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Introduction

It is well known that background noise interferes with and 
also reduces the intelligibility1 of speech and that the 
greater the level of background noise the greater the reduc-
tion in intelligibility. In most cases, because speech is a 
highly redundant signal, we are capable of understanding 
speech even in a moderately noisy environment. Thus, even 
if parts of the speech signal are masked by noise, other parts 
of the speech signal will convey sufficient information to 
render the signal suficiently intelligible. The idea that con-
ventional speech enhancement strategies could be used to 
improve important perceptual aspects of speech corrupted 
by additive noise was introduced almost five decades ago 
by Schroeder (1965) who at the time was working at AT&T 
Bell Labs. Since then, pioneering research intensified with 
contributions from several other researchers, who system-
atically formulated the challenging problem of noise reduc-
tion and also compared different algorithms known at the 
time (e.g., see Boll, 1979; Ephraim & Malah, 1984; 
Ephraim & VanTrees, 1995; Lim, 1978; Lim & Oppenheim, 
1979). Over the years, terms such as noise removal, noise 
suppression, noise reduction, and speech enhancement have 
all been used to describe techniques that improve the intel-
ligibility of speech in the presence of background noise.

With the rapid progression of cochlear implants (CIs),2 
from a speculative laboratory procedure (House & Berliner, 
1991) to a widely recognized practice and a potentially life-
changing use of biotechnology (Gates & Miyamoto, 2003; 
Wilson & Dorman, 2008a), recent research efforts have been 
increasingly focusing on state-of-the-art noise reduction 
solutions to improve speech intelligibility in noisy environ-
ments. To restore hearing sensation, CIs deliver electrical 
pulses to the auditory nerve by relying on sophisticated sig-
nal processing algorithms that convert acoustic inputs to 
electrical stimuli (e.g., see Loizou, 1998; Wilson & Dorman, 
2008a, 2008b; Zeng, 2004). Nowadays, almost all CI proces-
sors perform well in quiet environments, and the majority of 
implant users can achieve high open-set speech recognition 
scores regardless of the device or speech coding strategy 
used (e.g., see Skinner et al., 2002; Spahr & Dorman, 2004). 
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To restore hearing sensation, cochlear implants deliver electrical pulses to the auditory nerve by relying on sophisticated 
signal processing algorithms that convert acoustic inputs to electrical stimuli. Although individuals fitted with cochlear implants 
perform well in quiet, in the presence of background noise, the speech intelligibility of cochlear implant listeners is more 
susceptible to background noise than that of normal hearing listeners. Traditionally, to increase performance in noise, single-
microphone noise reduction strategies have been used. More recently, a number of approaches have suggested that speech 
intelligibility in noise can be improved further by making use of two or more microphones, instead. Processing strategies 
based on multiple microphones can better exploit the spatial diversity of speech and noise because such strategies rely 
mostly on spatial information about the relative position of competing sound sources. In this article, we identify and elucidate 
the most significant theoretical aspects that underpin single- and multi-microphone noise reduction strategies for cochlear 
implants. More analytically, we focus on strategies of both types that have been shown to be promising for use in current-
generation implant devices. We present data from past and more recent studies, and furthermore we outline the direction 
that future research in the area of noise reduction for cochlear implants could follow.
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However, in the presence of background noise, the speech 
recognition of CI listeners is more susceptible to background 
noise than that of normal-hearing (NH) listeners. This is 
most likely because of the limited frequency, temporal, and 
amplitude resolution that can be transmitted by the implant 
device (Qin & Oxenham, 2003).

In fact, data comparing speech reception thresholds 
(SRTs)3 between NH and CI listeners suggest that in steady-
state noise, CI subjects’ scores are on average between 10 
and 15 dB higher than SRTs obtained from normal-hearing 
subjects. The difference is more striking in a competing-
talker background. In this case, CI listeners need, on aver-
age, a signal-to-noise ratio (SNR) equal to 25 dB or higher 
than NH listeners to perform at the same level in noisy back-
grounds (Turner, Gantz, Vidal, Behrens, & Henry, 2004). 
Because, for typical speech materials, a 5 dB decrease in 
SNR implies between 20% and 30% reduction in the overall 
percent correct score, from the above data, it quickly 
becomes evident that even a small elevation in SRT scores 
can substantially reduce the speech perception of CI users in 
background noise. The difficulty recognizing speech in 
noise for implant users is, in fact a combination of poor fre-
quency and temporal resolution and channel interaction (or 
current spread) in the stimulating electrodes. These factors 
have been shown to contribute strongly to CI users’ diffi-
culty in noisy conditions, regardless of the type of noise 
(e.g., steady-state or modulated) present (e.g., see Fu & 
Nogaki, 2004). Substantial differences in speech recogni-
tion performance have also been reported for CI recipients 
tested in noisy versus quiet settings.

In a recent study by Firszt et al. (2004), speech recognition 
was assessed using the Hearing in Noise Test (HINT) sen-
tences (Nilsson, Soli, & Sullivan, 1994). Results revealed that 
CI recipients’ performance on sentence recognition tasks was 
significantly poorer in noise compared when compared with 
just listening at a soft conversational level in quiet. An aver-
age of 30% speech intelligibility drop was found between 
sentences presented at 60 dB SPL in quiet versus 60 dB SPL 
in the presence of noise at the SNR level of 8 dB. Still, the 
observed reduction in performance was only about 15% when 
sentences were presented at 60 and 50 dB SPL in quiet. In 
another study, Spahr and Dorman (2004) reported that for 
speech material presented at 10 dB SNR, the average speech 
intelligibility performance of CI recipients decreased to 70% 
on tasks using clean speech and to around 40% during tasks 
involving conversational speech. After the SNR level was 
lowered to 5 dB, recognition of conversational speech, on 
average, dropped to around 20%. The study by Fetterman and 
Domico (2002) revealed a similar trend when individuals 
fitted with Clarion and Nucleus devices were asked to iden-
tify speech in noise. On average, CI recipients’ sentence rec-
ognition scores decreased from 82% correct in quiet to73% at 
a 10 dB SNR level and to around 47% at 5 dB SNR.

