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Abstract
Multivariate microarray gene expression data are commonly collected to study the genomic
responses under ordered conditions such as over increasing/decreasing dose levels or over time
during biological processes, where the expression levels of a give gene are expected to be
dependent. One important question from such multivariate gene expression experiments is to
identify genes that show different expression patterns over treatment dosages or over time; these
genes can also point to the pathways that are perturbed during a given biological process. Several
empirical Bayes approaches have been developed for identifying the differentially expressed genes
in order to account for the parallel structure of the data and to borrow information across all the
genes. However, these methods assume that the genes are independent. In this paper, we introduce
an alternative empirical Bayes approach for analysis of multivariate gene expression data by
assuming a discrete Markov random field (MRF) prior, where the dependency of the differential
expression patterns of genes on the networks are modeled by a Markov random field. Simulation
studies indicated that the method is quite effective in identifying genes and the modified
subnetworks and has higher sensitivity than the commonly used procedures that do not use the
pathway information, with similar observed false discovery rates. We applied the proposed
methods for analysis of a microarray time course gene expression study of TrkA- and TrkB-
transfected neuroblastoma cell lines and identified genes and subnetworks on MAPK, focal
adhesion and prion disease pathways that may explain cell differentiation in TrkA-transfected cell
lines.
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1 Introduction
Multivariate microarray gene expression data are commonly collected to investigate dose-
dependent alterations in gene expression or time-dependent gene expression during a
biological process. For example, dose-dependent gene expression data are often measured in
the area of toxicology (Lehmann et al., 2004; Seidel et al., 2006) and time-course gene
expression data are often collected during a dynamic biological process. For both the dose-
dependent and time-course gene expression experiments, the data can be summarized as
multivariate vectors, and one goal of such multivariate gene expression studies is to identify
genes that have different overall expression patterns between two experiments; these genes
can often lead to the identification of the pathways or subnetworks that are perturbed or
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activated during a given dose-dependent experiment or a dynamic biological process.
Compared to gene expression studies of one single experimental condition, such
multivariate gene expression data can potentially identify more genes that are differentially
expressed (Yuan and Kendzioski, 2006; Tai and Speed, 2006; Hong and Li, 2006; Wei and
Li, 2008).

One important feature of the multivariate gene expression data is that the data are expected
to be dependent across dosages or time points. Efficiently utilizing such dependency can
lead to a gain in efficiency in identifying the differentially expressed genes. Yuan and
Kendzioski (2006) and Wei and Li (2008) developed the hidden Markov model and hidden
Markov random field model to identify the differentially expressed genes at each time point
for analysis of microarray time-course gene expression data. Instead of identifying genes
that are differentially expressed at each time point during a biological process or at a given
dosage level, the investigators sometimes are only interested in identifying the genes that
show different overall expression patterns during the experiments. Tai and Speed (2006)
developed an empirical Bayes method treating the observed time-course gene expression
data as multivariate vectors. Hong and Li (2006) developed a functional empirical Bayes
method using B-splines. Both approaches treat the data as multivariate vectors to account for
possible correlations of gene expressions over different dosages or time points. These
empirical Bayes have approved useful for identifying the relevant genes, they all make the
assumptions that the genes are independent with respective to their differential expression
states. However, we expect that the differential expression states of genes with
transcriptional regulatory relationships are dependent.

