynamics of the
components of the model developed corresponding to the typical
mice in each of the two sub-populations are shown.

Observed and model predicted tumour size profiles for
selected mice (training dataset, see “Materials and Methods”)

Fig. 3. Individual model predictions. Tumour size observations (points) and individual model predictions of a mouse that
respond (light grey) or do not respond (dark grey) to the vaccine are presented for the different CyaA-E7 dosing groups.
2 mm was considered as the limit of quantification (dashed line)

Table I. Parameters of the Mathematical Model Developed

Parameter

CyaA-E7 IL-12

Mean value IAV (%) Mean value IAV (%)

[2.5th–97.5th] [2.5th–97.5th] [2.5th–97.5th] [2.5th–97.5th]

Ts0 (mm) 0.324 [0.0796–0.572] – 1.16×10−6 [5.57×10−7–2.35×10−6] –
λ (mm·day−1) 0.354 [0.325–0.381] 10.1 [4.9–13.4] 0.335 [0.306–0.362] 19.3 [11.3–24.4]
k1 (day

−1) 0.0907 [0.0842–0.118] – 0.189 [0.101–0.615] –
P(1) 0.844 FIX – 0.844 FIX –
k2_pop1 (day

−1) 0 FIX – 0 FIX –
k2_pop2 (day

−1) 0.0907 [0.0842–0.118] – 0.189 [0.101–0.615] –
k3 (au·day

−1) 1.08 [0.870–1.378] – 1.08 FIX –
k4 (day

−1) 0.0390 [0.0193–0.0771] – 0.0390 FIX –
REG50 (mm) 3.18 [1.767–4.422] 33.8 [25.4–53.2] 2.08 [1.387–2.966] 36.1 [6.4–60.2]
γ 5.24 [3.673–6.781] – 5.24 FIX –
Residual error [Log (mm)] 0.206 [0.184–0.228] – 0.168 [0.128–0.215] –
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showing complete remission or relapse for each of the groups
used to develop the model can be seen in Fig. 3
(Supplementary Figure 1 shows additional plots for individual
predictions).

Visual predictive checks were performed for tumour
size data above the quantification limit, along with the
predicted percentage of BQL over time for the different
vaccine administration protocols (training dataset, see
“Materials and Methods”) (Fig. 4). Despite some discrep-
ancies observed, especially at early vaccine administration
protocols due to the low number and variability of the
relapsing mice, globally, the selected model was able to
successfully describe tumour size data, not only of those
experiments from the training dataset, but also of two
independent studies not used during the model building
process (validation dataset) (Supplementary Figure 2)
increasing model robustness. In addition, a good agreement
between the observed and the model predicted probabilities of
cure of each studied group was obtained (Fig. 5) in both training
and validation datasets.

Applicability of the Mathematical Model

To study if the proposed model structure for tumour size
response after CyaA-E7 vaccine administration could be extrapo-
lated to other immunotherapy protocols, data from the work of
Medina-Echeverz et al. (25) were used. In their experimental
setting, hydrodynamic administration of IL-12, a cytokine known to
activate effector cells, was performed in tumour-bearing mice.
Pharmacokinetic data were not available and therefore, an
instantaneous expressionof the plasmid followedbyan exponential
decay of the drug, as did for the CyaA-E7 vaccine, was assumed.

The same set of model equations was used to fit the data,
allowing the estimation of those parameters either related to the
tumour cell line (REG50, λ and Ts0) or to the drug kinetic (k1).
The model was able to fairly capture the data, both above and
below the limit of quantification (Fig. 4), and successfully
estimate the probability of cure observed in each dosing group
after vaccine administration (Fig. 5).

This result provides a further validation of the mathe-
matical model developed and its biological assumptions

Fig. 4. Visual and numerical predictive check to evaluate final model performance. Simulated tumour size measurements above the limit of
quantification (upper panels) and percentage of data below the limit of quantification (lower panel) versus raw data (points) are plotted over
time for CyaA-E7 (orange) or IL-12 (red) dosing groups. Grey areas in the upper panels represent the 90% prediction interval of the simulated
median. Grey areas in the lower panels represent the 90% prediction interval of the simulated percentage of data below the limit of
quantification. Solid and dashed black lines are the simulated and raw median respectively. 2 mm was considered as the limit of quantification
(red dashed line)
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suggesting that this structure could be used as a general
approach to model other drugs with similar mechanisms of
action.

Generalization of the Model: Combination Therapy

Combining two or more therapeutic agents is a common
strategy to increase the rate of success in cancer therapy.
Simulation exercises can be undertaken to gain some insight
on the impact that diverse theoretical treatments could have
on tumour size when administered along with the CyaA-E7
vaccine once the reliability of a model has been proven.

To evaluate which components of the system had a greater
impact on tumour size response when vaccine efficiency was
impaired (i.e., CyaA-E7 administered on day 25), a sensitivity
analysis was performed as in (15). Sensitivity was assessed by
increasing or decreasing one model parameter at a time and
quantifying the induced change on tumour size at the end of the
simulation (day 40). For the exercise, sub-population developing
a permanent response to the treatment (k200), and therefore
susceptible to cure, was only considered.