Noise reduction as an additional device feature has been 
available in hearing aids since the late 1970s (e.g., see 

Bentler & Chiou, 2006). However, it was not until the mid-
1990s and shortly after the first digital hearing aids appeared 
in the United States that some early noise reduction schemes 
for use in CIs were proposed (e.g., see Hochberg, Boothroyd, 
Weiss, & Hellman, 1992; Weiss, 1993). In general, noise 
reduction algorithms, considered in studies with CI listeners, 
fall into one of two classes: single-microphone and multi-
microphone methods. Single-microphone approaches rely 
mostly on statistical models of speech and noise, and there-
fore can only differentiate between signals that have differ-
ent temporal and spectral characteristics (e.g., see Hu & 
Loizou, 2002; Hu, Loizou, Li, & Kasturi, 2007; Loizou, 
Lobo, & Hu, 2005; Yang & Fu, 2005). Single-microphone 
noise reduction strategies have received the greatest atten-
tion, presumably because traditionally most CI devices and 
their sound processors have typically used only one micro-
phone. Improving speech intelligibility in noise using just a 
single microphone is difficult, however, because single-
channel noise reduction methods may boost the SNR level 
but inevitably they may also incur distortion that could 
degrade speech. Attaining this balance between speech dis-
tortion and noise reduction is not always feasible.

Large improvements in SNR and therefore considerable 
benefits in speech intelligibility can be obtained when resort-
ing to multi-microphone noise reduction strategies, instead. In 
recent years, there has been a growing tendency toward the 
use of noise reduction methods that exploit multiple micro-
phones in digital hearing aids and CI devices (e.g., see Chung, 
2004; Chung, Zeng, & Acker, 2006; Greenberg & Zurek, 
1992; Kompis & Dillier, 1994; Kokkinakis & Loizou, 2008, 
2010; Levitt, 2001; Spriet et al., 2007; van Hoesel & Clark, 
1995; Wouters & Van den Berghe, 2001). Because in most lis-
tening scenarios, the target speech and the noise sources are 
located at different locations (positions) in space, such tech-
niques can better exploit the spatial diversity of speech and 
noise, in addition to their spectral and temporal differences. In 
applications affording use of spatially separated inputs, multi-
microphone noise reduction strategies can rely on the correla-
tion between signals received at spatially diverse sensors to 
identify noise and subtract it from the noisy speech.

In this review article, we identify and elucidate the most 
significant theoretical aspects that underpin single micro-
phone and multiple microphone noise reduction strategies 
for CIs. More analytically, we focus on strategies of both 
types that have been shown to be promising for use in current-
generation implant devices. We present data from past and 
more recent studies, and furthermore we outline the direction 
that future research in the area of noise reduction for CIs 
could follow.

Single-Microphone Noise Reduction
There are two types of noise reduction algorithms suitable 
for sound processing strategies in CI devices: one is based 
on preprocessing the noisy acoustic signals on the front-end 
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side located before the radio-frequency (RF) link, which 
transmits the audio stream to the internally implanted 
receiver. This approach is similar to speech enhancement 
currently used in most modern communication devices (e.g., 
cellphones). The other type of single-microphone noise 
reduction strategies is based on applying some form of 
attenuation directly on the noisy electrical envelopes.

Noise Reduction on Noisy Acoustic Inputs
Hochberg et al. (1992) and Weiss (1993) were the first to 
assess the effect of using a digital single-channel noise 
suppression algorithm (INTEL) to acoustically process 
noisy speech inputs in CIs. The enhanced acoustic stimuli 
obtained with the INTEL strategy were presented to normal-
hearing individuals and also to users of the Nucleus 22 
implant device. In both populations, INTEL was shown to 
reduce noise consistently over the entire range of the dif-
ferent input signal-to-noise ratios tested. In addition, 
results with consonant-vowel-consonant (CVC) words 
presented in speech-shaped random noise indicated that 
this noise reduction strategy could improve the phoneme 
recognition threshold of the implant group significantly. 
Much later, Yang and Fu (2005) found significant improve-
ments to sentence recognition in stationary speech-shaped 
noise at different SNRs in a group of seven CI users that 
were fitted with different CI devices. Figure 1 describes the 
general block diagram for noise reduction algorithms 
implemented in the frequency domain.

At the same time, Loizou et al. (2005) investigated the 
potential benefits of first preprocessing the noisy acoustic 
input with a custom subspace-based noise reduction 

algorithm. The subspace algorithm was originally developed 
for suppressing white input noise by Ephraim and Van Trees 
(1995) but was later extended to handle colored noise (e.g., 
speech-shaped noise) by Hu and Loizou (2002). The under-
lying principle of the subspace algorithm is based on the pro-
jection of the noisy speech vector (i.e., consisting of a 
segment of speech) onto two subspaces: the “noise” sub-
space and the “signal” subspace (Ephraim & VanTrees, 
1995). The noise subspace contains only signal components 
because of the noise, and the signal subspace contains pri-
marily the clean signal. Therefore, an initial estimate of the 
clean signal can be estimated by removing the components 
of the signal in the noise subspace and retaining only the 
components of the signal in the signal subspace. By doing 
this, noise can be, in most cases, suppressed to a large extent.

Loizou et al. (2005) summarized the mathematical treat-
ment for the subspace-based noise reduction algorithm as fol-
lows. Let y be the noisy speech vector, and let x– = H × y be 
the estimated clean speech signal vector, where H is the trans-
formation matrix for the estimation of clean speech signal. In 
essence, the noise reduction problem is formulated as that of 
finding a transformation matrix H, which would yield the 
estimated clean signal when applied to the noisy vector. After 
applying such a transformation to the noisy signal, the error 
between the estimated signal vector x- and the true clean sig-
nal vector x is expressed as: ε = x- − x = (H − I) × x + (H × n), 
where n is the noise vector. Because the estimated transfor-
mation matrix will not be perfect, it will introduce some 
speech distortion, which is quantified by the first error term 
(H − I) × x. In addition, the second error term (H × n) will 
quantify the amount of noise distortion introduced by the 
transformation matrix. Because the speech and noise 

Figure 1. Block diagram of single-microphone noise reduction methods based on preprocessing the noisy acoustic input signals
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distortion (as defined earlier) are decoupled, one can estimate 
the optimal transformation matrix H that would minimize the 
speech distortion subject to the noise distortion falling below 
a preset threshold. The solution to this constrained minimiza-
tion problem for the transformation matrix is presented more 
analytically in Hu and Loizou (2002).

The authors in Loizou et al. (2005) tested this subspace-
based noise reduction algorithm using HINT sentences 
(Nilsson et al., 1994) corrupted in speech-shaped noise at a 5 
dB SNR level. Speech intelligibility scores were obtained 
with 14 Clarion CI recipients and results were compared 
against the users’ standard sound processing strategy, either 
the continuous interleaved stimulation (CIS) strategy or the 
simultaneous analog stimulation (SAS) strategy. These find-
ings indicated that when switching to the subspace-based 
single-microphone noise reduction strategy almost all sub-
jects benefited from the noise reduction strategy and man-
aged to raise their speech perception scores significantly. 
These findings are presented more analytically in “Noise 
Reduction on Noisy Electrical Envelopes.”

