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e role of B cells in autoimmune diseases involves different cellular functions, including the well-established secretion of
autoantibodies, autoantigen presentation and ensuing reciprocal interactions with T cells, secretion of in�ammatory cytokines,
and the generation of ectopic germinal centers. rough these mechanisms B cells are involved both in autoimmune diseases that
are traditionally viewed as antibody mediated and also in autoimmune diseases that are commonly classi�ed as T cell mediated.
is new understanding of the role of B cells opened up novel therapeutic options for the treatment of autoimmune diseases. is
paper includes an overview of the different functions of B cells in autoimmunity; the involvement of B cells in systemic lupus
erythematosus, rheumatoid arthritis, and type 1 diabetes; and current B-cell-based therapeutic treatments. We conclude with a
discussion of novel therapies aimed at the selective targeting of pathogenic B cells.

1. Introduction

Traditionally, autoimmune disorders were classi�ed as T cell
mediated or autoantibody mediated. However the improved
understanding of the complexity of the immune system
has signi�cantly in�uenced the way we view autoimmune
diseases and their pathogeneses. Reciprocal roles of T-cell
help for B cells during adaptive immune responses and B-
cell help in CD4+ T-cell activation are being increasingly
recognized. e observation that most autoantibodies in
traditionally autoantibody-mediated diseases are of the IgG
isotype and carry somatic mutations strongly suggests T-cell
help in the autoimmune B-cell response. Likewise B cells
function as crucial antigen presenting cells in autoimmune
diseases that are traditionally viewed as T cell mediated. is
paper will discuss the role of B cells in autoimmune diseases;
however, it needs to be emphasized that most autoimmune
diseases are driven by a dysfunction in the immune network
consisting of B cells, T cells, and other immune cells.

2. B-Cell Functions in Autoimmunity

Different functions of B cells can contribute to autoimmune
diseases (Figure 1):

(1) secretion of autoantibodies;
(2) presentation of autoantigen;
(3) secretion of in�ammatory cytokines;
(4) modulation of antigen processing and presentation;
(5) generation of ectopic GCs.
ese functions will be discussed in detail below.

2.1. Autoantibodies in Autoimmune Diseases. Autoantibod-
ies can be detected in many autoimmune diseases. eir
presence in the peripheral circulation and relative ease of
detection makes them preferred markers to aid in diag-
nosis and prediction of autoimmune disorders. In some
autoimmune diseases, the autoantibodies themselves have a
pathogenic effect, as will be discussed in the following.

2.1.1. Deposition of �mmune �omple�es and �n�ammation
(Figure 1(b)). e deposition of immune complexes com-
posed of autoantibodies and autoantigens is a prominent
feature of several autoimmune diseases, including systemic
lupus erythematosus, cryoglobulinemia, rheumatoid arthri-
tis, scleroderma, and Sjögren’s syndrome. e immune com-
plexes can trigger in�ammation through activation of com-
plement and Fc-receptor-dependent effector functions [15].
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(a) (b)

(c) (d)

F 1: (a) B cells in autoimmune diseases. B cells have antibody-dependent and antibody-independent pathogenic functions. Secreted
autoantibodies speci�c to receptors or receptor ligands can activate or inhibit receptor functions. �eposited immune complexes can activate
complement and effector cells. Autoantibodies can bind to basic structural molecules and interfere with the synthesis of structural elements
and facilitate the uptake of antigen. �ndependent of antibody secretion B cells secrete proin�ammatory cytokines, support the formation
of ectopic GCs, and serve as antigen presenting cells. Both secreted autoantibodies and BCR on B cells can modulate the processing and
presentation of antigen and thereby affect the nature of presented T-cell determinants. (b) Pathogenic effects of deposited immune complexes.
e Fc portion of antibodies in immune complexes can be bound by C1q of the classical complement pathway, which eventually leads to the
release of C�a and C�a. ese anaphylatoxins promote release of proin�ammatory cytokines and serve as chemoattractants for effector cells.
Moreover they induce the upregulation of activating FcR on effector cells. Binding of the Fc portion of the antibodies to FcR leads to activation
of effector cells and further release of proin�ammatory cytokines and proteolytic en�ymes, mediators of antibody-dependent cell-mediated
cytotoxicity (A�CC). (c) �ffect of antibodies and antigen-speci�c B cells on antigen uptake. Le panel: antigen bound by antibody is taken
up via FcR on APCs such as dendritic cells or macrophages. Aer processing, antigen is presented on MHC molecules. is FcR-mediated
antigen uptake is more e�cient than antigen uptake by pinocytosis. Right panel: antigen binds to the BCR of antigen-speci�c B cells and is
internali�ed. B cells are highly e�cient APCs in situations of low antigen concentrations. (d) �ffect of antibodies and antigen-speci�c B cells
on antigen processing and presentation. BCR-mediated antigen uptake can in�uence antigen processing and the nature of MHC-displayed
T-cell determinants. Likewise, antigen/antibody complexes are bound by the FcR of APCs and processed in a unique fashion dependent on
the epitope speci�city of the bound antibody. e BCR or antibody can shield certain protein determinants from the proteolytic attack in
endocytic compartments (represented as scissors in this �gure). Presentation of some determinants may thereby be suppressed, while others
are boosted. ereby cryptic pathogenic peptides may be presented and stimulate autoreactive T cells.
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T 1: Examples for receptor autoantibodies.

