Table 2.
q | Method | Sensitivity | Specificity | FDR |
---|---|---|---|---|
HMRF | 0.80(0.029) | 1.00(0.0023) | 0.045(0.019) | |
0.115 (0.005) | HMRF-I | 0.70(0.042) | 0.99(0.0027) | 0.079(0.025) |
EB | 0.69(0.054) | 0.99(0.0027) | 0.079(0.05) | |
HMRF | 0.87(0.033) | 0.99(0.0049) | 0.058(0.020) | |
0.189 (0.008) | HMRF-I | 0.76(0.03) | 0.99(0.004) | 0.074(0.018) |
EB | 0.75(0.032) | 0.99(0.0041) | 0.075(0.018) | |
HMRF | 0.91(0.016) | 0.97(0.0065) | 0.054(0.010) | |
0.357 (0.009) | HMRF-I | 0.84(0.020) | 0.97(0.0063) | 0.066(0.011) |
EB | 0.83(0.022) | 0.97(0.0064) | 0.066(0.011) | |
HMRF | 0.95(0.012) | 0.94(0.012) | 0.061(0.012) | |
0.486 (0.008) | HMRF-I | 0.88(0.015) | 0.95(0.0086) | 0.060(0.0093) |
EB | 0.88(0.015) | 0.95(0.0087) | 0.060(0.0094) |
HMRF: the proposed HMFR model using the network structures; HMRF-I: the proposed HMFR model without using the network structures; EB: the empirical Bayes method of Tai and Speed (2006) with FDRs matched to the HMRF algorithm; Summaries are averaged over 100 simulations; standard deviation is shown in parentheses.