Noise Reduction on Noisy  
Electrical Envelopes
The practice of preprocessing noisy acoustic inputs with a 
suitable noise reduction strategy has yielded modest but 
statistically significant results. However, such approaches to 
noise reduction have three main drawbacks: (1) preprocess-
ing algorithms often introduce unwanted acoustic distortion 
in the signal, (2) some algorithms (e.g., subspace algorithms) 
are computationally complex (and consequently power 
hungry) and fail to integrate well with existing CI strategies, 
and (3) it is not straightforward to always fine tune (or opti-
mize) the operation of a particular algorithm to individual 

users. Ideally, noise reduction algorithms should be easy to 
implement and be integrated into existing coding strategies. 
From a computational standpoint, the simplest way to over-
come these issues is to directly apply attenuation to the 
electrical envelopes according to the intensity contrast 
between the speech signal and noise signal. By transferring 
the energy in frequency channels directly to electric outputs 
we can reduce the limitations normally associated with 
acoustic waveform reconstruction.

Envelope-Weighting. Such a strategy that can efficiently sup-
press noise by attenuating electrical envelopes, while avoiding 
the intermediate acoustic waveform reconstruction stage is 
described in Figure 2. This practical algorithm can directly 
tackle noisy electrical envelopes and can therefore be easily 
integrated in existing strategies used in commercially avail-
able implant devices (Hu et al., 2007). The proposed algorithm 
is based on envelope-weighting of each spectral channel and 
therefore fits into the general category of algorithms that per-
form noise suppression by spectral modification (e.g., spectral 
subtraction, Wiener filtering). In this algorithm, the enhanced 
signal envelopes are obtained by applying a weight (taking 
values in the range 0-1) to the noisy envelopes of each chan-
nel. The weights are chosen to be inversely proportional to the 
estimated SNR of each channel. Envelope amplitudes in chan-
nels with a high SNR are multiplied by a weight close to one 
(i.e., left unaltered), whereas envelope amplitudes in spectral 
channels with a low SNR level are multiplied by a weight 
close to zero (i.e., heavily attenuated).

The underlying assumption is that channels with low 
SNR are heavily masked by noise and therefore contribute 
little, if any, information about the speech signal. As such, 
these low-SNR channels are heavily attenuated (or annihi-
lated) leaving only the high-SNR channels, which are likely 
to contribute more useful information to the listener. With 

Nonlinear
map

Compression 

w16= f(SNR16) 

w1=f(SNR1) 

w2=f(SNR2) 

BPF 1 LPF 

LPF 

BPF 16 LPF 

Bandpass 
Filters

Envelope
Detection

Nonlinear
map

Nonlinear
map

Envelope
Detection

Envelope
Detection

Rectifier

BPF 2 Rectifier

Envelope Detection 

Rectifier

Figure 2. Block diagram of single-microphone noise reduction methods based on attenuating the noisy electrical envelopes through 
envelope-weighting



106		  Trends in Amplification 16(2)

that in mind, we resort to weighting functions that apply 
heavy attenuation in channels with low SNR and at the same 
time little or no attenuation in channels with high SNR lev-
els (e.g., see Hu et al., 2007). An appropriate choice4 is the 
sigmoidal-shaped function g(i,ℓ) = exp(−b/SNR(i,ℓ)), where 
b = 2, g(i,ℓ) denotes the weighting function (0 < g(i,ℓ) < 1), 
and SNR(i,ℓ) denotes the estimated instantaneous SNR in 
the ith channel and at stimulation cycle ℓ. Following the 
weighting function computation, the enhanced temporal 
envelope can be subsequently obtained by using s(i,ℓ) = 
g(i,ℓ) × y(i,ℓ), where s(i,ℓ) represents the enhanced signal 
and y(i,ℓ) denotes the noisy envelope of the ith channel at 
stimulation cycle ℓ. As shown in Hu et al. (2007), the pro-
posed sigmoidal-shaped function is capable of providing 
significant benefits to CI users’ speech perception in noise, 
and much of the success of this algorithm can be attributed 
to the improved temporal envelope contrast. The sigmoidal 
function preserves the envelope peaks and also deepens the 
envelope valleys thereby increasing the effective envelope 
dynamic range within each channel.

Envelope-Selection. Although the noise suppression meth-
ods discussed earlier have shown promising results, there still 
exists a substantial performance gap between CI listeners’ 
speech recognition in noisy listening conditions and in quiet. 
This can be attributed mainly to the fact that it is not possible 
to accurately estimate the SNR at each frequency bin or each 
spectral channel. To circumvent this problem, Hu and Loizou 
(2008) proposed a noise reduction strategy that can operate 
under the assumption that the true SNR values in each spec-
tral channel are known a priori. Because the true SNR values 
are assumed to be known, each frequency channel (or equiva-
lent envelope) is selected only if its corresponding SNR is 
larger than or equal to 0 dB. In a similar vein, a channel with 
SNR level which is smaller than 0 dB is discarded.

The main idea is that spectral channels with low SNR 
values (e.g., SNR < 0 dB) contain mainly masker-dominated 
envelopes and therefore contribute little, if any, informa-
tion about the speech signal. However, channels with high 
SNR levels (e.g., SNR ≥ 0 dB) contain target-dominated 
envelopes and can be retained as they contain reliable 
information about the target input. The SNR envelope-
selection criterion can be implemented simply by multiply-
ing the noisy signal by a binary time-frequency (T-F) mask 
or equivalently a binary gain function to the electrical 
envelopes of the noisy stimuli. This approach was recently 
tested in CI listeners and the authors showed that the SNR 
channel-selection criterion is capable of restoring the 
speech intelligibility in noise for CI listeners to the level 
attained in quiet even at extremely low input SNR levels 
(e.g., −10 dB). For this reason, this strategy is referred to as 
the optimal ACE (opACE; see Hu & Loizou, 2008). It is 
also worth mentioning that different forms of such binary 
time-frequency (T-F) masks and other similar local channel-
selection criteria have been previously applied with much 
success to noise reduction for normal-hearing individuals 

(Brungart, Chang, Simpson, & Wang, 2006; Li & Loizou, 
2008) and reverberation suppression for CI listeners 
(Kokkinakis, Hazrati, & Loizou, 2011).

