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A Hybrid Approach for the
Simulation of the Thermal
Motion of a Nearly Neutrally
Buoyant Nanoparticle in an
Incompressible Newtonian
Fluid Medium
A hybrid approach consisting of a Markovian fluctuating hydrodynamics of the fluid and
a non-Markovian Langevin dynamics with the Ornstein–Uhlenbeck noise perturbing the
translational and rotational equations of motion of a nanoparticle is employed to
study the thermal motion of a nearly neutrally buoyant nanoparticle in an incompressible
Newtonian fluid medium. A direct numerical simulation adopting an arbitrary
Lagrangian–Eulerian based finite element method is employed for the simulation of the
hybrid approach. The instantaneous flow around the particle and the particle motion are
fully resolved. The numerical results show that (a) the calculated temperature of the
nearly neutrally buoyant Brownian particle in a quiescent fluid satisfies the equipartition
theorem; (b) the translational and rotational decay of the velocity autocorrelation func-
tions result in algebraic tails, over long time; (c) the translational and rotational mean
square displacements of the particle obey Stokes–Einstein and Stokes–Einstein–Debye
relations, respectively; and (d) the parallel and perpendicular diffusivities of the particle
closer to the wall are consistent with the analytical results, where available. The study
has important implications for designing nanocarriers for targeted drug delivery. A
major advantage of our novel hybrid approach employed in this paper as compared to
either the fluctuating hydrodynamics approach or the generalized Langevin approach
by itself is that only the hybrid method has been shown to simultaneously preserve
both hydrodynamic correlations and equilibrium statistics in the incompressible limit.
[DOI: 10.1115/1.4007668]
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1 Introduction

The chief motivation for the present study is the simulation of
the thermal motion of a nanoparticle in a fluid flow that occurs in
targeted drug delivery [1–6] where the drug carrying nanocarriers
are intravascularly introduced into the vasculature. Nanoparticles
allow more precise and successful infiltration of drugs to target
cells. In general, nanoparticle drug-delivery systems have been
shown to enhance the solubility of compounds, and to reduce the
impact of drugs on nontarget tissue, thereby eliminating unwanted
and dangerous side effects. In order to more broadly integrate this
technology into medicine, a precise understanding of how to guide
the nanoparticle to the target site is necessary. To achieve this
goal, as a first step, it is necessary to determine the motion of a
nanocarrier (due to thermal and hydrodynamic effects) in a fluid
medium. The nanocarrier with a loaded cargo may be studied
subsequently.

A nanoparticle suspended in a fluid undergoes random motion
due to the thermal fluctuations in the fluid. As a consequence,
translational and rotational degrees of freedom become important.
In determining the translational and rotational motions of the
nanoparticle in an incompressible Newtonian medium, there

exist two methods that couple the thermal fluctuations with the
hydrodynamic interactions. These are the generalized Langevin
method [7] and the fluctuating hydrodynamics method [8]. Either
procedure would require numerical simulations for covering
extensive parameter space.

In the fluctuating hydrodynamics approach, the nanoparticle
motion incorporates both the Brownian motion and the effect
of hydrodynamic force acting on its surface imparted from the
surrounding fluid. This method essentially consists of adding
stochastic stresses (random stress) to the stress tensor in the
momentum equation of the fluid and stochastic fluxes to the heat
flux where the energy equation is present [9]. The stochastic stress
tensor depends on the temperature and the transport coefficients
of the fluid medium [10,11]. Numerical simulations of the fluctu-
ating hydrodynamics approach have been carried out employing
the finite volume method [12–14], Lattice-Boltzmann method
[15–21], finite element method [8,22,23] and stochastic immersed
boundary method [24].