Targeted receptor Mechanism Associated disease References
Endothelial receptor type A (ETAR) Activation Pulmonary arterial hypertension (PAH) [1]
Angiotensin II receptor (AT1R), ETAR Activation Systemic sclerosis [2]
AT1R Activating Preeclampsia [3–5]
𝛼𝛼1-adrenergic receptors (𝛼𝛼1-ARs) Activating Refractory hypertension [3, 6, 7]
𝛽𝛽1-adrenergic receptor Activation Dilated cardiomyopathy (DCM), Chagas’ disease [8, 9]
N-methyl-D-aspartate receptor (NMDAR) Activation SLE [10]
Glutamate receptor Activation SLE [11]
Insulin receptor Inhibition Autoimmune hypoglycemia [12]
Muscarinic type 3 receptor Internalization Sjögren’s syndrome [13]
NMDAR Internalization Anti-NMDA receptor encephalitis [14]

In the classical complement cascade, the Fc portion of the
antibody is bound by complement component C1q, which
eventually triggers the activation of the anaphylatoxins C5a
and C3a. C5a and to a lesser degree C3a attract effector cells
such as neutrophils and NK cells and stimulate the release
of proteolytic enzymes and in�ammatory cytokines. Activa-
tion of complement has been consistently demonstrated in
experimentalmodels of immune-complex diseases and in the
kidneys of patients with systemic lupus erythematosus and
lupus nephritis [16].e immune complexes can also directly
bind to Fc-receptors on effector cells leading to antibody-
dependent-cell-mediated cytotoxicity (ADCC).

2.1.2. Stimulation and Inhibition of Receptor Function.
Autoantibodies can affect receptor function with different
outcomes as illustrated by autoantibodies targeting the thy-
roid stimulating hormone (TSH) receptor. TSH receptor
autoantibodies in Graves’ disease stimulate receptor func-
tion, triggering the release of thyroid hormones and develop-
ment of hyperthyroidism [17], while TSH receptor autoanti-
bodies in autoimmune hypothyroidism block the binding of
TSH to the receptor [18]. Inhibitory autoantibodies are also
found inMyasthenia gravis, where autoantibodies bind to the
nicotine ACh receptors (AChRs) and block neurotransmis-
sion at the neuromuscular junction, inducing symptoms such
as muscle weakness and fatigue [19], and in multifocal motor
neuropathy, where autoantibodies bind to the ganglioside
GM1 and cause motor neuropathy with conduction block at
multiple sites [20]. Other autoantibodies can bind receptor
ligands, preventing their binding to the receptor, as seen in
Graves’ disease with anti-TSH autoantibodies [21]. Table 1
summarizes other examples of receptor autoantibodies, their
targets, pathogenic mechanisms, and associated diseases.

2.1.3. Facilitation of Antigen Uptake (Figure 1(c)). Autoanti-
bodies facilitate antigen uptake by antigen presenting cells
(APCs). Antigen complexed with antibodies is taken up via
Fc receptors (FcRs) present on monocytes and dendritic cells
[22]. is mechanism is more efficient than pinocytosis and
results in 10–100-fold lower necessary antigen concentration

for successful T-cell stimulation [23–26]. e importance of
this mechanism has been demonstrated in a number of ani-
mal studies, where antibodies to various antigens enhanced
T-cell responses to the respective antigens [27–29]. Autoan-
tibodies can therefore break tolerance of normal T cells
through their capacity to promote uptake of self-antigen by
APCs via their FcRs. Indeed, autoantibodies to thyroid self-
antigens dramatically enhanced uptake of thyroid peroxidase
(TPO) by APCs and subsequent activation of TPO-reactive
T cells [30] and blockade of Fc𝛾𝛾R markedly reduced this
response [31]. Autoantibodies have also been demonstrated
to facilitate the uptake of myelin by macrophages, and the
removal of the Fc-portion of the antibodies prevented antigen
uptake [32].Moreover, Fc𝛾𝛾R–de�cientD�A�1micewere pro-
tected from myelin oligodendrocyte glycoprotein-induced
experimental autoimmune encephalomyelitis (EAE), sug-
gesting that FcR-mediated uptake of antibody-bound myelin
is involved in the pathogenesis of multiple sclerosis [33].
Autoantibody-mediated antigen uptake may therefore be a
critical mechanism in the pathogenesis of T-cell-mediated
autoimmune diseases.