This envelope-selection strategy is promising; nonethe-
less, its implementation poses a considerable challenge in 
real-world applications. This is because of the fact that the 
SNR values for each spectral channel need to be estimated 
from the mixture envelopes (corrupted speech), which is a 
formidable task. In fact, Hu et al. (2007) showed that most 
conventional noise estimation algorithms perform poorly in 
estimating the SNR. These algorithms are derived by mini-
mizing a certain optimization criterion (e.g., mean-square 
error), and they are expected to perform well in all noisy 
environments, which is clearly an ambitious goal. In other 
words, conventional noise estimation algorithms are not 
optimized for a particular listening situation, and thus do not 
take into account the differences in temporal and spectral 
characteristics of real-world maskers.

In the study by Hu and Loizou (2010), an algorithm was 
designed to select channels for stimulation based on esti-
mated SNRs in each spectral channel. Rather than relying on 
knowledge of the local SNR, the authors proposed to take 
advantage of the distinctive temporal and spectral character-
istics of different real-world maskers, which can be learned 
by resorting to machine-learning techniques. The proposed 
noise reduction algorithm uses Gaussian mixture models 
(GMMs) to learn how to use the distinctive temporal and 
spectral characteristics of the different maskers in real world. 
The proposed algorithm consists of two steps: (1) a training 
stage and (2) a speech intelligibility enhancement stage. In 
the training stage, with access to the temporal envelopes of 
the speech signals (typically from a large corpus) and the 
masker signals, the SNRs are computed for each spectral 
channel, and the binary status of the channels being speech 
dominated (with a binary gain of 1) or being masker domi-
nated (with a binary gain of 0) is determined.

In the next step, the features extracted from the noisy 
mixture temporal envelopes, and the corresponding binary 
gains are used to train for each spectral channel two GMMs 
representing two corresponding feature classes: target-domi-
nated and masker-dominated. Note that in this stage features 
similar to amplitude modulation spectrograms (AMS) can be 
used (e.g., see Kollmeier & Koch, 1994; Tchorz & Kollmeier, 
2003). In the enhancement stage, a Bayesian classifier is 
used to classify the spectral channel into two classes using 
the extracted features: target-dominated and masker-domi-
nated. The appropriate electrode is then selected for stimula-
tion only when the spectral channel is target-dominated. 
Figure 3 depicts the block diagram of noise reduction meth-
ods based on envelope-selection as described in Hu and 
Loizou (2010).

Clinical Verification. The target speech stimuli used for test-
ing were sentences from the IEEE database (IEEE, 1969). 
Each sentence is composed of approximately 7 to 12 words 
and in total there are 72 lists of 10 sentences each produced 
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by a single talker. The root-mean-square amplitude of all 
sentences was equalized to the same root-mean-square value 
approximately 65 dBA.

Figure 4 shows subjects’ performance on identification of 
words in sentences corrupted by 5 dB speech-shaped noise 
(preprocessed by the subspace algorithm or left unprocessed). 
The mean score obtained using sentences preprocessed by the 
subspace algorithm was equal to around 44%, while the stan-
dard error of mean was 6.2%. On the contrary, the mean score 
obtained using unprocessed sentences was 19% and the stan-
dard error was 6.6% (Loizou et al., 2005). The sentence 
scores obtained with the subspace algorithm were signifi-
cantly higher than the scores obtained with the unprocessed 
sentences [F(1,13) = 33.1, p < 0.0005]. As it can be seen from 
Figure 4, most subjects benefited from the noise reduction 
algorithm. Subject SS4’s score, for instance, improved from 
0% correct to 40% correct. Similarly, subjects SS1 and SS2 
scores improved from roughly 0% to 50% correct. The above 
results indicate that the subspace algorithm can provide sig-
nificant benefits to CI users in sentence recognition in noise.

Figure 5 shows subjects’ performance on identification 
of words in sentences embedded in 5 dB SNR multitalker 

babble and processed by the proposed algorithm that 
applied signal-to-noise-ratio-based weighting to electric 
envelopes. The mean score obtained using sentences pre-
processed by the proposed SNR-weighting algorithm was 
approximately 39%, whereas the standard error of mean was 
equal to 4.7%. The mean score obtained using unprocessed 
(noisy) sentences was equal to almost 29% and the standard 
error was 5.2%. The difference in scores was significant 
(F(1,7) = 24.97, p = 0.002). As it can be seen from Figure 5, 
nearly all subjects (except S5) benefited from the proposed 
noise reduction algorithm.

Figure 6 shows subjects’ performance on identification of 
words in sentences corrupted by babble noise at 5 dB SNR 
level using environment-optimized noise reduction based on 
GMMs. Performance was measured in terms of percent of 
words identified correctly (all words were scored). Post hoc 
tests (Scheffe, corrected for multiple comparisons) were run 
to access the statistical significance between different condi-
tions. For all the noise conditions, the opACE strategy was 
significantly better than the GMM-based noise reduction 
algorithm. The highest performance was obtained with the 
opACE strategy. For all the noise conditions, performance 

Figure 3. Block diagram of single-microphone noise reduction methods based on attenuating the noisy electrical envelopes through 
envelope-selection
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with the unprocessed sentences (UN) was significantly lower 
than both the GMM-based noise reduction algorithm (GMM) 
and the opACE strategy.

Multi-Microphone Noise Reduction
Nowadays, an increasing number of profoundly deaf individ-
uals are being fitted bilaterally with bilateral CI (BCI) 
systems. Numerous studies conducted with BCI listeners sug-
gest that bilateral cochlear implantation can improve speech 
intelligibility in noise by up to 3 to 5 dB (e.g., see Tyler et al., 
2002; Litovsky et al., 2004; Loizou et al., 2009). Most bilat-

eral CIs are fitted with either two microphones in each ear or 
one microphone in each of the two (one per ear) behind-the-
ear (BTE) processors. The Nucleus Freedom processor, for 
instance, employs a rear omnidirectional microphone, which 
is equally sensitive to sounds from all directions, as well as an 
additional directional microphone pointing forward.5 In a 
directional microphone, sound waves originating from directly 
behind the listener are mechanically delayed through the use 
of a small screen (diaphragm), whereas sounds originating 
from the front are allowed to reach the port of the microphone 
unimpeded. Resorting to directional microphones provides an 
effective yet simple form of spatial processing.