In the Langevin dynamics method, the effect of thermal fluctua-
tions are incorporated as random forces and torques in the particle
equation of motion [7,25–30]. The properties of these forces
depend on the grand resistance tensor. The tensor in turn depends
on the fluid properties, particle shape, and its instantaneous loca-
tion such as its proximity to a wall or a boundary. This is a robust
thermostat, which preserves equilibrium distributions at constant
temperatures (i.e., adheres to the equipartition theorem). Clearly,
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coupling to a thermostat will alter the hydrodyamics of the nano-
particle system. The characterizations of the performance of the
thermostat as well as how it alters the associated hydrodynamic
correlations are important. Numerical schemes for studying the
nanoparticle motion in a fluid must simultaneously consider the
momentum (Langevin) equation for the particle and the
Navier–Stokes equation for the fluid. The random force/torque in
the particle equation can then be related to the frictional force/tor-
que via the generalized fluctuation–dissipation theorem [31,32].
The implementation can occur in two ways: (i) directly adjust the
variance of the random force term in the classical Langevin equa-
tion to play the role of a thermostat and (ii) a second, more direct
approach that preserves the structure of the generalized Langevin
equation, is to consider the power spectrum for the variance of the
random force term using a correlated or colored noise with a well
defined characteristic memory time. Such a formalism simultane-
ously preserves the equipartition theorem and the nature of the
long time hydrodynamic correlations, and proves to be a versatile
thermostat [7].

The fluctuating hydrodynamics approach in an incompressible
fluid [8] captures the correct hydrodynamic correlations and con-
serves thermal equipartition only after adding the mass correction
[10]. On the other hand, the generalized Langevin dynamics yields
the correct thermal equipartition (without any mass correction),
but modifies the nature of the hydrodynamics correlations (due to
the coupling of the fluid equations with the thermostat degrees of
freedom) [7].

Recently, we have formulated a novel hybrid approach combin-
ing Markovian fluctuating hydrodynamics of the fluid and the
non-Markovian Langevin dynamics with the Ornstein–Uhlenbeck
noise perturbing the translational and rotational equations of
motion of the nanocarrier [33]. For this hybrid approach, we have
verified the conservation of thermal equipartition and the nature
of hydrodynamic correlations by comparisons with well-known
analytical results [10]. This approach effectively produces a ther-
mostat that also simultaneously preserves the true hydrodynamic
correlations [33]. With this procedure, we have also evaluated
adhesive interactions between a receptor on the nanocarrier sur-
face and a ligand (tethered by a spring force) on the surface of an
endothelial cell lining the cylindrical vessel wall at a specified
finite temperature [34].

In this paper, we demonstrate the thermal equilibrium and
hydrodynamic correlations of a nearly neutrally buoyant nano-
particle using our recently developed hybrid approach. A
direct numerical simulation procedure adopting an arbitrary
Lagrangian–Eulerian based finite element method is employed to
simulate the Brownian motion of a nearly neutrally buoyant parti-
cle in an incompressible Newtonian fluid contained in a horizontal
micron sized cylindrical vessel. The results for the attainment of
thermal equilibrium between the particle and the surrounding
medium, diffusivity for the particle in the medium, effect of the
presence of the confining vessel wall on particle displacement and
diffusivity are evaluated and discussed in detail.

A major advantage of our novel hybrid approach employed in
this paper as compared to either the fluctuating hydrodynamics
approach or the generalized Langevin approach by itself is that
only the hybrid method has been shown to simultaneously pre-
serve both hydrodynamic correlations and equilibrium statistics in
the incompressible limit.

2 Formulation of the Problem

The Brownian motion of a nearly neutrally buoyant nanopar-
ticle in an incompressible Newtonian stationary fluid medium
contained in a horizontal circular vessel is considered. The fluid
and particle equations are formulated in an inertial frame of refer-
ence with the origin coinciding with the center of the vessel
(Fig. 1). The radius, R, and the length, L, of the vessel (tube) are
very large compared to the particle size, a, the radius of the parti-
cle. Initially, the nanoparticle is introduced either at the vessel

centerline or at suitably chosen locations away from the center
line toward the bounding wall. Initially both the fluid and particle
are at rest. No body force is considered either for the particle or
for the fluid domain. At time t¼ 0, the nanoparticle is subjected to
Brownian motion. The motion of the nanoparticle is determined
by the hydrodynamic forces and torques acting on the particle and
the wall interactions.

