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ABSTRACT

The prediction of protein coding genes is an import-
ant step in the annotation of newly sequenced and
assembled genomes. AUGUSTUS is one of the most
accurate tools for eukaryotic gene prediction. Here,
we present WebAUGUSTUS, a web interface for
training AUGUSTUS and predicting genes with
AUGUSTUS. Depending on the needs of the user,
WebAUGUSTUS generates training gene structures
automatically. Besides a genome file, either a file
with expressed sequence tags or a file with protein
sequences is required for this step. Alternatively, it
is possible to submit an externally generated
training gene structure file and a genome file. The
web service optimizes AUGUSTUS parameters
and predicts genes with those parameters.
WebAUGUSTUS is available at http://bioinf.uni-
greifswald.de/webaugustus.

INTRODUCTION

The structural annotation of protein coding genes serves
as a basis for many further steps in the analysis of
sequenced and assembled eukaryotic genomes. Many of
the currently available gene prediction tools rely on
stochastic models incorporating usually several thou-
sands of parameters. These parameters need to be
adapted to species-specific traits to achieve most
accurate gene prediction results. With the exception of
self-training methods [e.g. the command line tool
GeneMark-ES (1)], parameters are usually adapted
using a set of already annotated genes in the target
genome; here, we refer to those gene structures as
training genes.

Training genes can for instance be built from alignments
of expressed sequence tags (ESTs) or protein sequences
against the target genome. For example, the initial
training genes for annotating the genome of
Amphimedon queenslandica were generated from EST
alignments (2), and protein sequences were used for
generating training genes for Coprinus cinerea (3).

Scripts or tutorials for training gene finders are often
available for non-commercial gene finders. A skilled
bioinformatician should currently for example be able to
train and execute SNAP (4), AUGUSTUS (5,6), mGene
(7) and GeneID (8). However, installing required software
and training a gene prediction tool can be difficult for
inexperienced users, as basic programming skills are
often required (9).
This problem was already recognized by Schweikert

et al. (10), who developed mGene.web. Their web service
was supposed to enable software users without
programming skills to train and execute the gene predic-
tion tool mGene. However, at the time of submission of
this manuscript, mGene.web was temporarily not fully
functional because it was being migrated to a new sever.
Independent accuracy assessments have shown that

AUGUSTUS belongs to the most accurate gene finding
tools (11,12). Training AUGUSTUS for a novel species
has up to now been challenging for many users. Therefore,
we here describe WebAUGUSTUS, a web service for
automated training gene structure generation, training
AUGUSTUS and predicting genes with AUGUSTUS.

WEB SERVICE

WebAUGUSTUS provides two web interfaces:

(1) AUGUSTUS Training generates training gene struc-
tures, trains AUGUSTUS and predicts genes with
AUGUSTUS in a fully automated way.

(2) AUGUSTUS Prediction predicts genes with
AUGUSTUS in genomic sequences using already
trained parameters.

AUGUSTUS Training

To date, AUGUSTUS has been trained by experts for
>50 species. The parameter files are publicly available
and can be applied across program versions of
AUGUSTUS for predicting genes in genomic sequences
of those 50 species and for species that are not distantly
related to all of those 50 species. The AUGUSTUS
Training web server application can be used to optimize
AUGUSTUS parameters for novel species.
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Input
The AUGUSTUS Training web interface offers three dif-
ferent data set options for training AUGUSTUS (further
referred to as optA, optB and optC), which require differ-
ent input file combinations:

optA Fully automated training gene structure generation
on the basis of a genome and a cDNA file requires
both files in fasta format.

optB Fully automated training gene structure generation
on the basis of a genome and protein sequence file
requires both files in fasta format.

optC Already existing training gene structures can be
submitted in gene transfer format (gtf) or
genbank format in addition to a genome file in
fasta format.