In fact, a number of recent studies have shown that the 
overall benefit simply by adding a directional microphone in 
the prosthetic device can be about 3 dB within low reverbera-
tion settings when compared to processing with just an omni-
directional microphone (Chung et al., 2006; Wouters & Van 
den Berghe, 2001). The same effect of a considerably 
improved spatial directivity can be replicated with two omni-
directional microphones.6 In this case, in lieu of a mechanical 
diaphragm, a simple filter can be used to delay the signal 
entering the rear microphone. In both paradigms, the desired 
effect is that sounds from the front are left unimpeded, 
whereas sounds originating from directly behind the micro-
phone are completely canceled. This form of spatial process-
ing is particularly useful in typical noisy backgrounds where 
the target speaker is always assumed to be in the front of the 
listener and noise sources are spatially distributed in one or 
both hemifields.

The benefit in noisy backgrounds because of better spatial 
directivity can be increased even further by resorting to adap-
tive beamformers. Adaptive beamformers can somewhat effi-
ciently optimize the microphone inputs by steering nulls 

Figure 4. Subjects’ performance on identification of words in sentences embedded in 5 dB SNR speech-shaped noise and preprocessed by 
the subspace algorithm or left unprocessed. Subjects S1-S9 were Clarion CII patients and subjects SS1-SS5 were Clarion S-Series patients.

Figure 5. Subjects’ performance on identification of words in 
sentences embedded in 5 dB SNR multitalker babble (CIS+N) 
and processed by the proposed algorithm (SNR-W). Error bars 
indicate standard errors of the mean.
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toward sources of interference. Often this is done by adjusting 
the beamformer filter weights to minimize the output power 
subject to certain constraints for the desired direction, namely 
the “look” direction. Adaptive beamformers are extensions of 
differential microphone arrays, where the suppression of 
sources of interference is carried out by adaptive filtering of the 
signals at the microphones. A computationally attractive real-
ization of an adaptive beamformer is the generalized sidelobe 
canceller (GSC) structure (Griffths & Jim, 1982).

To evaluate the benefits of resorting to a multiple micro-
phone noise reduction for CI listeners, Spriet et al. (2007) 
investigated the performance of the BEAM strategy in the 
Nucleus Freedom speech processor with five CI users. The 
performance with the BEAM strategy was evaluated at two 
noise levels and with two types of noise, speech-shaped 
noise and multitalker babble. On average, the algorithm 
tested lowered the SRT by approximately 5 to 8 dB, as 
opposed to just using a single directional microphone to 
increase the direction-dependent gain of the target source. 
Such spatial processing strategies, as those found in the lat-
est CI sound processors, including traditional directional 
microphones and adaptive beamformers, have also been 
implemented in several of the latest hearing aid devices. The 
observed benefit of these strategies in hearing aids ranges 
from about 4 dB to almost 12 dB improvements in SNR. For 
instance, an increased SNR due to spatial processing has 
been shown to correspond to an improvement on speech rec-
ognition tasks in noise of about 40% to almost 70% (e.g., see 
Greenberg & Zurek, 1992; Kompis & Dillier, 1994; Levitt, 
2001; Ricketts, 2001, 2005). At the same time, although sig-
nificant, the observed improvement in speech intelligibility 
will depend largely on the spatial location or configuration 
of noise and target sources, as well as the amount of 

reverberant energy in the room. For instance, it has been 
shown that the performance of noise reduction strategies 
based on adaptive beamforming drops significantly even in 
moderately reverberant surroundings (e.g., see Greenberg & 
Zurek 1992; Kokkinakis & Loizou, 2007).

One popular solution to circumvent this problem, espe-
cially in reverberant listening situations, is to increase the 
number of microphones that are made available in the device. 
In the following sections, we describe noise reduction strate-
gies based on two and four microphones. Although, CIs do 
not operate on synchronized processors, and therefore there is 
no communication between the two sides so that auditory 
information can be processed in a coordinated mode, in our 
paradigm we assume that the CI devices in the left and right 
sides of the listener are synchronized such that auditory 
streams from both sides can be captured synchronously and 
processed together. Multi-microphone strategies can be classi-
fied into two different types, based on the total number of 
microphones available: (1) two-microphone bilateral, whereby 
we assume access to a total of two directional microphones (left 
and right) with each microphone placed on opposite sides of the 
head (Kokkinakis & Loizou, 2008) and (2) four-microphone 
bilateral, whereby we assume access to a total of four micro-
phones, namely two-omnidirectional (left and right) and two-
directional microphones (left and right) with each set of 
directional and omnidirectional microphones placed on oppo-
site sides of the head (Kokkinakis & Loizou, 2010).

Noise Reduction With Two Microphones
Two-Microphone Beamforming Strategy. The 2M2-BEAM 

noise reduction strategy utilizes the two-microphone BEAM 
running in an independent electrical stimulation mode. In 

Figure 6. Mean percent correct scores for babble noise at 5 dB SNR level. The error bars denote ±1 standard error of the mean. UN 
represents the condition for the unprocessed noisy speech, GMM represents the proposed GMM-based noise reduction algorithm, and 
opACE represents the opACE processing strategy.
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this stimulation mode, the left and right processors are 
unsynchronized. The 2M2-BEAM employs two (one per 
ear) BTE units furnished with one-directional and one-omni-
directional microphone each and is therefore capable of 
delivering the signals bilaterally to the CI user. In this para-
digm, each BEAM combines a directional microphone with 
an extra omnidirectional microphone placed closed together 
in an end-fire array configuration to form the target and noise 
references. The inter-microphone distance is usually fixed at 
8 mm (Patrick, Busby, & Gibson, 2006).

In the BEAM strategy,7 the first stage utilizes spatial 
preprocessing through an adaptive two-microphone sys-
tem that combines the front directional microphone and a 
rear omnidirectional microphone to separate speech from 
noise. The output from the rear omnidirectional microphone 
is filtered through a fixed finite impulse response (FIR) fil-
ter. The output of the FIR filter is then subtracted from an 
electronically delayed version of the output from the front 
directional microphone to create the noise reference (Spriet 
et al., 2007; Wouters & Van den Berghe, 2001). The filtered 
signal from the omnidirectional microphone is then added to 
the delayed signal from the directional microphone to create 
the speech reference. This spatial preprocessing increases 
sensitivity to sounds arriving from the front while suppress-
ing sounds that arrive from the sides. The two signals with 
the speech and noise reference are then fed to an adaptive 
filter, which is updated with the normalized least-mean-
squares (NLMS) algorithm in such a way as to minimize the 
power of the output error (Greenberg & Zurek, 1992). The 
2M2-BEAM strategy is currently implemented in commer-
cially available bilateral CI processors, such as the Nucleus 
Freedom and the new Nucleus 5 sound processor (CP810).