2.1 Hybrid Scheme: Governing Equations and Boundary
Conditions. The motion of an incompressible Newtonian fluid
satisfies the conservation of mass and momentum given by

r � u ¼ 0; qðfÞ ut þ u � rð Þuð Þ ¼ r � r (1)

r ¼ �pJ þ l ruþ ruð ÞT
h i

þ S (2)

where u and qðfÞ are the velocity and density of the fluid, respec-
tively, r is the stress tensor, p is the pressure, J is the identity
tensor, and l is the dynamic viscosity. The random stress tensor S
is assumed to be a Gaussian with

Sijðx; tÞ
� �

¼ 0 and

Sikðx; tÞSlmðx0; t0Þh i ¼ 2kBTl dildkm þ dimdklð Þ
dðx� x0Þdðt� t0Þ

(3)

where h i is the ensemble average, kB is the Boltzmann constant,
T is the absolute temperature, dij is the Kronecker delta, and the
Dirac delta function dðx� x0Þ denotes that the components of
the random stress tensor are spatially uncorrelated (Markovian).
The right hand side of Eq. (3) denotes the mean and variance of
the thermal fluctuations chosen to be consistent with the
fluctuation–dissipation theorem [9,10,35,36]. By including this
stochastic stress tensor due to the thermal fluctuations in the
governing equations, the macroscopic hydrodynamic theory is
generalized to include the mesoscopic scales ranging from tens of
nanometers to a few microns.

For a rigid particle suspended in an incompressible Newtonian
fluid, the translational and rotational motions of the particle satis-
fies Newton’s second law and the Euler equation, respectively. In
the hybrid formulation, the time correlated noise is added into the
particle equations of motion [33,34]

m
dU

dt
¼ �

ð
@Rp

r � n̂ dsþ
ðt�

�1
nðt0Þe�jt�t0 j=s1 dt0 (4)

d Ixð Þ
dt
¼ �

ð
@Rp

x� Xð Þ � r � n̂½ �dsþ
ðt�

�1
gðt0Þe�jt�t0 j=s2 dt0 (5)

where m is the mass of the particle, I is its moment of inertia, U
and x are the translational and angular velocities of the particle,
respectively, X is the position of the centroid of the particle,
x� Xð Þ is a vector from the center of the particle to a point on its

Fig. 1 Schematic representation of a nanoparticle in a cylindri-
cal vessel (tube) (not to scale). Radius of the tube: R 5 5 lm;
length of the tube: L 5 10 lm; radius of the nanoparticle:
a 5 250 nm; viscosity of the fluid: l 5 10�3 kg/ms; density of the
fluid and the nanoparticle: qðfÞ5 103 kg/m3, 990 kg/m3 £ qðpÞ

£ 1010 kg/m3.
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surface, @Rp denotes the particle surface, n̂ is the unit normal vec-
tor on the surface of the particle pointing into the particle, and the
random force n and torque g are given by

nðt0Þ ¼
ð
@Rp

Sðx0; t0Þ � n̂ ds (6)

gðt0Þ ¼
ð
@Rp

x0 � Xð Þ � Sðx0; t0Þ � n̂ð Þds (7)

for the Ornstein–Uhlenbeck process. The time integral in Eqs. (4)
and (5) excludes the frictional force and torque at the time instant
t since it has already been accounted for in the hydrodynamic
force and torque terms, respectively. The characteristic memory
time for translational, s1 ¼ n1 � Dt, and rotational, s2 ¼ n2 � Dt,
motions of the nanoparticle add certain amounts of memory from
the previous history of fluctuations to the system. Here, Dt is the
time step for the numerical simulation, n1 and n2 correspond to
the number of time steps required to adequately represent the
memory effects. These are variable quantities and are determined
on the basis of satisfying the equipartition theorem. The amount
of memory required by translational and rotational motions of
the nanoparticle in order to satisfy the equipartition theorem are
different. Hence, s1 ¼ s2 is not a necessary condition for the tem-
perature of the particle to attain the preset temperature of the fluid.
Equations (6) and (7) are the random force and torque acting on
the nanoparticle at time t0 (a previous time instant). Since the ran-
dom stress Sðx; tÞ is Gaussian, nðt0Þ and gðt0Þ are also Gaussian
with variance equivalent to the strength of the white noise in the
Langevin equation. In the limit of the characteristic memory times
s1; s2 ! 0 (i.e., in the absence of memory), Eqs. (4) and (5)
reduce to the Newton’s second law and the Euler equations,
respectively, which correspond to the Markovian fluctuating
hydrodynamics.

The initial and boundary conditions for the problem are

Uðt ¼ 0Þ ¼ 0; uðt ¼ 0Þ ¼ 0 on R0 � @Ri (8)

u ¼ 0 on @Ri; r � n̂ ¼ 0 on @Ro (9)

u ¼ U þ x� x� Xð Þ on @Rp (10)

where R0 is the domain occupied by the fluid and @Ri and @Ro are
the inlet and outlet boundaries, respectively. The stochastic
governing Eqs. (1)–(5) along with the initial and boundary condi-
tions (8)–(10) are solved numerically. It is assumed that there is
no body torque acting at any point in the fluid and the viscous
stress tensor, r, is symmetric.