Further support for autoantibody-mediated antigen
uptake as a pathogenic mechanism in autoimmunity comes
from an elegant study by Harbers et al. where transgenic
mice expressed ovalbumin (OVA) as “self ” in both their
thymus and pancreatic beta cells [34]. Presentation of OVA
by dendritic cells to diabetogenic CD8+ OVA-reactive T cells
was signi�cantly stimulated by administration of antibodies
speci�c to OVA. is response was not observed in mice
lacking activating Fc𝛾𝛾R, indicating that the antibody-driven
effector T-cell activation was indeed Fc𝛾𝛾R dependent.

However, autoantibodies are not always damaging to
the organism, but can have protective functions [35, 36],
and natural autoantibodies are commonly found in healthy
individuals. Most of these antibodies are of the IgM isotype
and have been speculated to have protective functions. One of
these functions is the clearance of dying and aging cells and in
mice natural IgM autoantibodies bind to epitopes speci�cally
expressed on apoptotic cells [37, 38] enhancing the clearance
of these cells, which may otherwise elicit a pathogenic
autoimmune response [39, 40]. Lack of secreted IgM has
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been shown to correlate with an increase in pathogenic IgG
autoantibodies and autoimmune disease possibly due to the
lack of removal of apoptotic cells [41–43].

e mouse natural autoantibodies that arise without
external antigen exposure are secreted from a subset of B
cells, named B1 cells [44, 45], and a similar B-cell subset
has been recently identi�ed in humans [46]. In patients
with SLE, higher levels of IgM associated with apoptotic cell
clearance correlate with lower disease activity [47, 48], and
healthy twins of SLE patients oen present higher levels of
these autoantibodies [49]. Another mechanism of protection
by natural autoantibodies is the blockage of pathogenic
autoantibodies to react with self-antigen [50], and titers of
natural IgM speci�c to dsDNA correlated inversely with the
severity of glomerulonephritis (GN) in SLE [51, 52].

Besides producing antibodies, activated B cells are also
fundamental for coordinating T-cell functions as B-cell-
depleted mice exhibit a dramatic decrease in numbers of
CD4+ and CD8+ T cells, and a signi�cant inhibition of
memory CD8+ T cells [53, 54]. ere are several antibody-
independent mechanisms by which B cells can affect T cells
and other immune cells as will be discussed below.

2.2. B Cells as Antigen-Presenting Cells. Especially at low
antigen concentrations B cells function as superior APCs
[55]. Other APCs (macrophages and dendritic cells) internal-
ize antigen through pinocytosis, while B cells capture anti-
gen through their antigen-speci�c B-cell receptors (BCRs)
(Figure 1(c)). e ability of antigen-speci�c B cells to serve
as efficient APCs has been demonstrated in several in vivo
studies [56]. is mechanism is 1,000–10,000-fold more
efficient than pinocytosis, and antigens can be successfully
presented at very low concentrations, as those present in
autoimmune diseases [57–59]. Moreover, the BCR-conferred
antigen-speci�city enables the B cells to focus the immune
response to a speci�c antigen [60].

B cells serve as APCs in autoimmune diseases includ-
ing rheumatoid arthritis and type 1 diabetes [61, 62].
Immunoglobulin-de�cient mice in a model of autoim-
mune arthritis (proteoglycan-induced arthritis) did not
develop arthritis. e observation that T cells isolated from
proteoglycan-immunized transgenic mice that express mem-
brane Ig (mIgM), but lack circulating antibodies, were unable
to transfer disease suggested that these T cells were not
adequately primed and that antigen-speci�c B cells may
be required for this process. is was con�rmed when
direct targeting of proteoglycan to the BCR induced T cells
competent to transfer arthritis [61].

e role of B cells as APC in type 1 diabetes is discussed
in a separate chapter below.

2.�. Proin�ammator� C�to�ine �ecretion. Activated B cells
can secrete proin�ammatory cytokines like interleukin-6
(IL-6), interferon-gamma (IFN-𝛾𝛾), IL-4, and TGF-beta [63–
65]. ese in�ammatory mediators modulate the migration
of dendritic cells, activate macrophages, exert a regulatory
role on T-cell functions, and provide feedback stimulatory
signals for further B-cell activation.