Genome files should contain high-quality genomic se-
quences (long scaffolds or contigs that can encode for
complete genes are required). cDNA files may contain
ESTs or assembled full-length cDNA sequences. Protein
files should contain full-length protein sequences. We rec-
ommend that cDNA files and protein files originate from
the same species as the target genome file. In some cases,
data from close relatives (�95% protein sequence identity)
might also lead to good results, but more frequently, it is
not possible to generate a sufficient amount of training
genes from using another’s species proteins. Externally
prepared training gene structures should contain
complete gene structures, only (i.e. no parts of the
coding sequence should be missing).

Software
The AUGUSTUS Training web service provides an inter-
face to a Perl pipeline called AutoAug.pl (available at
http://bioinf.uni-greifswald.de/augustus/binaries/scripts).
If invoked with data from optA, autoAug.pl assem-

bles cDNA sequences into gene structures using PASA
(13). AUGUSTUS parameters are optimized using those
gene structures. After successful training, ab initio gene
prediction in the genome file is performed. Subsequently,
the cDNA sequences are used to create hints for
AUGUSTUS using BLAT (14), and genes are predicted
using the extrinsic cDNA information as described previ-
ously (6). If possible, training examples for untranslated
regions (UTRs) are assembled from cDNA information
and predicted protein coding regions, and UTR-param-
eters for AUGUSTUS are trained. After this second
training step, genes are predicted with the beforehand
created hints and UTRs.
In case of data from optB, Scipio (15) is used to

generate training gene structures from alignments of
protein sequences to the genome. AUGUSTUS param-
eters are optimized using those gene structures. After suc-
cessful training, ab initio gene prediction in the genome file
is performed.
If data from optC is submitted, AUGUSTUS param-

eters are trained, and meta parameters, such as splice site
window sizes, are optimized using the provided training
gene structures. Afterwards, genes are predicted ab initio
in the genome sequences.

It is also possible to submit a genome file, a cDNA file
and a protein file. In that case, the same steps as in case
optB are performed, but in addition, hints are created
from the cDNA sequences as described in optA, and
genes are predicted with this extrinsic evidence.

Reasonable training of AUGUSTUS parameters will
require at least several hundreds of training gene struc-
tures. WebAUGUSTUS will not start training with
�100 training gene structures.

Output
One major goal of the Training web interface is to return
parameters that are optimized for predicting genes in a
genomic sequence of a species of interest with
AUGUSTUS. These can be used without retraining to
predict genes when new assemblies or new transcript se-
quences are available. In addition, gene predictions ac-
cording to the different workflows described for optA,
optB and optC will be returned if possible.

All jobs will return a log-file AutoAug.log and an
error-file AutoAug.err. It is generally recommended
that users inspect these files before they continue to
work with other results files.

If AUGUSTUS training was possible, an archive par-
ameters.tar.gz with AUGUSTUS parameters is
returned. After download and extraction, this archive can
be used within a local AUGUSTUS installation. In
addition, parameter sets that were trained via the
AUGUSTUS Training web interface are immediately avail-
able to the AUGUSTUS Prediction web service for future
predictions. The web service also returns compressed
training gene structures in genbank format that were used
for optimizing the parameter set (training.gb.gz).

In case of successful gene prediction, compressed gene
prediction archives are returned. Possible gene prediction
archives are listed in Table 1. Ab initio gene prediction will
always be performed after successful training. Predictions
with hints will only be performed if a cDNA file was
provided, and if it was possible to generate hints from
aligning the contained sequences against the genome.
Predictions with UTRs will only be provided if it was
previously possible to train UTR parameters for
AUGUSTUS.

All gene prediction archives contain at least one file in
general feature format (gff). If no genes were predicted,
this will be the only file. If it was possible to predict genes,
gene structures are also contained in gtf- and gbrowse-
format. Furthermore, predicted amino acid sequences,
coding sequences and exons of coding sequences in fasta
format are then contained in a prediction archive. If UTR
parameter optimization was possible, the predicted
mRNA sequences are additionally contained in fasta
format. Table 2 summarizes files that can be contained
in gene prediction archives.