Two-Microphone Spatial Separation Strategy. The two-micro-
phone spatial enhancement via source separation (2M-SESS) 
strategy can be classified as a two-microphone binaural strat-
egy, because it relies on having access to a total of two direc-
tional microphones (left and right) with each microphone 
placed on opposite sides of the head. This configuration is 

illustrated in Figure 7(a). Here, we assume that the CI devices 
in the left and right sides can be synchronized such that audi-
tory streams from both sides can be captured synchronously 
and processed together. As outlined in Figure 8, the 2M-SESS 
strategy operates by estimating a total of four adaptive linear 
filters that can undo the mixing effect by which two composite 
signals are created when the target and noise sources propa-
gate inside a natural acoustic environment. The 2M-SESS can 
spatially separate and further suppress noise and hence the CI 
user can maximize speech intelligibility by focusing only on 
the extracted target source. Although in principle one can 
allow the CI user to select which enhanced signal output to 
listen to, the 2M-SESS strategy is implemented so that it can 
reject the interferer and deliver only the recovered speech 
waveform diotically to the listener.

To adaptively estimate the unmixing (or separating) filters, 
the 2M-SESS strategy employs the frequency-domain natural 
gradient algorithm (FD-NGA) described in Kokkinakis and 
Nandi (2006). The 2M-SESS strategy runs in an adaptive off-
line mode and relies on a multipass processing scheme. 
Therefore, the filter estimation is performed iteratively over a 
block of data and the estimates obtained in the last iteration 
are then used to process the same data blocks. That is, the 
same blocks of data are reused. This is a strategy typically 
employed in adaptive algorithms to obtain sufficiently good 
estimates of the filters. This scheme is not amenable to real-
time implementation, and thus it can be used only when large 
amounts of training data are available.

Noise Reduction With More Than Two 
Microphones

Four-Microphone Spatial Separation Strategy. The four-
microphone spatial enhancement via source separation 
(4M-SESS) processing strategy is the two-stage multi-micro-
phone extension of the conventional BEAM noise reduction 
approach. It is based on co-ordinated or cross-side stimulation 
by collectively using information available on both the left and 

Figure 7. (a) Two-microphone (one per side) bilateral and (b) four-microphone (two per side) bilateral configuration
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right sides. The 4M-SESS can be classified as a four-micro-
phone binaural strategy, because it relies on having access to 
four microphones, namely two omnidirectional (left and 
right) and two directional microphones (left and right) with 
each set of directional and omnidirectional microphones 
placed on opposites sides of the head. This particular arrange-
ment is depicted in Figure 7(b).

As outlined schematically in Figure 9, in the 4M-SESS bin-
aural processing strategy, the speech reference on the right side 
is formed by adding the input to the left omnidirectional micro-
phone to the delayed version of the right directional micro-
phone signal and the noise reference on the right is estimated 
by subtracting the left omnidirectional microphone signal from 
a delayed version of the right directional microphone signal. In 
a similar manner, to create the speech reference signal on the 
left side, the signals from the left directional microphone and 
right omnidirectional microphone are summed together. The 
noise reference on the left side is formed by subtracting the 
right omnidirectional microphone signal from a delayed ver-
sion of the left directional microphone signal. Now by assum-
ing that the noise source is placed on the right of the listener, 
this procedure leads to a signal with an amplified noise level on 
the right side but also yields an output with a substantially 
reduced noise level in the left ear. After processing the micro-
phone signals containing two speech and two noise reference 
signals binaurally with one BEAM processor per ear, the two 

microphone outputs from the two BEAM processors contain-
ing the generated speech and noise reference signals are 
enhanced further by employing a BSS strategy.

The 4M-SESS strategy is the four-microphone online 
extension of the two-microphone algorithm in Kokkinakis 
and Loizou (2008) and unlike the 2M-SESS strategy is ame-
nable to real-time implementation. The 4M-SESS strategy 
operates by estimating a total of four FIR filters that can 
undo the mixing effect by which two composite signals are 
generated when the target and noise sources propagate 
inside an acoustic environment. The filters are computed 
after only a single pass with no additional training. The 
4M-SESS strategy operates on the premise that the target 
and noise source signatures are spatially separated and thus 
their individual form can be retrieved by minimizing the sta-
tistical dependence between them.

In statistical signal processing theory, this configuration 
is referred to as a fully determined system, where the num-
ber of independent sound sources is equal to the number of 
microphones available for processing. Initializing the filters 
used in the 4M-SESS strategy with those obtained with each 
of the two BEAMs results in a substantial reduction in the 
total number of filter coefficients required for adequate 
interference rejection and substantially speeds up the con-
vergence of the algorithm. Similarly to the 2M-SESS strat-
egy, the implementation of the 4M-SESS strategy requires 
access to a single processor driving two CIs, such that sig-
nals from the left and right sides are captured synchronously 
and processed together.

Figure 8. Block diagram of the 2M-SESS noise reduction 
processing strategy

Figure 9. Block diagram of the 4M-SESS noise reduction 
processing strategy
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Clinical Verification. The target speech stimuli used for test-
ing were sentences from the IEEE database (IEEE, 1969). 
Each sentence is composed of approximately 7 to 12 words 
and in total there are 72 lists of 10 sentences each produced 
by a single talker. The root-mean-square amplitude of all 
sentences was equalized to the same root-mean-square 
value approximately 65 dBA. Every sentence in the IEEE 
speech corpus that was produced by a male talker was des-
ignated as the target speech. The simulated target location 
was always placed directly in front of the listener at a 0° 
azimuth. Subjects were tested in conditions with either one 
or three interferers. In the single interferer conditions a sin-
gle speech-shaped noise source was presented from the right 
side of the listener (+90°). In the condition where multiple 
interferers were present, three interfering noise sources 
were placed on the right side only (30°, 60°, 90°).

The noisy stimuli in the case of a single interferer were 
processed with the following stimulation strategies: (1) uni-
lateral presentation using the unprocessed input to the direc-
tional microphone on the side ipsilateral to the noise source, 
(2) bilateral stimulation using the unprocessed inputs from 
the two-directional microphones, (3) bilateral stimulation 
plus noise reduction using the 2M2-BEAM strategy, and (4) 
diotic stimulation plus noise reduction using the 4M-SESS 
processing strategy. The noisy stimuli generated when three 
interferers were processed with the following processing 
strategies: (1) bilateral stimulation using the unprocessed 
inputs from the two directional microphones, (2) bilateral 
stimulation plus noise reduction using the 2M2-BEAM strat-
egy, and (3) diotic stimulation plus noise reduction using the 
4M-SESS processing strategy.