The goal of this paper is to model such regulatory dependency by using the prior regulatory
network information in order to increase the sensitivities of identifying the biologically
relevant pathways. Information about gene regulatory dependence has been accumulated
from many years of biomedical experiments and is summarized in the form of pathways and
networks and assembled into pathway databases. Some well-known pathway databases
include KEGG, BioCarta (www.biocarta.com) and BioCyc (www.biocyc.org). The most
common way of utilizing the known regulatory network information in analysis of
microarray gene expression data is to first identify the differentially expressed genes using
methods e.g. of Tai and Speed (2006) or Hong and Li (2006) and then to map these genes to
the network to visualize which subnetworks show differential expression or to perform some
types of gene set enrichment analysis. One limitation of such an approach is that for many
multivariate gene expression data sets, the sample sizes are usually small and therefore the
approach often has limited power to identify the relevant subnetworks. Representing the
known genetic regulatory network as an undirected graph, Wei and Li (2007) and Wei and
Pan (2008) have recently developed hidden Markov random field (MRF)-based models for
identifying the subnetworks that show differential expression patterns between two
conditions, and have demonstrated using both simulations and applications to real data sets
that the procedure is more sensitive in identifying the differentially expressed genes than
those procedures that do not utilize the pathway structure information. However, neither of
these explicitly models the multivariate expression data. Wei and Li (2008) extended the
model of Wei and Li (2007) and the HMM model of Yuan and Kendzioski (2006) to analyze
the microarray time course gene expression in the framework of a hidden spatial-temporal
MRF model. However, this approach aims to identify the differentially expressed genes at
each time point and it assumes the same network-dependency of the gene differential
expression states at all the time points.

In this paper, to efficiently identify the differentially expressed genes in the multivariate
gene expression experiments, we develop the hidden MRF model of Wei and Li (2007)
further into a hidden MRF model for multivariate gene expression data in order to take into
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account potential dependency of gene expression over time and the known biological
pathway information. We treat the multivariate gene expression data as multivariate data,
allowing for dependency of the data across the dosage levels or over time points. Different
from the popular empirical Bayes methods for analysis of multivariate gene expression data
where genes and their differentially expression states are assumed to be independent, this
method models the dependency of the differentially expression states using a discrete
Markov random field and therefore enables the information of a known network of pathways
to be efficiently utilized in order to identify more biologically interpretable results. Although
the formulation of the problem is similar to that of Wei and Li (2007), models for
multivariate gene expression data are more complicated and require new methods for
estimating the model parameters. We propose to use both the moment estimate and
maximum likelihood estimates in the iterative conditional mode (ICM) algorithm (Besag,
1974; Besag, 1986).

We first introduce the hidden MRF model for multivariate expression data and present an
efficient algorithm for parameter estimation by the ICM algorithm. We then present results
from simulation studies to demonstrate the application of the hidden MRF model, to
compare with existing methods, and to evaluate the sensitivity of the method to
misspecification of the network structure. For a case study, we apply the hidden MRF model
to analyze the time-course gene expression data of TrkA- and TrkB-transfected
neuroblastoma cell lines in order to identify the pathways that are related to cell
differentiation in TrkA-transfected cell lines. Finally, we present a brief discussion of the
methods.

2 Statistical Models and Methods
We first introduce a hidden MRF model for multivariate gene expression data, where the
network structure is represented as an undirected graph. The model is an extension of the
model of Wei and Li (2007) to multivariate gene expression data, where the distribution of
latent differential states of the genes is modeled as a discrete MRF defined on the prior
network structure, and the empirical Bayes model of Tai and Speed (2006) are used for
modeling the emission density for the observed multivariate gene expression data.

2.1 Data observed and representation of genetic networks as undirected graphs
Consider the multivariate gene expression data measured under two different conditions
over k dosage levels or time points, with n independent samples measured under one
condition and m independent samples measured under another condition. For each
experiment, we assume that the expression levels of p genes are measured. For a given gene
g, we denote these data as i.i.d. k × 1 random vectors Yg1, · · · , Ygn for condition 1 and Zg1,
· · · , Zgm for condition 2. We further assume that Ygi ~ Nk(μgy, Σg) and Zgi ~ Nk(μgz, Σg).
For a given gene g, the null hypothesis of interest is

(1)

Define μg = μgy – μgz. For a given gene g, let Ig take the value of 1 if μg ≠ 0 and 0 if μg = 0.
We call the genes with Ig = 1 the differentially expressed (DE) genes. Our goal is to identify
these DE genes among the p genes.