2.4. Modulation of Antigen Processing and Presentation.
Besides facilitating antigen uptake, both membrane-bound
and soluble antibodies can modulate the processing pattern
of the antigen [66–69] (Figure 1(d)). Depending on the
antigenic epitope recognized by the antibody or the BCR of
the B cell, different T-cell determinants are presented on the
MHC molecule [67, 70–73]. Indeed proteolysis of antigen-
antibody complexes yielded protein fragments that were not
observed in the absence of antibody [74]. is might have
consequences for the ensuing T-cell response, in particular
when otherwise cryptic T-cell determinants are presented.
is bias in processing of antigen complexed with antibody
may stem from antibody-mediated protection of distinct
peptide sequences from degradation and/or sequestering
of peptide sequences and interference with the loading of
peptides onto MHCmolecules [75].

e relevance of this mechanism in autoimmune dis-
eases was suggested by studies showing that antibodies to
thyroglobulin could augment or suppress processing and
presentation of pathogenic T-cell determinants [76] and will
be discussed further in the T1D chapter.

2.5. Ectopic Germinal Centers. B cells aid in the de novo
generation of ectopic germinal centers (GCs)within in�amed
tissues that can be observed during periods of chronic
in�ammation [77]. ese ectopic structures are probably not
a unique disease-speci�c occurrence, but a consequence of
chronic in�ammation. Activated T and B cells that in�ltrate
the site of chronic in�ammation express membrane-bound
lymphotoxin 𝛼𝛼1𝛽𝛽2 (LT𝛼𝛼1𝛽𝛽2) [78]. High levels of LT𝛼𝛼1𝛽𝛽2
eventually promote the differentiation of resident stromal
cells into follicular dendritic cells (FDCs) and the develop-
ment of ectopic GCs [79, 80]. ese structures are similar
to the GCs of secondary lymphoid organs and have been
described in systemic lupus erythematosus, Hashimoto’s
thyroiditis, Graves’ disease, rheumatoid arthritis, Sjögren’s
syndrome, multiple sclerosis, and type 1 diabetes [81–83].
e function and potential pathogenic role of ectopically
formed lymphoid structures within in�amed tissues remains
unclear. However, plasma cells residing within the ectopic
GCs secrete autoantibodies [84], making it plausible that
ectopic GCs have a role in the maintenance of immune
pathology [85, 86].

Recent research has demonstrated that B cells are
also involved in the inhibition of in�ammatory immune
responses, a function carried out by a subpopulation of B cells
�ttingly named regulatory B cells or Bregs.

3. IL-10 SecretingBCells andRegulatory BCells

A role of B cells in the inhibitory regulation of immune
responses was initially suggested in autoimmunemice, where
absence of B cells led to increased in�ammation [87–89].
Transfer of wild-type B cells, but not IL10-negative B cells,
reversed the in�ammatory response [90], and IL-10 produc-
ing B cells were shown to suppress in�ammation in mouse
models of autoimmune diseases [91–93]. e signi�cance of
this anti-in�ammatory cytokine was further supported by
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the �nding that IL-10-de�cient mice showed more severe
disease accompanied with an increase in 1 cytokine levels
[88, 94, 95] and lower levels of regulatory T cells [96].
IL-10 is secreted by monocytes, 2 T cells, regulatory T
cells, and a rare subset of B cells. ese IL-10 secreting
B cells [97–100] can suppress CD4+ T cell responses and
prevent autoimmune disease in mousemodels and have been
�ttingly named regulatory B cells or Bregs [98–100]. e
involvement of Bregs in human disease was �rst suggested
by the observation that B-cell depletion can exacerbate -
1-mediated autoimmune conditions such as ulcerative colitis
[101] and psoriasis [102], and IL-10 producing B cells have
been identi�ed in humans [65]. For detailed discussions of
Bregs please refer to other excellent reviews [99, 103].

4. B-Cell Tolerance

B-cell tolerance is established at multiple checkpoints
throughout B-cell development, both in the bone marrow
and the periphery. It has been estimated that 50% to 75%
of newly produced human B cells are autoreactive and must
be eliminated by tolerance mechanisms [104]. Induction of
B-cell tolerance starts in the bone marrow. e major elimi-
nation mechanisms are receptor editing, clonal deletion, and
anergy [105–107]. Defects in this early tolerance induction
have been observed in subjects with rheumatoid arthritis,
systemic lupus erythematosus, and type 1 diabetes [53, 108–
110].

Once autoreactive B cells are removed, the immature
B cells leave the bone marrow and migrate to the spleen,
where they may encounter autoantigen not present in the
bone marrow. B cells with high avidity to autoantigen are
deleted, while low-avidity or very-low avidity interactions
lead to anergy or ignorance, respectively [111].