Speech intelligibility scores obtained with the 2M2-BEAM 
and 4M-SESS multi-microphone noise reduction strategies are 
shown in Figure 10 (one interferer) and Figure 11 (three inter-
ferers). As shown in Figure 10, when the single noise source 
arrives from the side ipsilateral to the unilateral CI, speech 
understanding in noise was quite low for all subjects when pre-
sented with the input to the fixed directional microphone. 
Although one would expect that processing with a directional 
microphone alone would result in a more substantial noise sup-
pression this is not the case here. In contrast, improvements in 
speech understanding were obtained when listeners were rely-
ing on using both CI devices. When compared to the unpro-
cessed unilateral condition, the mean improvement observed 
was 14 percentage points due to processing when the SNR was 
fixed at 5 dB in the single interferer scenario.

As expected, the bilateral benefit was smaller when mul-
tiple noise sources were present (see Figure 11). In con-
trast, the 4M-SESS strategy yielded a considerable benefit 
in all conditions tested and for all five subjects. As evi-
denced from the scores plotted in Figures 10 and 11, the 
observed benefit over the subjects’ daily strategy ranged 
from 30 percentage points when multiple interferers were 
present to around 50 percentage points for the case where 
only a single interferer emanated from a single location in 

space. This improvement in performance with the proposed 
4M-SESS strategy was maintained even in the challenging 
condition where three noise sources were present.

In addition, the overall benefit after processing with the 
4M-SESS processing strategy was significantly higher than 
the benefit received when processing with the binaural 
2M2-BEAM noise reduction strategy. In both the single and 
multinoise source scenarios the 4M-SESS strategy employing 
two contralateral microphone signals led to a substantially 
increased performance, especially when the speech and the 
noise source were spatially separated. The observed improve-
ment in performance with the 4M-SESS strategy can be attrib-
uted to having a more reliable reference signal. In essence, 
combining spatial information from all four microphones 
forms a better representation of the reference signal, leading to 
a better target segregation than that made available with only 
a monaural input or two (independent) binaural inputs.

Future Directions
CI devices provide a high level of functional hearing to deaf 
patients, and the sophistication of the implant hardware con-
tinues to improve rapidly. In fact, the most significant 
advances in CI performance over the past 20 years have 
been made because of improvements in basic CI technology, 
such as faster speech processors and more electrodes (e.g., 
see Zeng, Rebscher, Harrison, Sun, & Feng, 2008). Below, 
we propose some potential avenues for further investigation 
into next-generation sound processors:

Multicore processors. A cochlear implant is a type of 
battery-powered embedded system, and power consumption 

Figure 10. Percent correct scores by five Nucleus 24 users 
using both CI devices tested on IEEE sentences originating from 
the front of the listener (0° azimuth) and embedded in a single 
speech-shaped noise source placed on the right side of the 
listener (+90°). Error bars indicate standard deviations.
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is among the most critical factors to consider during product 
design.8 For this reason, compared to other modern electronic 
devices (e.g., smartphones) that run between 1 and 2 GHz 
clock speeds, many cochlear implant sound processors need to 
maintain a low-power profile operation and are therefore 
clocked on speeds below 100 MHz. This amounts to a differ-
ence in computational power of a factor that ranges between 
10 and 20. For instance, in the last few years, cochlear implants 
users have lived in world of limited computational power and 
devices that provide a fairly limited budget of at most 120 to 
180 million-instructions-per-second (MIPS) (e.g., see Pat-
rick et al., 2006; Zeng et al., 2008). Such slow clock speeds 
have made it difficult for developers to integrate single-
microphone and multi-microphone noise suppression strate-
gies for real-time signal processing in current sound 
processors. We believe that the next phase of improvements 
in cochlear implant performance can come from incorporat-
ing high-performance9 multicore processors to process sig-
nals and routines in parallel with one another. By having 
multiple cores to work with, software designers can dedicate 
groups of processors assigned to specific tasks. For instance, 
a number of cores can be dedicated to performing highly 
computationally intensive audio processing, whereas other 
cores could handle wireless interfaces, external memory, and 
user interface functions. A fairly powerful 40-core asynchro-
nous processor running on clock speeds in excess of 700 
MHz while delivering approximately 25,000 MIPS that 
could potentially be used in next-generation auditory pros-
theses was recently made commercially available (Intella-
sys, 2009).

Alternative manufacturing technologies.  Investigate the 
application of alternative design and manufacturing 

principles for next-generation sound processors by resorting 
to application-specific integrated circuits (ASICs). To our 
knowledge, current sound processors used in HA and CI 
devices today are typically built using older-generation 
ASIC technologies, which consume significantly more 
power when compared to more efficient state-of-the-art 
ASIC chips (Zeng et al., 2008). Recent advances in bipolar 
metal oxide semiconductor (BiMOS) fabrication technolo-
gies and silicon-germanium-on-insulator (SGOI) chips are 
making the design and implementation of faster and more 
efficient internal ASICs more feasible than ever before. In 
fact, experimental prototypes of such next-generation low-
power and small-scale sound processors for cochlear implant 
devices have been recently developed (e.g., see Sit et al., 
2007). These devices have been shown to significantly extend 
battery life while still benefiting a considerable boost in com-
putational power. We believe that technological advances in 
this front could enable other computationally powerful and 
power-efficient fully neural stimulating interfaces to be 
developed, thus bringing them a step closer to universal 
accessibility and widespread clinical use.

Mobile and cloud computing. Recent advances in mobile 
and cloud computing, if taken advantage, may enable 
future speech processors with access to almost unlimited 
computational resources by establishing a wireless-based 
connection to the Internet. Over the next years, we envi-
sion such low-cost, low-power speech processors for use 
in cochlear implant devices, with enhanced mobile con-
nectivity and Internet functionality. Today, a very large 
number of commercially available hearing aid devices 
offer Bluetooth wireless connectivity. Bluetooth-enabled 
hearing aids currently use wireless technology either for 
communication between the two sides or for connecting 
to other Bluetooth-enabled devices (e.g., see Burrows, 
2010). The strong adoption of Bluetooth technology by 
today’s hearing aid manufacturers strongly suggests that a 
similar trend could be followed in next-generation 
cochlear implants soon. The advantages of such function-
ality are numerous. In principle, Bluetooth wireless con-
nectivity could be used to relay information from the 
sound processor to a smartphone10 or any other wireless 
platform. By establishing a Bluetooth connection with an 
Internet capable handheld device, the sound processor on 
the implant device could then relay (or stream) data for 
real-time processing on the smartphone itself. Alterna-
tively, the sound processor could use the smartphone 
device to wirelessly submit data to a dedicated Internet-
based computing platform for further processing. In the-
ory, next-generation sound processors could rely entirely 
on cloud computing systems to compensate for the lack of 
advanced hardware and storage capabilities.