Besides the gene expression data, suppose that we have a network of known pathways that
can be represented as an undirected graph G = (V, E), where V is the set of nodes that
represent genes or proteins coded by genes and E is the set of edges linking two genes with a
regulatory relationship. Let p = |V| be the number of genes that this network contains. Note
the gene set V is often a subset of all the genes that are probed on the gene expression
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arrays. If we want to include all the genes that are probed on the expression arrays, we can
expand the network graph G to include isolated nodes, which are those genes that are probed
on the arrays but are not part of the known biological network. For two genes g and g′, if
there is a known regulatory relationship, we write g ~ g′. For a given gene g, let Ng = {g′ : g
~ g′ ∈ E} be the set of genes that have a regulatory relationship with gene g and dg = |Ng| be
the degree for gene g.

2.2 A discrete Markov random field model for differential expression states for genes on
the network

Our goal is to identify the genes on the network G that are multivariate differentially
expressed between the two experimental conditions. Since two neighboring genes g and g′
have regulatory relationship on the network, we should expect that the DE states Ig and Ig′
are dependent. In order to model the dependency of Ig over the network, following Wei and
Li (2007), we introduce a simple MRF model. Particularly, we assume the following auto-
logistic model for the conditional distribution of Ig,

(2)

where

and γ and β ≥ 0 are arbitrary real numbers. Here the parameter β measures the dependency
of the differential expression states of the neighboring genes. We assume that the true DE

states  is a particular realization of this locally dependent MRF. Note
that when β = 0, the model assumes that all the Igs are independent with the same prior
probability exp(γ)/(1 + exp(γ)) of being a DE gene.

2.3 Emission probabilities for multivariate gene expression data and the HMRF model
To relate the differential expression state Ig to the observed gene expression data Dg = (Yg1,
· · · , Ygn; Zg1, · · · , Zgm), we follow the empirical Bayes approach of Tai and Speed (2006)
for multivariate gene expression data and use conjugate priors for μg and Σg, that is, an
inverse Wishart prior for Σg and a dependent multivariate normal prior for μg. To make
notation simple, we drop the gene subscript g when introducing the Bayesian model. Let Ȳ =

(Y1 + · · · + Yn)/n, Z̄ = (Z1 + · · · + Zm)/m, X̄ = Ȳ – Z̄, ,

, S = (n+m–2)–1((n–1)Sy +(m–1)Sz). Following Tai and
Speed (2006), we assign independent and identical inverse Wishart priors to Σ, Σ ~
W –1((νΛ)–1, ν). Given Σ, we assign multivariate normal priors for the gene-specific mean
difference μ for the two cases (I = 1) and (I = 0):
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Since the statistics (X̄, S) are the sufficient statistics for the parameters (μ, Σ) (Tai and
Speed, 2006), the conditional distribution of the data D = (Y1, · · · , Yn, Z1, · · · , Zm) can be
written as

Tai and Speed (2006) further derived

(3)

where N = n+m–1 and S* = (νΛ/(N –1))–1S. Thus, given I = 1, the probability density
function of the data is a function of X̄ and S̄ only, which follows a Student-Siegel
distribution (Aitchison and Dunsmore, 1975). Following Aitchison and Dunsmore's and Tai
and Speed's notation, this distribution is denoted by StSik(ν, 0, (n–1+m–1+η–1)Λ, N –1, (N –
1)–1νΛ). Similarly, the distribution of P(D|I = 0) follows StSik(ν, 0, (n–1 + m–1)Λ, N – 1,
(N – 1)–1νΛ), with the following density function

(4)

Together the transition probability (2) and the emission probabilities (3) and (4) define a
hidden MRF model for multivariate gene expression data with parameters in the emission
probabilities θ = (η, ν, Λ). Define (Ig) = {I1, · · · , Ip} to be a vector of the differential
expression states of the p genes on the network. By Bayes rule, Pr((Ig)|D) ∝ Pr(D|(Ig)) ×
Pr((Ig)). The estimate (Îg) that maximizes Pr((Ig)|D) is a maximum a posterior (MAP)
estimate under 0-1 loss. In order to estimate the parameters and (Ig), we make the following
conditional independence assumption,

Assumption—Given any particular realization (Ig), the random variables (D) = (D1, D2, · ·
· , Dg) are conditionally independent and each Dg has the same unknown conditional density
function P(Dg|Ig), dependent only on Ig. The conditional density of the observed gene
expression data D, given G and parameter θ = (η, ν, Λ), is simply,

(5)

where P(Dg|Ig) is defined as (3) or (4).