An encounter with true foreign antigen triggers the
migration of the B cell to the T-cell zone of GCs, and
activation by antigen-speci�c CD4+ T cells. During the
ensuing rapid proliferation phase B cells undergo somatic
hypermutation predominantly of the variable regions of their
immunoglobulins. Only those B cells that express antibodies
with increased affinity are selected to survive and exit the
GC as antibody producing plasma cells or memory cells (for
details see [112]).

4.1. Loss of Tolerance. Any of the above-discussed tolerance
checkpoints can be faulted by genetic mutations allowing
autoreactive B cells to survive. Some of these mutations have
been identi�ed in mouse models of autoimmune diseases
with parallel �ndings in human disease.

(1) Faulty negative selection at the immature B cells
stage: NZM2410 mice spontaneously develop severe
lupus nephritis at an early age. ese mice carry the
lupus susceptibility locus Sle1 containing at least three
subloci, Sle1a, Sle1b, and Sle1c, involved in B-cell
tolerance and activation of CD4+ T cells [113]. Using
Sle1 congenic C57Bl6 mice, Kumar and colleagues
[114] showed that mutations located within the Sle1
induced loss of B-cell tolerance through impaired

negative selection of autoreactive B cells at the imma-
ture B-cell stage.

(2) Increased B-cell signaling by overexpression of
BCR signal-enhancing molecules or de�ciency of
molecules inhibiting BCR signaling: CD19 is a B-cell
surface molecule that decreases the threshold for
BCR stimulation. Hyperexpression of CD19 in mice
led to increased levels of serum antibodies and
increased B-cell activation, while the loss of CD19
reversed these phenotypes [115–119]. De�ciency
of molecules that inhibit BCR-signaling, such as
SHP-1 [120], Lyn [121], or Fc𝛾𝛾RIIB [122], causes
increased B-cell signaling and initiates development
of systemic autoimmunity in mice. e inhibitory
Fc𝛾𝛾RIIB is expressed on B cells, where it regulates
activating BCR signals. Lack of Fc𝛾𝛾RIIB expression
leads to autoimmunity and autoimmune diseases
[122–124]. e importance of Fc𝛾𝛾RIIB in human
autoimmunity is exempli�ed by the �nding that B
cells from patients with lupus express lower levels of
Fc𝛾𝛾RIIB on their surface due to polymorphisms in
their Fc𝛾𝛾RIIB promoter [125], or the receptor itself
[126, 127].

(3) Generation of autoreactive immunoglobulins dur-
ing somatic hypermutation: during affinity mat-
uration the massive somatic hypermutations can
also cause the inadvertent development of autoreac-
tive immunoglobulins. While normally the resulting
autoimmune B cells may either not receive necessary
survival signals [128] or be eliminated, they accumu-
late in autoimmune diseases.

(4) Increased survival of autoreactive B cells: B-cell
activation factor (BAFF) is a B-cell survival factor
and overexpression of BAFF in transgenic mice led
to an expansion of peripheral B cells with higher
autoantibody levels and the development of a lupus-
like disease in the animals [28]. Elevated serum levels
of BAFF have been found in patients with rheumatoid
arthritis, systemic lupus erythematosus, and primary
Sjörgren’s syndrome [129–131]. ese observations
make BAFF a potential target for therapy [132, 133].
Indeed neutralization of BAFF was shown to be
associated with loss of mature B cells [134] and
reduced symptoms of autoimmune diseases in animal
models [135, 136].

In the following the role of B cells in autoimmune
diseases will be discussed in the context of systemic lupus
erythematosus, rheumatoid arthritis, and type 1 diabetes.
Systemic lupus erythematosus is a classic B-cell-mediated
autoimmune disease, while rheumatoid arthritis and type 1
diabetes were initially considered to be predominantly T cell
mediated. However recent studies suggest a role of B cells
in the pathogenesis of these autoimmune diseases, as will be
discussed in detail below.

Systemic Lupus Erythematosus (SLE) is a complex autoim-
mune disease, characterized by hyperglobulinemia, immune
complex deposition, and end organ damage. B cells have been
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identi�ed as major contributors to SLE, and B-cell depletion
in SLE animal models abrogated the development of disease
[54, 137]. Indeed, generalized B-cell hyperactivity has been
documented in several murine models of lupus [138] and
is also evident in patients with lupus [139, 140], where the
number of B cells at all stages of activation is increased during
active disease [141]. Both the decrease in proapoptotic genes
and the increase in prosurvival gene expression have been
suggested to cause this prolonged half-life of B cells in SLE
(see also above).