AUGUSTUS Prediction

The new AUGUSTUS Prediction web service is directly
connected to a database that stores species-specific param-
eters that were trained by using the Training web service,
i.e. if a user has trained AUGUSTUS parameters via
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WebAUGUSTUS, those parameters are instantly avail-
able for predicting genes in more genomic sequences by
using the AUGUSTUS Prediction webinterface.

Input
Gene predictions are performed in a provided genome file
in fasta format. Additionally, a parameter set must be
specified (either via training job ID or by selection from a
drop-down menu with expert-trained parameters, or by up-
loading an externally trained parameter archive). Parameter
sets that were trained usingWebAUGUSTUS are identified
via an ID (trainxxxxxxxx) that is only available to the user
who performed the training (the chances of guessing the
parameter ID of a training job are roughly 1:1014).

Optionally, users may upload a file with cDNA se-
quences that will be used to automatically generate hints
or an externally created hints file in AUGUSTUS-specific
gff-format.

Checkboxes offer the functionality of enabling UTR
prediction (only possible if UTR parameters for the
species in question exist), reporting genes on certain
strands, enabling alternative transcripts and allowed pre-
dicting gene structures (e.g. only complete genes or
complete and partial genes).

Software
If a cDNA file was provided, WebAUGUSTUS will use
BLAT to align the cDNA sequences to the genome. The

alignments are converted to hints. In any case,
AUGUSTUS will be executed with arguments that
match the user-specified requirements. In contrast to the
Training web service, which automatically tries to run
many subsequent prediction steps, the AUGUSTUS
Prediction web service will run only exactly one gene pre-
diction job at a time.

Output
After WebAUGUSTUS has finished a gene prediction
job, prediction results will be available for download in
a compressed archive that contains at least a gff-file,
but may optionally also contain the other files listed in
Table 2.

Implementation

AUGUSTUS and parts of the training routine are imple-
mented in C++, the wrapping pipeline is implemented in
Perl. The web service is implemented in Grails. Submitted
jobs are scheduled via a Sun Grid Engine. Currently, eight
jobs can be executed in parallel.
According to its license, BLAT is freely available

for academic, non-profit and personal use.
Commercial users are, therefore, not allowed to use
WebAUGUSTUS for processes that involve the usage of
BLAT. That means, commercial users are only allowed to
run AUGUSTUS Training with externally generated
training gene structures, and the submission of cDNA
files is not allowed for commercial users in AUGUSTUS
Training and Prediction.

MATERIALS AND METHODS

Prediction accuracy with parameters trained by
WebAUGUSTUS and by human experts was measured
using three different data sets. For optA, the genome of
the insect Drosophila melanogaster (assembly BDGP R5/
dm3) and 818 005 ESTs from the same species that were
obtained from the National Center for Biotechnology
Information (NCBI) were used. OptB was evaluated
using the genome of the plant Arabidopsis thaliana
(assembly TAIR 10) and 35 375 protein sequences of the
same species that were obtained from NCBI. OptC was
evaluated using the genome of the worm Caenorhabditis
elegans and 18 555 training gene structures retrieved from
Wormbase (16).
To avoid an overly optimistic performance estimate for

the new genes, the chromosomes of all genomes [for fly
and plant downloaded from the UCSC Genome Browser
database (17)] were split into two parts in such a way that
�50% of the genes were located on the first half, and the
remaining genes were located on the second half. The
second part of all chromosomes was used as a genomic
input sequence for training AUGUSTUS, whereas the
first part served for accuracy assessment opf gene
predictions.
For D.melanogaster, protein coding genes from FlyBase

(18), for A. thaliana, protein coding genes from TAIR 10
(19) and for C. elegans, protein coding genes from

Table 2. Compressed gene prediction output archives generated by

WebAUGUSTUS may contain files with the following file endings

File name ending Description

*.gff Predictions in gff format
*.gtfa Predictions in gtf format
*.aaa Predicted amino acid sequences in fasta

format
*.codingseqa Predicted coding sequences in fasta format
*.cdsexonsa Predicted exon sequences in fasta format
*.mrnaa,b Predicted mRNA sequences in fasta format
*.gbrowsea Gene predictions formatted as a track for

GBrowse

aFiles are only produced if at least one gene was predicted.
bFile is only produced if it was possible to train UTR parameters for
AUGUSTUS, and in case of AUGUSTUS Prediction, only if UTR
prediction was explicitly enabled.