A numerical simulation at a mesoscopic scale involving a
particle in a fluid could be based on a discretization of the
Eqs. (1)–(10). However, the discrete forms have to satisfy the
fluctuation–dissipation theorem [11–13,35–38]. Español and
Zúñiga [22] and Español et al. [23] have shown that a well
behaved set of discrete equations obtained in terms of the finite
element shape functions based on the Delaunay triangulation con-
serves mass, momentum and energy while ensuring thermody-
namic consistency. In the present study, we obtain the discrete
hydrodynamic equations using finite element shape functions
based on the Delaunay–Voronoi tetrahedrizations. The computa-
tional domain is covered by a finite element mesh generated using
Delaunay–Voronoi methods. The fluid domain is discretized by
quadratic irregular tetrahedral elements. A typical element is
shown in Fig. 2. Figure 3 shows a triangular mesh discretizing the
surface of the fluid domain (cylinder) and the surface of the nano-
particle. The discretization of the fluid domain changes at each
time step of the simulation due to the motion of the nanoparticle.
The procedure for numerical simulation of the random stresses
associated with the unstructured tetrahedron mesh while conserv-
ing the volume is described in detail in Uma et al. [8]. The details
of combined fluid–solid weak formulation, spatial discretization,

mesh movement techniques, and temporal discretization of time
derivatives are discussed in Refs. [7] and [8]. These details will
not be repeated here for brevity. Briefly, the fluid domain is
approximated by quadratic tetrahedral finite-elements (ten nodes
defined per tetrahedron with ten basis functions that are second-
order polynomials). The discrete solution for the fluid velocity is
approximated in terms of piecewise quadratic functions, and is
assumed to be continuous over the domain (P2 elements). The dis-
crete solution for the pressure is taken to be piecewise linear and
continuous (P1 element). This P1/P2 element for the pressure and
velocity is consistent with the Ladyzhenskaya–Babuska–Brezzi
(LBB) or inf–sup condition and yields convergent solutions
[39,40].

The time scales involved in this study are (i) sb ¼ m=fðtÞ, the
Brownian relaxation time over which velocity correlations
decay in the Langevin equation, (ii) sd ¼ a2fðtÞ=kBT, the Brown-
ian diffusive time scale over which the nanoparticle diffuses over
a distance equal to its own radius, and (iii) s� ¼ a2=�, the hydro-
dynamic time scale for momentum to diffuse over a distance equal
to the radius of the nanoparticle, where fðtÞ ¼ 6pla is the Stokes
dissipative friction force coefficient for a sphere; a is the radius of
the nanoparticle, and � is the kinematic viscosity of the fluid. The
time step Dt for the numerical simulation has been chosen to be
smaller than all the relevant physical time scales described above.
The simulations presented in this study have been carried out for
long enough durations to allow for the temperature of the particle
to equilibrate; i.e., if N is the number of simulated time steps then
N � Dt ¼ t� s� .

3 Numerical Results and Discussion

A nearly neutrally buoyant solid spherical particle of radius
a¼ 250 nm is placed at the center of a cylindrical tube (R ¼ 5 lm)
containing a quiescent Newtonian fluid. The temperature of the
fluid is initially set to T¼ 310 K. For a given nanoparticle of
radius a, and tube radius R, a “realization” consists of N time steps

Fig. 2 Representation of a ten-node tetrahedron

Fig. 3 Finite element surface mesh of a cylindrical tube with
one spherical nanoparticle
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(approximately 10 s wall clock time for each time step that is gen-
erally considered in this study). The number of time steps depends
upon equilibration of particle temperature, or determination of
velocity autocorrelations (VACFs) and mean square displament
(MSD). In order to ensure the uniqueness of the realizations,
different initial seeds are chosen for a Gaussian random number
generator. In this section, we numerically predict (i) the transla-
tional and rotational temperatures of the nanoparticle, where the
temperature calculation is carried out until thermal equilibration is

obtained for the particle; (ii) the translational and rotational veloc-
ity distributions of the nanoparticle motion; (iii) the translational
and rotational VACFs; (iv) the translational and rotational
MSD of the particle for both ballistic and diffusive regimes; and
(v) the effects of the presence of the bounding wall on particles of
different radii initially placed at various locations are evaluated
for several cases without bulk flow. We compare the various nu-
merical predictions with known analytical results, where
available.