A pathogenic role of autoantibodies in SLE is supported
by the observation that the passive transfer of anti-DNA
antibodies induces distinct features of lupus nephritis in
healthy animals [142, 143]. Autoantibodies in SLE contribute
to end organ damage in glomerulonephritis (glomerular
antibodies and anti-DNA antibodies) [144–146], congeni-
tal heart block (anti-Ro antibodies) [147], and thrombosis
(anticardiolipin antibodies) [148]. Other autoantibodies are
directed to diverse self-molecules, most notably antinuclear
antibodies directed to double stranded DNA (dsDNA) [149],
and small nuclear ribonucleoprotein (snRNP). However, B
cells also have antibody-independent effects on the SLE
pathogenesis. ese functions include antigen presentation,
costimulation of T cells, and secretion of proin�ammatory
cytokines. is role was evaluated in a set of experiments
conducted by Chan and colleagues, where B cells in a SLE
mouse model carried a mutation that prevented the secretion
of antibodies [54]. us these animals had B cells but
were devoid of circulating antibodies. Despite the absence
of autoantibodies, the mice developed nephritis, indicating
an antibody-independent effect of B cells. B-cell-de�cient
MRL/lpr mice remain disease-free and fail to develop acti-
vated CD8+ andCD4+T cells found in B-cell-sufficientmice,
a �nding attributed to loss of B cell-CD4 T cell interactions
[150].

e dual effect of IL-10 as a B-cell stimulator and
inhibitor of T-cell activation is exempli�ed in SLE [151]. In
mice models for SLE, IL-10 appears to exert mainly its above-
discussed anti-in�ammatory effect and IL-10-de�cient mice
develop a more severe disease with increased proin�amma-
tory cytokine levels [152], while transfer of IL-10 producing
B cells induced the expansion of regulatory T cells [96].
However, in human SLE IL-10 promotes disease, IL-10
serum levels are signi�cantly elevated and correlate with
disease activity [153] and IL-10 induced a signi�cant increase
of anti-DNA antibody secretion in cultured PBMCs from
SLE patients [154]. is antibody secretion was signi�cantly
reduced in the presence of neutralizing IL-10-speci�c anti-
bodies [155] and treatment with IL-10-speci�c monoclonal
antibodies led to marked improvement in participants of a
small clinical trial [156]. e protective effect of IL-10 in
mice appears to be mediated through T-cell regulation, as
IL-10 overexpression in a mouse model for lupus resulted in
reduced T-cell activation, while B-cell phenotypes remained
unaffected [151]. In SLE patients immune cells that normally
suppress B-cell activation are defective and do not counteract
the IL-10-mediated stimulation of B cells resulting in the
subsequent secretion of autoantibodies [157].

Rheumatoid Arthritis (RA) is a chronic in�ammation
of the joint capsule (synovium) and synovial membranes,
associated with proliferation of synovial �broblasts and
macrophages, leading eventually to cartilage injury and bone
erosion [158]. While T cells are a major component in
the pathogenesis, several observations suggest that B cells
are necessary for the development of the disease, as B-cell
de�ciency in RA animal models abrogates disease [159, 160],
and autoimmune T cells alone are not sufficient to induce
disease [161]. At least two mechanisms of B-cell involvement
are currently considered: the production of autoantibodies
and antigen presentation. Autoantibodies in patients with RA
typically target several autoantigens, including rheumatoid
factor (RF), type II collagen (CII), and citrullinated proteins
(ACPA). A model for the pathological role of RA-associated
autoantibodies will be discussed for autoantibodies directed
to CII. ese autoantibodies are found in ∼70% of patients
with early RA [162–164] both in their serum and synovial
�uids. A pathogenic role of CII-speci�c antibodies was indi-
cated in an animal model termed collagen-induced arthritis
(CIA), where immunization of animals with CII induced the
development of CII antibodies [165] and triggered arthritic
symptoms [166–168]. Moreover, arthritic symptoms were
also observed aer passive transfer of CII-reactive serum
obtained from CIA animals [169], patients with RA [170],
or monoclonal antibodies speci�c to CII [165, 171] to
healthy recipient animals, further supporting a pathological
role of CII antibodies. CII autoantibodies are thought to
mediate the formation of immune complexes in the joint,
followed by complement activation and in�ammatory cell
recruitment. Aer Fc𝛾𝛾R ligation, the activated cells secrete
proin�ammatory cytokines, further activating an immune
reaction consisting of synovial macrophages and in�ltrat-
ing mononuclear cells with the eventual release of tissue-
degrading enzymes that cause cartilage damage [172]. CII
autoantibodies may also have a direct pathogenic function,
which occurs in the absence of in�ammatory mediators
[173]. Here the antibodies modify the synthesis of collagen
�brils effecting cartilage synthesis and stability [174–176],
possibly through steric hindrance of collagen epitopes that
are important for the formation of collagen �brils [177–179].