3 Estimation of the Model Parameters and the Posterior Probabilities of the
DE States

When inferring (Ig)*, parameter estimation must be carried out simultaneously. We propose
the following ICM algorithm of Besag (1986) to simultaneously estimate the parameter θ =
(η, ν, Λ) with a positive definite constraint on the covariance matrix Λ in the emission
probability model and the parameter Φ = (γ, β) in the auto-logistic model. Simultaneously
estimating the covariance matrix Λ is difficult due to the fact that its estimate has to be
positive definite. We propose to first estimate Λ′ using the moment estimator of Tai and
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Speed (2006). Specifically, by the weak law of large numbers, S̄ converges in probability to

(ν – k – 1)–1νΛ. Therefore, Λ can be estimated by , where

, j = 1, · · · , k and  is the estimated prior degrees of freedom based
on the jth diagonal elements of the gene-specific sample variance-covariance matrices using
the method proposed in Section 6.2 in Smyth (2004). We then fix Λ at its estimate and
estimate the other model parameters within the following ICM algorithm (Besag, 1986),
which involves the following iterative steps:

S1. Obtain an initial estimate (Îg) of the true state (Ig)*, using simple two sample
Hotelling's T2 test.

S2. Estimate θ by the value  which maximizes the likelihood Lθ(D|(Îg)) (Equation 5).

S3. Estimate Φ by the value  which maximizes the following pseudo-likelihood

S4. Carry out a single cycle of ICM based on the current (Îg),  and , to obtain a new
(Îg): for g = 1 to p, update Ig which maximizes

S5. Go to step 2 until there is convergence in the estimates.

In Step 2, θ = (η, ν) in the HMRF model and they can be estimated using any numerical
optimization procedure. After the convergence of the ICM algorithm and obtaining the
parameter estimates, we can run the Gibbs sampling to obtain the estimate of the posterior
probability of Pr(Ig = 1|data) for each of the gene g. These posterior probabilities can then be
used for selecting the DE genes.

4 Simulation Study
We performed simulation studies to evaluate the proposed method and to compare results
with other methods for identifying the DE genes. Following Wei and Li (2007), we first
obtained 33 human regulatory pathways from the KEGG database (December 2006), where
we retained only gene-gene regulatory relations. These 33 regulatory pathways are inter-
connected and formed a network of regulatory pathways. We represent such a network as an
undirected graph where each node is a gene and two nodes are connected by an edge if there
is a regulatory relation between corresponding genes. Loops (nodes connected to
themselves) were eliminated. This results in a graph with 1668 nodes and 8011 edges.

To simulate the differential expression states of the genes on this network, we initialized the
genes in the K pathways to be DE and the rest genes to be EE, which gives us the initial G0.
We then performed sampling five times based on the current gene differential expression
states, according to the Markov random field model with γ0 = γ1 = 1 and β = 2 (Wei and Li,
2007). We chose K = 5, 9, 13, 17 to obtain different percentages of genes in DE states. After
obtaining the differential expression states for the genes, we simulated the multivariate gene
expression levels based on the empirical Bayes models, using the same parameters as Tai
and Speed (2006): η = 0.5, ν = 13 and Λ = A × 10–3, where
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For each condition, we chose the number of independent replications to be 3 for each group
and repeated the simulation 100 times.

4.1 Comparison with the method of Tai and Speed
We first examined the parameter estimates of θ = (η, ν) using three different methods: the
empirical Bayes (EB) method of Tai and Speed (2006), the ICM algorithm incorporating the
network structures and the ICM algorithm assuming that all the nodes are singletons (i.e., no
dependency of the differential expression states). The performance results are shown in
Table 1. We observed that both ICM algorithms provide better estimates of both η and ν
than the EB algorithm.