Fig. 4 Translational and rotational temperatures of a nearly neutrally buoyant
nanoparticle in a stationary fluid medium as a function of the particle density
normalized with fluid density. The nondimensionalized characteristic memory
times are s1/sm 5 0:12 and s2/sm 5 0:088.

Fig. 5 Equilibrium probability of the (a) and (c) translational and (b) and (d) rotational velocities of the
nanoparticle in a stationary Newtonian fluid medium for qðpÞ/qðfÞ5 0:99 ((a) and (b)) and 1:01 ((c) and (d)). The
nondimensionalized characteristic memory times are s1/sm 5 0:12 and s2/sm 5 0:088 [33].

011011-4 / Vol. 135, JANUARY 2013 Transactions of the ASME



3.1 Equipartition Theorem. Figure 4 shows that transla-
tional and rotational temperatures of nearly neutrally buoyant
Brownian particles, thermally equilibrated, in a quiescent fluid
medium are independent of the density of the particle in relation
to that of fluid. The nondimensionalized characteristic memory
times s1=s� ¼ 0:12 and s2=s� ¼ 0:088 [33]. The error bars have
been plotted from standard deviations of the temperatures
obtained with 15 different realizations.

3.2 Maxwell–Boltzmann Distribution. Figure 5 shows the
numerically simulated components of U (Figs. 5(a) and 5(c)) and
x (Figs. 5(b) and 5(d)) (represented by three different symbols) of
the nearly neutrally buoyant nanoparticle (a¼ 250 nm) are com-
pared with the analytical form of the Maxwell–Boltzmann distri-
bution (MBD) with a zero mean and variance of kBT=m and
kBT=I, respectively. The nondimensionalized characteristic mem-
ory times are s1=s� ¼ 0:12 and s2=s� ¼ 0:088 [33]. It is observed
that each degree of freedom individually follows MBD within 5%
error (see dotted line in Fig. 5). This validates the numerical pro-
cedure employed in this study.

3.3 Hydrodynamic Correlations. A nanoparticle experienc-
ing Brownian motion in a fluid is influenced by the hydrodynamic
interactions. The fluid around the particle is dragged in the
direction of motion of the particle. On the other hand, the motion
of the particle is resisted by viscous forces arising due to its

motion relative to the surrounding fluid. The momentum of the
fluid surrounding the particle at any instant is related to its recent
history. The friction coefficient is time dependent and is no longer
given by the constant (steady flow) Stokes value.

Hauge and Martin-Löf [10] have analytically shown that the
decay of the translational and rotational VACFs at long time
obeys a power-law:

UðtÞUð0Þh i
Uð0ÞUð0Þh i ’

mqðfÞ1=2

12p3=2l3=2

� �
t�3=2 ¼ Bt�3=2 (11)

xtÞxð0Þh i
xð0Þxð0Þh i ’

IqðfÞ3=2

32p3=2l5=2

� �
t�5=2 ¼ Ct�5=2 (12)

As for the short time behavior, the VACF is expected to adhere to
the Langevin (white noise) limit [41]: for translation
VACF� expð�fðtÞt=mÞ, and for rotation VACF� expð�fðrÞt=IÞ,
where fðrÞ ¼ 8pla3.

Figure 6 shows the VACF of the translational and rotational
motions of the nearly neutrally buoyant nanoparticle (a¼ 250 nm)
in a quiescent fluid medium in a circular vessel as obtained from
our numerical simulations. For determining the VACF of the
nanoparticle, 15 different realizations have been employed with
total computation of 15� 100; 000 ¼ 1; 500; 000 time steps. For
this calculation, characteristic memory times are s1=s� ¼ 0:12
and s2=s� ¼ 0:088 [33]. For the parameters considered in this