The results of the analysis are shown in Fig. 6a. The
system showed to be more sensitive to those parameters
controlling tumour growth (λ) and the appearance (k4) or
potency (REG50 and γ) of the inhibitory response triggered
by tumour size than to those parameters related to vaccine
kinetics (k1) or efficacy (k3). These results suggested that in
order to increase treatment efficiency, drugs able to impair
the inhibitory response triggered by tumour size or to act on
tumour growth should be considered.

Taking into account the results from the sensibility
analysis and plausible drugs mechanisms of action, three
different combination therapy scenarios where a drug able to
either induce tumour cell death (scenario 1), increase
clearance of regulator compartment (therefore reducing the
inhibitory effect exerted over vaccine efficiency, scenario 2),
or inhibit tumour growth (scenario 3) were evaluated (the

structure of the combination therapy models used for the
discussed simulations are shown as supplementary material).

Results from the simulation exercise showed that a
complete tumour regression could be achieved in scenarios
1 or 2 if drugs potent enough were used (Fig. 6b–c) or if more
multiple dosing regimens were followed (data not shown). On
the other hand, decreasing tumour growth rate, apparently
the most sensitive parameter, only had a small impact on
tumour growth, even when highly potent drugs were simulat-
ed (Fig. 6d).

DISCUSSION

Applications of modelling and simulation concepts to
describe the outcome from pre-clinical studies and clinical
trials have been reported in many occasions and during
several decades. More specifically, in the arena of cancer,
Norton et al. published in 1976 a general application of the
Gompertz model to describe tumour growth (35). More
recently several authors have developed models that incor-
porate important characteristics of the anticancer drugs (i.e.,
pharmacokinetics or pharmacodynamics). Simeoni and co-
workers proposed a model including pharmacokinetics, drug
effects, signal transduction, and tumour dynamics (33,36).
This pioneer work was followed by others in which biomarker
contribution was also considered (37–39).

In the field of immunotherapy, different mathematical
models have been proposed to describe the interaction
between immune response and tumour growth (13,18,20,40).
However, only a few of them have been successfully applied
to real data (15–17,19), mainly due to the complexity and high
number of model parameters of the proposed models.
Therefore, the current work represents a reduction in the
description of the biological complexity in which cellular and
molecular components are not individually modelled but
empirically incorporated into the model (i.e., using a series
of transit compartments to account for maturation processes).

Fig. 5. Vaccine efficacy evaluation. Probability of cure at the end of the experiment was
estimated for 1000 simulated studies for both tested therapies CyaA-E7 (left panel) and IL-12
(right panel). Simulated median was plotted against raw probability of cure for each dosing
group in the training dataset (points). Grey shadow represents 90% prediction interval of the
simulated data. Blue triangle represents probability of cure of an independent study not
included in the analysis (external evaluation with the validation dataset)
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The main objective of this work was to develop a
mathematical model to describe tumour size dynamics and
its interaction with the immune system after the administra-
tion of a previously developed vaccine consisting on the
fusion of the E7 human papillomavirus protein to the
adenylate cyclase of Bordetella pertussis (7). This vaccine
increases antigen presentation to dendritic cells, which will
then activate a potent and specific Th1 and cytotoxic T-
lymphocyte response (effector cells) against tumours in a
murine model of cervical cancer.

In agreement with the described CyaA-E7 vaccine
mechanism of action, where intermediate cell populations
are needed before effector cells proliferate, two transit
compartments were needed to describe the observed delay
in tumour shrinkage after vaccine administration, where the
last compartment (here called SVAC) could be associated to
the effector cells activated by the vaccine. Given the lack of
drug or effector T cells measurements a common parameter
(k1) had to be used to describe the different processes.

In the proposed model, two important features, usually
present in datasets from antitumor therapies in mice, were
considered during the analysis: values of tumour size that fall
below the detection limit (BQL data) and information about
individual tumour behaviour, which normally is treated as
pool data assuming that all the animals from an experimental
group react uniformly to the drug.

Inclusion of BQL data as censored observations (27)
proved to be relevant not only after drug treatment to capture
relapse, but also at early times after tumour cell inoculation, to

characterize the unperturbed tumour model. Ignoring BQL
data, an exponential model would have been selected (render-
ing an estimate of tumour size at baseline higher than the
detection limit and inclusion of variability in that parameter).
Including the censored information, first, tumour size at baseline
had a realistic estimate, and its inter-animal variability was not
supported by the data (an expected result), and second, data
after relapse could be described better since they appeared to
follow a linear increase with time. A similar relevance of BQL
inclusion was reported very recently for the case of the
testosterone levels in cancer patients, in which for most of the
time period of the study some patients were mainly below the
detection limit (41).