Table 1. Compressed gene prediction archives of AUGUSTUS

Training

Archive name Description

ab_initio.tar.gzoptA,optB,optC Ab initio predictions
pred_hints.tar.gzoptA Predictions with hints from

cDNAs
pred_hints_utr.tar.gzoptA Predictions with UTRs and

hints from cDNAs

All successful runs of AUGUSTUS Training will return an ab initio
archive. The other two archives are only returned if a cDNA file for
hint generation was provided. Predictions with UTR are only possible
after successful UTR parameter training.
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Wormbase were used as a reference annotation for
measuring accuracy.
The exact source of all data sets and the files used for

the actual experiments are described in detail in
Supplementary Materials, section Supplementary
Methods: Data Sets.
Commonly used measures of accuracy (measured in

percent) in gene prediction are

Sensitivity ¼
TP

TP+FN
and Specificity ¼

TP

TP+FP

where TP stand for true positives, i.e. the number of pre-
dicted features that agree with the gold-standard refer-
ence, FN stands for false negatives, i.e. the number of
features that were overseen by the predictor and FP
stands for false positives, i.e. the number of features that
were predicted but not in agreement with the reference
annotation.
Sensitivity and specificity were measured for the

features gene (i.e. only a gene structure that was predicted
correctly including the exact positions of all CDS exons
was counted as TP), exon (i.e. only exons that were pre-
dicted correctly were counted as TP) and nucleotide (i.e.
every correctly predicted nucleotide was counted as TP).

RESULTS

Ab initio gene prediction accuracy results from training
and gene prediction via WebAUGUSTUS are shown in
Table 3. Additionally, we show gene prediction accuracy
obtained with parameter sets that were trained by experts.
Here, performance depends on the amount and quality of
input data. The here reported differences between expert
and automated training are small. For optA, it should
be noted that the expert-trained parameters con-
tained customized modifications for the particular
case of D. melanogaster that are not possible via
WebAUGUSTUS (e.g. the length of donor and acceptor
splice sites was altered). In case of optC, accuracy
obtained by using WebAUGUSTUS seems to be slightly
higher than accuracy obtained with the expert-trained par-
ameters. This may be explained by the fact that the web

parameters were trained and tested on genes from the
current Wormbase release, whereas the expert parameters
were trained using an earlier annotation. In general,
higher accuracy values can be expected when using the
same parameter sets in combination with extrinsic
evidence.

The runtimes of training and prediction jobs that were
executed for preparing the results are shown in Table 4
(jobs are executed sequentially on the server, i.e. only one
CPU is allocated to each job). Although the training jobs
of optB and optC required a couple of hours, only, the
training job of optA required several days. Runtime
depends on the size of data sets, on the executed
pipeline, on the resulting number of training gene struc-
tures and on the obtained parameter set. Given the same
number of resulting training gene structures, optC will
always be faster than optA and optB because the
training gene structure file does not need to be generated
by the web service. In turn, given the same number of
resulting training gene structures, optA will always be
slower than optB because optB does not attempt to
perform the assembly of UTR training examples and
UTR parameter training. Certain properties of the se-
quences, in particular the number of unknown nucleo-
tides, and parameter sets influence the execution time for
gene prediction jobs, e.g. the maximal length of UTR
exons can lead to different execution times because the

Table 3. Ab initio gene prediction accuracy results of WebAUGUSTUS with web-trained and expert-trained parameters