Fig. 6 (a) and (c) Translational (B 5 mqðfÞ1=2/12p3=2l3=2) and (b) and (d) rotational (C 5 IqðfÞ3=2/32p3=2l5=2) VACFs
of the Brownian particle (a 5 250 nm) in a fluid medium through a circular vessel using hybrid approach. The
nondimensionalized characteristic memory times are s1/sm 5 0:12 and s2/sm 5 0:088 [33].
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study, our numerical simulations predict that the translational and
rotational VACFs follow an exponential decay at short times
and an algebraic tail at long times. Furthermore, the algebraic
decay of the translational and rotational VACFs have power-law
behavior characterized by � t�3=2 and � t�5=2, respectively. The
error bars have been plotted from standard deviations of the decay
at particular time instants obtained with 15 different realizations.
Hence, our computed numerical results for nearly neutrally buoy-
ant nanoparticle based on the hybrid non-Markovian fluctuating
hydrodynamics approach are in good agreement with the predic-
tions for short and long times (Eqs. (11) and (12)), respectively.

3.4 Diffusion of the Nanoparticle. For the Langevin equa-
tion of a Brownian particle

m
dU

dt
¼ �fðtÞUþ RðtÞ (13)

the translational and rotational MSDs of the nanoparticle at
long times satisfy the Stokes–Einstein [42,43] and the Stokes–
Einstein–Debye relations [44], respectively, given by

XðDtÞ � X0j j2
D E

¼ 6DðtÞ1Dt; DðtÞ1 ¼
kBT

fðtÞ
(14)

hðDtÞ � h0j j2
D E

¼ 6DðrÞ1Dt; DðrÞ1 ¼
kBT

fðrÞ
; fðrÞ ¼ 8pla3 (15)

Here X0 is the initial location of the particle, XðDtÞ is its linear
displacement at time Dt; hðDtÞ is its angular displacement at time

Dt, and DðtÞ1 and DðrÞ1 are the translational and rotational self-
diffusion coefficients of the Brownian particle at long times,
respectively.

Figure 7 shows the numerically obtained translational and rota-
tional MSDs (measures of diffusion) of a nearly neutrally buoyant
nanoparticle (a¼ 250 nm) in a quiescent fluid medium, initially
placed at the center of the vessel (R ¼ 5 lm), for both short and
long times. It is observed that in the regime where the particle’s
motion is dominated by its own inertia (ballistic), the translational
and rotational motions of the particle follow ð3kBT=mÞt2 and
ð3kBT=IÞt2, respectively. In the diffusive regime, t� sb, the
translational and rotational MSDs increase linearly in time to
follow 6DðtÞ1 t (Stokes–Einstein relation) and 6DðrÞ1 t (Stokes–
Einstein–Debye relation), respectively, where DðtÞ1 ¼ kBT=fðtÞ, and
DðrÞ1 ¼ kBT=fðrÞ (fðrÞ ¼ 8pla3) are the translational and rotational
self-diffusion coefficients. The results are obtained from 15
realizations, each realization computed up to 100,000 time
steps. The nondimensionalized characteristic memory times are
s1=s� ¼ 0:12 and s2=s� ¼ 0:088 [33].

3.5 Wall Effects. As stated earlier, our main motivation for
the present study is to simulate a nearly neutrally buoyant nano-
particle thermal motion in a fluid flow that occurs in targeted
drug delivery and similar microparticle flows. In such flows, the
hydrodynamic wall effects on the particle diffusivity are relevant.
For a particle initially located at the center of the cylindrical ves-
sel, the wall effects play a minimal role (�3%, compared to an
unbounded fluid domain) on the diffusion coefficient (see Fig. 7)
[45]. When a particle of radius a is initially placed at a distance
h from the tube wall to the center of the particle, h < R, the

Fig. 7 The MSD of a nearly neutrally buoyant Brownian particle (a 5 250 nm) in a stationary fluid medium using
hybrid approach. The nondimensionalized characteristic memory times are s1/sm 5 0:12 and s2/sm 5 0:088 [33].
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particle–wall interactions modify the particle diffusivity. For
a	 R, in a quiescent fluid, the Brownian motion near the vessel
wall is similar to that of motion in the vicinity of a plane wall
(curvature effects may be neglected) [45,46]. For a particle ini-
tially located in the near vicinity of the wall, there is reduced
space for the surrounding fluid to negotiate the particle, and the
corresponding drag force in a direction parallel to the wall is
higher. The diffusivity of the particle in the proximity of the wall
may be estimated to be D