Type 1 Diabetes (T1D) is an organ speci�c autoimmune
disease, characterized by the destruction of the insulin-
producing beta cells in the pancreas. During progression
towards T1D the pancreatic islets are in�ltrated by mononu-
clear cells consisting of CD4+ and CD8+ T cells, B cells,
macrophages, and dendritic cells [180, 181]. Both CD4+
and CD8+ T cells contribute to the ultimate attack on the
beta cells [182], but in recent years the pathogenic role of
B cells is beginning to emerge [183, 184]. A major hallmark
of the autoimmunity leading to T1D is the presence of
autoantibodies to beta cell antigens. At the time of clinical
diagnosis more than 90% of patients present at least one
of the T1D-associated autoantibodies [185]. e four beta
cell antigens most frequently targeted by autoantibodies are
insulin [186], the smaller isoform of glutamate decarboxylase
(GAD65) [187], protein-tyrosine-phosphatase-like protein
IA-2 [188], and the zinc transporter 8 (ZnT8) [189]. ese



Scienti�ca 7

autoantigens are also targeted by autoreactive T cells, sug-
gesting a collaborative interaction between T and B cells
[190]. No direct pathogenic role has been assigned to these
autoantibodies and they are generally viewed asmarkers only.
However a potential role of GAD65Ab in enhanced antigen
uptake has been suggested [191]. Stimulation of GAD65-
speci�c T-cell clones with human recombinant GAD65 was
tested in the presence of sera obtained from GAD65Ab-
positive T1D patients and GAD65Ab-negative T1D patients.
Only sera from GAD65Ab-positive patients signi�cantly
enhanced T-cell stimulation. Moreover, this effect was inhib-
ited by monoclonal antibodies to the FcR, suggesting Fc-
mediated uptake ofGAD65 complexedwithGAD65Ab as the
underlying mechanism.

However, the major mechanism by which B cells con-
tribute toT1Ddevelopment is the antibody-independent pre-
sentation of beta cell antigens [190, 192, 193]. Nonobese dia-
betic (NOD) mice de�cient of mature B cells do not develop
T1D [193–199]. In the absence of B cells, NODmice showed
signi�cantly lower numbers of CD4+ and CD8+ T cells in
their insulitic lesions [62, 195, 198–200], suggesting a role of
B cells in the activation of autoreactive T cells. e function
of B cells as APCs was illustrated in NOD mice whose B
cells were rendered MHC class II de�cient [201]. Although
these animals retained their ability to present antigen via
dendritic cells and macrophages, they were protected from
diabetes development. However, the presence of insulitis in
B-cell-de�cient mice [62] and the report of at least one B-
cell-de�cient T1D patient [202] indicate that B cells may not
be absolutely essential for the development of T1D and can
be substituted by other APCs. As discussed above, B cell
can focus the immune response towards a speci�c antigen.
NODmice that expressed only B cells speci�c to an irrelevant
antigen (Hen Egg Lysosome) did not develop an autoantigen-
speci�c T-cell response and remained healthy, indicating that
only autoantigen-speci�c B cells enhance the development of
T1D in the NOD mouse [203]. We will discuss the role of
autoantigen-speci�c B cells exempli�ed by GAD65-speci�c
B cells. Although GAD65 levels in murine pancreatic beta
cells are very low, it is a major autoantigen in the patho-
genesis of T1D in the NOD mouse [204]. GAD65-speci�c
T cells have been demonstrated in both T1D patients and
the NOD mouse [205–209]. Adoptive transfer of GAD65-
reactive T cells isolated from NOD mice caused recipient
animals to develop T1D [207, 210], supporting the concept
of diabetogenic GAD65-speci�c T cells in the pathogenesis of
T1D. Importantly, the development of these GAD65-speci�c
T cells depends on the presence of B cells [190, 192, 203].e
�nding that reconstitution of B-cell-depletedNODmice with
B cells reinstated T1D only if the repopulating B cells were
primed with GAD65 [190] suggests that B-cell-mediated
presentation ofGAD65 stimulates GAD65-reactive T effector
cells to target pancreatic beta cells. It is however not only
the antigen speci�city, but also the epitope speci�city of
the B cells that affects the T-cell response. GAD65-speci�c
B-cell hybridomas with different epitope speci�cities were
tested for their capacity to stimulate GAD65-speci�c T-cell
clones. ose T-cell clones whose epitope lays outside of
the BCR epitope showed increased T-cell responses, while

T-cell clones whose epitope lays inside the BCR epitope
showed suppressed responses, suggesting that the BCR epi-
tope speci�city can promote the presentation of some T-cell
determinants, while suppressing that of others [211, 212].