Scenario Trainer Gene level Exon level Nucleotide level

Sens. Spec. #Anno #Pred Sens. Spec. #Anno #Pred Sens. Spec. #Anno #Pred

optA web 46.3 37.2 5660 7099 67.6 57.8 24 846 29 082 90.3 69.8 9 387 473 12 157 611
Expert 49.0 40.3 6897 71.5 56.8 31 241 93.2 67.0 13 053 363

optB Web 56.8 45.7 13 535 16 843 82.0 72.5 73 625 83 234 96.4 76.1 16 504 394 20 906 994
Expert 58.9 46.4 16 920 83.1 71.2 85 883 96.9 75.3 21 226 128

optC Web 37.2 39.3 9992 9450 74.8 76.0 63 286 62 301 90.0 87.1 12 394 167 12 791 466
Expert 32.4 36.8 8794 71.7 75.6 60 111 87.7 87.5 12 420 039

Accuracy was measured by comparing predicted genes to existing annotations. Parameters were optimized using the three different approaches that
are available at WebAUGUSTUS: training AUGUSTUS with gene structures that were generated in a fully automated way from ESTs (optA,
D. melanogaster) or protein (optB, A. thaliana) sequences, and training AUGUSTUS with externally generated gene structures (optC, C. elegans).
For each scenario, we show accuracy results that were obtained using WebAUGUSTUS, and in a row below, the accuracy results obtained with
already existing parameter sets that were generated by experts.
Spec., Specificity; Sens., Sensitivity; #Anno, number of annotated features; #Pred, number or predicted features.

Table 4. Computational time of WebAUGUSTUS for optA, optB

and optC

Scenario Training time (min) Prediction time (min)

optA 10 849 5283 (630)
optB 736 91 (95)
optC 351 (71)a

In brackets, we show the computational time that was needed to
complete predictions on the same test sequences with the expert-
trained parameters.
aTraining and prediction on the two different data sets were performed
by one autoAug.pl run of the Training Web Service, i.e. prediction
time is included in training time.
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longer a UTR exon can potentially be, the more candi-
dates must be scored.

DISCUSSION AND CONCLUSION

WebAUGUSTUS is currently the only functional web
service for generating training gene structures and
training a eukaryotic gene prediction tool. In comparison,
mGene.web does not offer automated training gene gen-
eration, and it requires a lot of interaction with the user
(building customized workflows and so forth). In contrast
to this, WebAUGUSTUS is fairly easy to use: after filling
in a web form, the entire job is executed automatically.

Although not available as a web service, the usage of
GeneMark-ES for one-step training and prediction is as
easy to operate as a web service. However, GeneMark-ES
was designed for small and not complex genomes. We
would, therefore, like to mention that the gene prediction
accuracy of WebAUGUSTUS in relatively complex
eukaryotic genomes (e.g. D. melanogaster) is higher in
comparison with the accuracy of GeneMark-ES (see
Supplementary Materials, section Supplementary
Results: Accuracy of GeneMark-ES).

Concerning the here reported accuracy results, users
should be aware of the fact that accuracy of gene predic-
tion with parameters that were optimized using
WebAUGUSTUS strongly depends on the input data
quality. A low number of training gene structures, or
low-quality training gene structures, may lead to poor
accuracy.

In comparison with the freely available binaries and
scripts for execution of AUGUSTUS on a local
computer, the functionality of WebAUGUSTUS is
limited. For example, Conditional Random Field (CRF)
training is not accessible via WebAUGUSTUS, as this
method is less robust to errors in the training gene set
than Generalized Hidden Markov Model training. Also
the integration of RNA-Seq data and several other fre-
quently used sources of extrinsic evidence is currently
not supported by WebAUGUSTUS unless the user first
prepares the hints locally. In some cases, the CRF will
yield better accuracy results, and the inclusion of as
much high-quality extrinsic evidence as possible will
most definitely improve gene prediction accuracy.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Methods and Supplementary Results.
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