We then compare the sensitivity, specificity and FDR in identifying the DE genes with the
EB method of Tai and Speed (2006). Since the EB method only provides ranks of the genes
and does not infer gene states, for the purpose of comparison, we chose a cutoff value to
declare genes to be DE using their method so that their approach would have the closest
observed FDR levels to our proposed method. We applied the HMRF model to the simulated
data sets. The results are summarized in Table 2, clearly showing that our approach obtained
significant improvement in sensitivity compared to the other approaches making an
independence assumption of genes. The smaller p was, the more improvements we obtained.
At the same time, our approach also achieved lower FDRs and comparable specificity. Our
proposed algorithm assuming that the genes are independent give very similar results to the
EB method of Tai and Speed (2006).

4.2 Sensitivity to misspecification of the network structure
Due to the fact that our current knowledge of biological networks is not complete, in
practice, it is possible that the network structures that we use for network-based analysis are
misspecified. The misspecification can be due to either the true edges of the networks being
missed or the wrong edges being included in the network, or both of these scenarios. We
performed simulation studies to evaluate how sensitive the results of the HMRF approach
are to these three types of misspecifications of the network structures. We used the same
data sets of 100 replicates as in the previous section but used different misspecified network
structures when we fitted the hidden MRF model.

For the first scenario, we randomly removed 801 (10%), 2403 (30%) and 4005 (50%),
respectively, from the 8011 true edges from the true KEGG networks when we fit the hidden
MRF model. For the second scenario, we randomly added approximately 801, 2403 and
4005 new edges to the KEGG network, respectively. Finally, for the third scenario, we
randomly selected 90%, 70% and 50% of the 8011 true edges and also randomly added
approximately 801, 2403 and 4005 new edges to the network, respectively, so that the total
number of edges remains approximately 8011. The results of the simulations over 100
replications are summarized as Figure 1. First, as expected, since the true number of DE
genes is small, the specificities of the HMRF procedure remain very high and are similar
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when the true network structure is used. Second, we also observed that the FDR rates also
remain almost the same as when the true structure is used. However, we observed some
decreases in sensitivity in identifying the true DE genes. It is worth pointing out even when
the network structure is largely misspecified as in scenario 3, the results from the HMRF
model are still comparable to those obtained from the HMRF-I approach where the network
structure is not utilized.

Finally, we also applied these simulated data with a randomly created network structure with
the same number of nodes and edges. As expected, in this case, the estimate of the β
parameter was always zero or very close to zero, and therefore, the results in sensitivity,
specificity and FDR are essentially the same as the method that does not utilize the network
structure. These simulations seem to indicate that the results of the HMRF model are not too
sensitive to the misspecification of the network structure unless the structure is greatly
misspecified.

5 Application to Time-Course Gene Expression Study of TrkA- and TrkB-
transfected Neuroblastoma Cell Lines

Neuroblastoma is the most common and deadly solid tumor in children, but this tumor also
has a very high propensity to undergo spontaneous differentiation or regression. Evidence
suggests that the Trk family of neurotrophin receptors plays a critical role in tumor behavior
(Broduer, 2003). Neuroblastomas expressing TrkA are biologically favorable and prone to
spontaneous differentiation or regression. In contrast, neuroblastomas expressing TrkB
usually have MYCN amplification and are among the most aggressive and deadly tumors
known. These tumors also express the TrkB ligand, resulting in an autocrine survival
pathway. Unlike the TrkA-expressing tumors, exposure to ligand promotes survival under
adverse conditions, but does not cause differentiation. In order to explore the biological
basis for the very different behavior of neuroblastomas expressing these highly homologous
neurotrophin receptors, a microarray time-course gene expression study was conducted by
transfecting TrkA and TrkB into SH-SY5Y cells, a neuronal subclone from the NB cell line
SK-N-SH. In particular, full length TrkA and TrkB were cloned into the retroviral
expression vector pLNCX and transfected into SH-SY5Y cells. Cells were then serum
starved overnight and treated with either nerve growth factor (NGF) and brain-derived
neurotrophic factor (BDNF) at 37° for 0 to 12 hours. Fifteen micrograms of total RNA were
then collected from TrkA- and TrkB-SY5Y cells exposed to 0, 1.5, 4 and 12 hrs of NGF or
BDNF and the gene expressions were profiled using the Affymetrix GeneChip 133A. Four
and three replicates were performed for the TrkA and TrkB cells, respectively. The robust
multi-array (RMA) procedure (Irizarry et al., 2003) was used to obtain the gene expression
measures.