ðtÞ
w ¼ DðtÞ1ðfðtÞw =f

ðtÞÞ�1
in x, y, and z direc-

tions [47], while fðtÞw depends on the particular direction.
Figure 8 shows the numerically obtained parallel (x direction)

and perpendicular (y direction) diffusivities of nearly neutrally
buoyant particles of different radii initially placed at various dis-
tances from the tube wall, in a quiescent medium. As mentioned
earlier, in the diffusive regime, the translational MSD of the parti-
cle increases linearly with time. We have numerically evaluated
the gradient of the linear profile, normalized by the translational
self-diffusion coefficient, DðtÞ1 , plotted as a function of a/h. It is
observed that for a given particle of radius a, the diffusivity of the
particle decreases closer to the wall (i.e., as h! 0, Dw=D1
decreases). Similarly, for a given location of the particle from the
wall, h, the diffusivity of the particle decreases for the larger parti-
cle (i.e., as a increases). The nondimensionalized characteristic
memory times are s1=s� ¼ 0:12 and s2=s� ¼ 0:088 [33]. Our nu-
merical results are in agreement with the predictions of Happel
and Brenner [45].

4 Conclusions

A hybrid approach based on Markovian fluctuating hydro-
dynamics of the fluid and a non-Markovian Langevin dynamics
with the Ornstein–Uhlenbeck noise perturbing the translational
and rotational equations of motion of a nearly neturally buoyant
nanoparticle is employed to simulate the Brownian motion in an
incompressible Newtonian fluid. The translational and rotational
motions of the nearly neutrally buoyant nanoparticle in a quies-
cent fluid medium is considered. At thermal equilibrium, the
numerical predictions are validated with analytical results, where
available.

We have numerically predicted the following:

(a) The translational and rotational temperatures of a nearly
neutrally buoyant particle in a quiscent fluid medium. The
temperature calculation is carried out till thermal equilibra-
tion is obtained between the particle and the fluid medium.

(b) The translational and rotational velocity distributions of a
nearly neutrally buoyant nanoparticle motion in a quiescent
fluid medium.

(c) The translational and rotational VACFs of a nearly neu-
trally buoyant particle in a quiescent fluid. Over long times,
the decay of the VACF captures algebraic tails for the
translational (t�3=2) and the rotational (t�5=2) motions of the
nanoparticle.

(d) The translational and rotational MSDs of a nearly neutrally
buoyant particle in a quiescent fluid, both for ballistic and
diffusive regimes. At short times, translational and rota-
tional MSDs in a quiescent fluid are proportional to t2, and
in the diffusive regime (t� sb), they agree with the
Stokes–Einstein and Stokes–Einstein–Debye theories.

(e) The effects of the presence of the bounding wall on a nearly
neutrally buoyant particles of different radii initially placed
at various locations are evaluated for several cases in a
quiscent fluid medium. The translational diffusion coeffi-
cients for parallel and perpendicular directions have been
displayed. Very good agreement with published results,
where available is also displayed.

(f) A major advantage of our novel hybrid approach employed
in this paper as compared to either the fluctuating hydrody-
namics approach or the generalized Langevin approach by
itself is that only the hybrid method has been shown to
simultaneously preserve both hydrodynamic correlations
and equilibrium statistics in the incompressible limit.
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Nomenclature

R ¼ radius of the circular vessel
L ¼ length of the circular vessel
a ¼ radius of the nanoparticle
u ¼ velocity of the fluid

qðfÞ ¼ density of the fluid
qðpÞ ¼ density of the nanoparticle

r ¼ stress tensor
p ¼ pressure
J ¼ identity tensor
l ¼ dynamic viscosity
S ¼ random stress tensor

kB ¼ Boltzmann constant
T ¼ absolute temperature

dij ¼ Kronecker delta
d ¼ Dirac delta
m ¼ mass of the particle
I ¼ moment of inertia of the particle

U;x ¼ translational and angular velocities of the particle
X ¼ position of the centroid of the particle

x� Xð Þ ¼ vector from the center of the particle to a point on its
surface

@Rp ¼ the particle surface
@Ri ¼ inlet boundary
@Ro ¼ outlet boundary

n̂ ¼ unit normal vector on the surface of the particle
pointing into the particle

n ¼ random force
g ¼ random torque

sb ¼ Brownian relaxation time
sd ¼ Brownian diffusive time
s� ¼ hydrodynamic time

fðtÞ; fðrÞ ¼ Stokes dissipative friction force and torque coefficient
s1; s2 ¼ characteristic memory times
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