Another feature that has been incorporated in the
model, and which to the best of our knowledge has not been
applied in this type of analysis yet, has been the possibility to
identify different subject populations with regard to the
response to the treatment, by including mixture models (31),
successfully applied in clinical studies (42,43). Apart from the
estimation of different parameters across the various sup-
populations, the percentage of subjects belonging to each of
them is also estimated [P(1)]. This result, in addition to the
parameters reflecting drug efficacy, is worth to be taken into
account when comparing different treatments.

A challenge when using a mixture model is to relate the
presence of more than one population to a particular mecha-
nism. In our case, no statistical differences on tumour size at the
moment of vaccine administration were found between both
populations (p>0.05). In addition, different parameters for

Fig. 6. Generalization of the model. a Sensitivity analysis of the model representing the
percentage of change in tumour size when one model parameter at a time is modified. b–d
Predicted tumour response over time for different theoretical drugs when administered in
combination with CyaA-E7 vaccine on day 25 after tumour cell inoculation. A range of
efficacy parameters is explored for each simulated scenario (see Supplementary material)
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vaccine induce signal (k1), or signal efficacy (k2) rate constants
would not have been able to explain relapse after full tumour
shrinkage. Consequently, the mixture model was applied to the
rate of disappearance of the vaccine induced signal (k3). This
result suggests that the vaccine is able to trigger a permanent
immune response (probably mediated bymemory Tcells) in the
cured mouse population, but no in all the mice. A well-known
phenomenon in immunotherapy (not all the subjects respond
equally to vaccination protocols) (44,45). Since only tumour size
information was available, a fixed value of 0 had to be assigned
to those animals that did not show relapse. Other cure
mechanisms, such as considering a “cure threshold” as in (46),
were also tested, but failed in predicting individual profiles.

The final feature included into the model was vaccine
resistance. A decrease in the number of cured mice as the time
between tumour inoculation and vaccine administration increased
could be clearly observed in the raw data (Fig. 1). Lu et al. (47)
found a similar decrease in tumour responsewhenmultiple dosing
regimens were followed. They modelled that phenomenon as a
time-dependent exponential decay of drug efficacy. In our model,
a more mechanistic approach was followed. It has been described
that the observed resistance phenomenon is caused by tumour
recruitment and expansion of an immune-regulatory cell popula-
tion (regulatory T cells) able to suppress anti-tumour immune
response (48,49). This mechanism was mathematically
implemented by considering that tumour size inhibited vaccine
efficiency through a regulator compartment that could be
interpreted as the immune-regulatory cell compartment.

Given the complexity of the different phenomena control-
ling tumour growth, probability of cure and resistance related
parameters could not be simultaneously obtained. We attribute
this result to the fact that the tumour size induced resistance
shown in later groups was masking the real proportion of non-
cured mice. Therefore, P(1) was fixed to a value obtained when
only dose on day 4,7 or 11 groups (where the resistance termwas
not yet needed) were analysed.

Proper evaluation of model performance is always re-
quired, but it is evenmore important in cases as the one we show
here in which different type of measurements (censored and
non-censored), and different populations are considered. In that
respect, our work provides additional novelties. For example,
Fig. 4 shows how the model behaves for the data that were
reported as below the detection limit. In addition, Fig. 5
provides an alternative to judgemodel performance and efficacy
of the treatment based on the percentage of cured animals.

Ideally, a model should be (1) capable to describe response
outcomes for a series of different experimental scenarios, (2)
validated with additional set of data, and (3) applicable to
different therapeutic strategies. Results from the model evalua-
tion, model validation, and model applicability exercises under-
taken during the current investigation confirm that the proposed
model fulfilled main goals in mathematical modelling of in vivo
response.

Despite the semi-mechanistic nature of the model here
developed, it has been proven that the model can be applied to
describe drugs that might apparently have different mechanisms
of action, but in last term induce an adaptive immune response.
Nevertheless, drugs acting on different levels at the same time or
with complex pharmacokinetics or pharmacodynamics interac-
tion would probably require of extra biological information to
properly characterize the different biological processes.

A natural expansion of the current work will be its
generalization to handle combination with other anticancer
therapies, a widely accepted strategy to improve efficacy of
cancer immunotherapy (50). Raw data of tumour size after
combination therapy were also shown in the work by
Berraondo et al. (8). Data showed increment in vaccine
response after combination. Despite in the current work
initial exploration of potential response outcome based on
different assumptions about possible mechanisms of action of
the drugs to be combined has been performed (Fig. 6b–d), the
analysis of those data, which corresponds to an ongoing
project, are beyond the scope of this study.

CONCLUSION

This work presents a novel mathematical model where
different modelling strategies within the population approach
such as censored data or mixture model have been integrated
to successfully describe the different outcomes obtained after
CyaA-E7 vaccine administration. Moreover, the model struc-
ture here proposed can be extrapolated to describe tumour
growth response to different immunotherapeutic strategies
with a similar mechanism of action, such as IL-12. This model
can be used to maximize the information obtained from
preclinical cancer immunotherapy experiments and therefore,
can be useful for the design of better clinical trials of immune
modulating drugs.
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