To perform network-based analysis of the data, we merged the gene expression data with the
33 KEGG regulatory pathways and identified 1533 genes on the Hu133A chip that could be
found in the 1668-node KEGG network of 33 pathways. Instead of considering all the genes
on the Hu133A chip, we only focused our analysis on these 1533 genes and aimed to
identify which genes and which subnetworks of the KEGG network of 33 pathways are
potentially related to the cell differentiation of TrkA-transfected cell lines. We analyzed the

data using the HMRF model and obtained parameter estimates of  and ,
indicating that there are more genes with similar expression patterns than those with
different expression patterns. Our method identified 210 DE genes out of the 1533 KEGG
genes with posterior probability of being a DE gene greater than 0.5, among these 118 are
connected on the KEGG pathways and 92 are isolated, not collecting to other DE genes.
There is a large cluster of genes that are largely up-regulated in the Trk A transfected cells
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but are down-regulated in the Trk B transfected cells. Similarly, there is a cluster of genes
that are up-regulated in the Trk B-transfected cells but are down-regulated in the Trk A
transfected cells (See Figure 2).

Among the 33 KEGG regulatory pathways, enrichment analysis using DAVID Tools
(Dennis et al., 2003) identified that the mitogen-activated protein kinase (MAPK) signaling
pathway, focal adhesion pathway and pathway related to prion diseases are enriched with p-
values of 0.012, 0.029 and 0.05, respectively, of which the MAPK signaling pathway and
the focal adhesion pathway are inter-connected. The MAPK (Erk1/2) signal transduction
pathway is expressed and active in both TrkA and TrkB expressing NB cells after specific
ligand-mediated Trk receptor phosphorylation. The distinct role that this signaling pathway
plays in the biologic heterogeneity of NB is not well known; however, we have shown that
the time course of pathway activation by phosphorylation of signal effector proteins is
different between TrkA- and TrkB- expressing NB cells, and this may, in part, explain the
biological differences between TrkA- vs. TrkB-expressing tumors. To give a detailed
comparison of TrkA- and TrkB-mediated genomic responses, we present in Figures 3 and 4
the DE genes on the MAPK signaling pathway and on the KEGG focal adhesion pathway.
On the MAPK pathway, it is not surprising that the TrkA/B shows different expression
patterns. We also observed that a cluster of genes (or a subnetwork) in the neighborhood of
ERK shows different expression patterns, including MEK2, MP1, PTP, MKP, Tau, cPLA2,
MNK1/2 and c-Myc (see Figure 3). This subnetwork, leading to cell proliferation and
differentiation, may partially explain the difference in cell differentiation between the TrkA-
and TrkB-infected NB cells. Another interesting subnetwork in the neighborhood of p38,
including MKK3, MKK6, PTP, MKP, MAPKAPK, GADD153 and HSP27, also showed
differential expression patterns. This subnetwork also related to cell proliferation and
differentiation. Activation of these two subnetworks on the MAPK pathway may explain the
different biological behaviors of these two types of NB cells, especially in terms of cell
differentiation. MAPK signaling in the nervous system has been shown to promote a broad
array of biologic activities including neuronal survival, differentiation, and plasticity.
Regulating the duration of MAPK signaling is important in neurogenesis, and likely plays a
similar role in the behavior of Trk-expressing neuroblastomas. Prolonged activation of
MAPK is correlated with neurotrophin-dependent cell cycle arrest and terminal cellular
differentiation in the PC12 pheochromocytoma cell line, whereas short-duration MAPK
signaling is correlated with mitogenic and proliferative cell signaling in PC12 cells (Tombes
et al., 1998; Kao et al., 2001; Marshall, 1995; Qui and Green, 1992). TrkA-expressing NB
cells treated with NGF (which activates MAPK) increase the number and length of extended
neurites and decrease cell proliferation resulting in a more mature neuronal appearing cell,
while TrkB-expressing NB cells treated with ligand (BDNF) increase cell proliferation
without morphologic differentiation.