Wireless binaural links. Bilateral electrical stimulation is 
far superior to monaural stimulation, and bilateral cochlear 
implants (BCIs) offer considerable advantages over monau-
ral fittings. This is due to the ability of BCIs to reinstate, at 

Figure 11. Percent correct scores by five Nucleus 24 users using 
both CI devices tested on IEEE sentences originating from the 
front of the listener (0° azimuth) and embedded in three speech-
shaped noise sources distributed on the right side of the listener 
(30°, 60°, 90°). Error bars indicate standard deviations.
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least to some extent, the interaural amplitude and timing dif-
ference cues that allow people with normal hearing to later-
alize sounds in the horizontal plane and to attend selectively 
to a primary auditory input (e.g., speech), among multiple 
other sound sources at different locations (e.g., see Kokkina-
kis & Loizou, 2010; Litovsky et al., 2004; Litovsky, Parkin-
son, & Arcaroli, 2009). Nowadays, individuals fitted with 
BCIs can achieve high open-set speech recognition scores of 
80% or higher from having two ears stimulated instead of 
one. In addition, as discussed previously (see “Multi-Micro-
phone Noise Reduction”), cochlear implant systems that 
come with sound processors equipped with multiple micro-
phones, have been shown to provide reasonable improve-
ments in speech intelligibility even in challenging noisy 
listening settings. Still, in all bilateral paradigms available 
today, there are two independently operating devices on the 
left and right ears. To experience the true benefits of binaural 
hearing, the two sound processors (left and right) need to 
collaborate with one another to ensure that binaural cues are 
presented in a consistent manner to the implant user. To fully 
realize binaural hearing functionality, we could potentially 
rely on a wired link between the two devices. Such a scheme, 
however, may be unacceptable to some users from an aes-
thetic point of view. This makes the use of a wireless link the 
most viable alternative. In the presence of an ear-to-ear wire-
less binaural link, a simple practical scheme would be to 
transmit all the microphone signals from one ear to the other 
in order to obtain a better estimate of the desired target sig-
nal. Instead, a more intelligent scheme that would only select 
specific auditory input streams from the left and right micro-
phones could be implemented. In both cases, optimizing 
which microphone signals to transmit would be critical; 
especially since wireless transmission of speech data can be 
power intensive. The potential of such schemes in restoring 
spatial cues necessary for binaural perception needs to be 
assessed. The investigation of such binaural strategies that 
rely on reduced transmission bandwidths for use in next-
generation bilateral devices is currently underway in our 
laboratories.
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Notes

  1.	 Intelligibility is an objective measure, which measures the per-
centage of spoken words that can be correctly identified by 
a listener. In contrast, speech quality is highly subjective in 
nature and is indicative of the extent to which the listener is 
comfortable with the speech signal. These two measures may 
not always correlate well (e.g., see Loizou, 2007; Kim, Lu, Hi, 
& Loizou, 2009).

  2.	 According to the Food and Drug Administration (FDA), as 
of May 2010, approximately 200,000 people worldwide have 
received implants. In the United States, roughly 45,000 adults 
and around 25,500 children have received cochlear implants. 
There are currently three cochlear implant systems in use in 
the United States: (1) the Harmony processor and the HiRes 
90K (repackaged Clarion CII device) implant manufactured 
by the Advanced Bionics Corporation in Sylmar, CA; (2) 
the Nucleus 5 system with the CP810 sound processor and 
CI 512 implant manufactured by Cochlear Limited in Syd-
ney, Australia; and (3) the OPUS 2XS sound processor and 
the CONCERTO implant system manufactured by MED-EL 
Corporation in Innsbrook, Austria. These devices vary in size, 
water resistivity, and reliability. They also differ in the input 
dynamic range (IDR), stimulation rate (temporal resolution), 
number of electrodes (spectral resolution), type of processor, 
and sound processing strategies they use.

  3.	 The speech reception threshold (SRT) is defined as the signal-
to-noise ratio (SNR) necessary to achieve 50% intelligibility. In 
general, high SRT values correspond to poor speech intelligibility.

  4.	 Note that this specific function is fairly suitable because it has 
a sigmoidal shape similar to the human listener’s psychometric 
function of intelligibility versus SNR.

  5.	 Microphones operate by sensing the pressure difference on 
either side of a thin sheet known as a diaphragm. Ultimately, 
there are really only two fundamental microphone types—
omnidirectional and directional. Omnidirectional microphones 
are designed to be equally sensitive to sounds arriving from 
all directions, without essentially aiming to favor one direc-
tion over another, while directional microphones are sensitive 
to sounds emanating from only one direction and reject sounds 
coming from different azimuths outside the desired pickup area 
(polar pattern) (e.g., see Chung, 2004; Chung et al., 2006).

  6.	 Unlike the Nucleus Freedom sound processor which uses 
an omnidirectional micro-phone plus a hardware dual-port 
directional microphone, the new Nucleus 5 sound processor 
(CP810) uses two-omnidirectional microphones which can 
be combined to produce several directional responses. The 
CP810 dual omnidirectional microphones are more flexible to 
control and can more accurately tune the directional patterns 
to create an optimal speech and noise reference.

  7.	 For a more thorough explanation of the BEAM strategy, the 
reader is referred to Spriet et al. (2007).

  8.	 The power consumption of the most recent Nucleus 5 sound 
processor (CP810) by Cochlear Americas ranges from 20 mW 
to around 100 mW (Cochlear Limited, 2009).



Kokkinakis et al.	 115

  9.	 In the past, devices from Cochlear have used low-performance 
multicore processors.

10.	 According to recent survey data published by Pew Research 
Center’s Internet and American Life Project on smartphone 
adoption and usage, among all cellphone owners tested, 35% 
of all American adults own a smartphone as of 2011. More 
interestingly, the same study documents evidence of a strong 
trend towards increased smartphone ownership among those 
respondents who are aged between 18 to 24 and 25 to 34 with 
the percentages of ownership being 50% and 58%, respectively 
(Smith, 2011). Based on this data, it is very likely that a large 
number of future cochlear implantees will also own a smart-
phone.
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