Increasing evidence suggests an important role for the focal adhesion kinase (FAK) pathway
(See Figure 4) in regulating cancer cell adhesion in response to extracellular forces or
mechanical stress. Studies have demonstrated that tumor cells are able to regulate their own
adhesion by over-expression or alteration in activity of elements within the FAK signaling
pathway, which may have implications in the survival, motility and adhesion of metastatic
tumor cells (Basson, 2008). While mechanotransduced stimulation of the FAK signaling
pathway appears to be a cell surface receptor independent process, the FAK pathway also
acts downstream of receptor tyrosine kinases and has been shown to be phosphorylated in
response to external cytokine/ligand stimuli. The insulin-like growth factor-1 receptor
(IGF-1R) and FAK physically interact in pancreatic adenocarcinoma cells resulting in
activation of a common signal transduction pathway that leads to increased cell proliferation
and cell survival (Liu et al., 2008). In neuroblastoma, MYCN regulates FAK expression by
directly binding to the FAK promoter, and increasing transcription of FAK mRNA. Beierle
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et al. (2007) have correlated FAK mRNA abundance with MYCN expression in MYCN-
amplified and non-amplified NB cell lines by real time quantitative PCR, and their data
suggest that MYCN regulation of FAK expression directly impacts cell survival and
apoptosis. On the focal adhesive pathway, we observed that a subnetwork of 6 genes,
including Actinin, Filamin, Talin, Zyxin, VASP, Vinculin, that show differential expression
patterns (see Figure 4). In addition, PI3K and its neighboring genes GF, RTK, Shc and Ha-
Ras show differential expression patterns. We have not yet explored the regulation of FAK
pathway activity by TrkA or TrkB expression and activation in our NB cell lines, but the
differential expression states for genes on the KEGG FAK pathway suggest differential
mediation by TrkA vs. TrkB, that may have downstream biological relevance.

Finally, on the pathway related to prion disease, we observed that Prion Protein (PrPc) and
its neighboring genes HSPA5, APLP1, NRF2 and LAMB1 show differential expression
patterns.

6 Conclusion and Discussion
In this paper we have proposed a hidden MRF model and an ICM algorithm that utilizes the
gene regulatory network information to identify multivariate differentially expressed genes.
The method extended the approach of Wei and Li (2007) for univariate to multivariate gene
expression data such as time course data. Also different from the approach of Wei and Li
(2008) for network-based analysis of microarray time-course gene expression data, this new
approach identifies the genes that show different expression patterns over time rather than
identifies the differentially expressed genes at each time point. Instead of assuming all genes
are independent as in the empirical Bayes approach of Tai and Speed (2006), our method
models the dependency of the latent differential expression states based on the prior
regulatory network structures. Simulation studies show that our methods outperform the
methods that do not utilize network structure information. We applied our method to analyze
the MTC data of TrkA- and TrkB-transfected neuroblastoma cell lines and identified the
MAPK and focal adhesive pathways from the KEGG that are related to cell differentiation
in TrkA-transfected cell lines. Note that the proposed methods can also be applied to other
types of genomic data such as proteomic data and protein-protein interaction data.

In this paper, we analyzed the neuroblastoma MTC data using KEGG pathways and aimed
to identify the KEGG pathways that may explain the differentiation states of the two
different NB cell lines. However, the proposed methods can be applied to any other
networks of pathways. If an investigator is only interested in a particular pathway, the
proposed method can be applied to that particular pathway. If an investigator is interested in
fully exploring his/her data and all available pathways, one should use a large collection of
pathways, e.g., the pathways collected by Pathway Commons (http://
www.pathwaycommons.org/pc/). It should also be noted that our proposed methods can
include all the genes probed on microarray by simply adding isolated nodes to the graphs. A
related issue is that our knowledge of pathways is not complete and can potentially include
errors or misspecified edges on the networks. Although our simulations demonstrate that our
methods are not too sensitive to the misspecification of the network structures, the effects of
misspecification of the network on the results deserve further research. One possible
solution to this problem is to first check the consistency of the pathway structure using the
data available. For example, if the correlation in gene expression levels between two
neighboring genes is very small, we may want to remove the edge from the pathway
structure. Alternatively, one can build a set of new pathways using various data sources and
compare these pathways with those in the pathway databases in order to identify the most
plausible pathways for use in the proposed MRF method. For example, we can construct a
large molecular network with the nodes being the gene products and the links extracted from
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the KEGG database, the Biomolecular Interaction Network Database (BIND) and Human
Interactome Map (HIMAP) (Alfarano et al., 2005). This will provide more comprehensive
description of known biological pathways and networks than using data from only one
source.

In summary, generation of high-throughput genomic data together with intensive biomedical
research has generated more and more reliable information about regulatory pathways and
networks. It is very important to incorporate the network information into the analysis of
genomic data in order to obtain more interpretable results in the context of known biological
pathways. Such integration of genetic network information with high-throughput genomic
data can potentially be useful for identifying the key molecular modules and subnetworks
that are related to complex biological processes.
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Figure 1.
Results in sensitivity, specificity and false discovery rate when the network structure is
misspecified for four different sets of simulations corresponding to different proportions of
DE genes. ▽: randomly deleting 10%, 30% and 50% of the true edges of the network; △:
randomly adding approximately 801 (10%), 2403 (30%) and 4005 (50%) new edges to the
network; □: randomly choosing 90%, 70% and 50% of the true edges and randomly adding
10%, 30% and 50% new edges to the network. The dashed line represents results without
using the network structures.
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Figure 2.
Heatmap clustering plot of the 210 DE genes on the KEGG pathways, showing different
expression patterns between the TrkA and TrkB time-courses. The first four columns
correspond to the TrkA time course experiments at times 0, 1.5, 4 and 12 hr, the second four
columns correspond to the TrkB time-course experiments at times 0, 1.5, 4 and 12 hr.
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Figure 3.
Differential expression states for genes on the KEGG MAPK pathway, where genes colored
in dark gray are multivariate differentially expressed and those colored in light green are
equally expressed.
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Figure 4.
Differential expression states for genes on the KEGG Focal Adhesion pathway, where genes
colored in dark are multivariate differentially expressed and those colored in light green are
equally expressed.
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Table 2

Comparison of performance in terms of sensitivity, specificity and false discovery rate (FDR) of three
different procedures based on 100 replications for four different scenarios with different percentages of DE
genes (q).

q Method Sensitivity Specificity FDR

HMRF 0.80(0.029) 1.00(0.0023) 0.045(0.019)

0.115 (0.005) HMRF-I 0.70(0.042) 0.99(0.0027) 0.079(0.025)

EB 0.69(0.054) 0.99(0.0027) 0.079(0.05)

HMRF 0.87(0.033) 0.99(0.0049) 0.058(0.020)

0.189 (0.008) HMRF-I 0.76(0.03) 0.99(0.004) 0.074(0.018)

EB 0.75(0.032) 0.99(0.0041) 0.075(0.018)

HMRF 0.91(0.016) 0.97(0.0065) 0.054(0.010)

0.357 (0.009) HMRF-I 0.84(0.020) 0.97(0.0063) 0.066(0.011)

EB 0.83(0.022) 0.97(0.0064) 0.066(0.011)

HMRF 0.95(0.012) 0.94(0.012) 0.061(0.012)

0.486 (0.008) HMRF-I 0.88(0.015) 0.95(0.0086) 0.060(0.0093)

EB 0.88(0.015) 0.95(0.0087) 0.060(0.0094)

HMRF: the proposed HMFR model using the network structures; HMRF-I: the proposed HMFR model without using the network structures; EB:
the empirical Bayes method of Tai and Speed (2006) with FDRs matched to the HMRF algorithm; Summaries are averaged over 100 simulations;
standard deviation is shown in parentheses.
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