Based on the promising results of B-cell depletion in the
prevention of T1D inNODmice, the effect of B-cell depletion
on human T1D was tested in a phase II multicenter clinical
trial on newly diagnosed human T1D patients [213]. One
year aer treatment a delay in the loss of beta cell function as
shown by the preservation of C-peptide was demonstrated.
Moreover, patients required less insulin and had better
overall blood glucose control. ese results con�rm that B
cells contribute also to human T1D.

Gathering the current understanding of B cells in T1D,
the following mechanisms have been suggested (Figure 2).
Beta cell antigen is taken up via BCR by antigen-speci�c
B cells (1) and presented on MHC class II molecules to
CD4+ T cells (2). Activated CD4+ T cells provide help to
B cells (3). B cells differentiate to plasma cells and secrete
autoantibodies (4). ese autoantibodies form autoantigen-
autoantibody complexes that bind to the Fc𝛾𝛾R on other APCs
(5). is enhanced antigen presentation eventually triggers
both natural killer cells and CD8+ T cells to attack the
pancreatic beta cell.

5. B-Cell Depletion

e growing understanding that B cells play a pathological
role also in autoimmune diseases that are traditionally viewed
as T cell mediated led to B-cell depletion treatment not only
in diseases that are clearly B cell dominated, but also in
autoimmune diseases that are traditionally viewed as T cell
mediated, such as T1D.

B-cell depletion can target a number of different B-cell
molecules, either with the goal of B-cell elimination, or the
suppression of survival. Four major classes of B-cell targeting
drugs have been evaluated for the treatment of autoimmune
diseases: neutralization of survival factors BAFF and APRIL
[214], killing of B cells using monoclonal antibodies directed
to CD19, CD20, and CD22 [215–217], induction of apoptosis
using reagents targeting the BCR itself or BCR associated
transmembrane signaling proteins such as CD79 [193, 218],
and ablation of the formation of ectopic GCs by antibodies
against lymphotoxin-𝛽𝛽 receptor (LT𝛽𝛽R) [219].

B-cell depletion for treatment of human autoimmune
diseases is oen accomplished through antibodies targeting
the surface molecule CD20 (e.g., Rituximab and Ofatu-
mumab). Treatment with these antibodies depletes B cells
by a combination of antibody-mediated cellular cytotoxicity
(ADCC), complement-dependent cytotoxicity (CDC), and
antibody-triggered apoptosis [220] (Figure 3). e CD20
density on B cells appears to be important for CDC, since it is
highly correlatedwithCDC [221]. CD20mAb/CD20 immune
complexes aggregate in microdomains, where the antibod-
ies’ Fc regions are bound by C1q, leading to complement
activation [222]. CD20may also act as a signalingmolecule to
trigger apoptosis when engaged with CD20mAb [223, 224].
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F 2: Model of pathogenic function of B cells in type 1 diabetes. Islet cell antigen released from the pancreatic beta cells is being taken
up at low antigen concentrations by antigen-speci�c B cells, which present the antigen determinants to CD4+ T cells. T cells provide help
to the B cells to eventually differentiate into antibody secreting plasma cells. Autoantibodies can now bind to the autoantigen and the
resulting autoantibody/autoantigen complexes are efficiently taken up via FcR present on other APCs. is enhanced autoantigen uptake
and presentation �nally activates cytotoxic CD8+ T cells, which carry out the killing of the beta cells.

F 3: B-cell depletionwithCD20 (Rituximab). Anti-CD20mAb
can direct the killing of B cells by antibody-dependent cytotoxicity
(ADCC), complement-dependent cytotoxicity (CDC), or apoptosis.
ADCC is triggered by the interaction between the Fc region of the
antibody and the FcR on effector cells of the immune system. In
CDC the Fc region is bound by the complement component C1q,
which triggers a proteolytic cascade. Apoptosis occurs when CD20
molecules are cross-linked by anti-CD20 mAb in lipid ras and
activate signaling pathways leading to cell death.

B-cell depletion using Rituximab has been used for
the treatment of a number of autoimmune and chronic
in�ammatory diseases [213, 225, 226]. Rituximab treatment
results in nearly undetectable circulating B-cell levels one

month aer therapy and B cell counts remain low for 6–12
months [227]. Because the drug targets B cells expressing
surface CD20, mature and memory CD20+CD27+ B cells in
blood and primary lymphoid organs are effectively depleted,
while long-lived plasma cells are not directly depleted [228],
and Rituximab treatment appears not to affect circulating
IgG levels [229], while reducing circulating IgM levels [230].
is effect of Rituximab is illustrated by the observation
that immuni�ation within the �rst 9 months aer Rituximab
treatment results in signi�cantly reduced antibody responses,
which develop from IgM-positive B cells [231, 232]. It is
therefore of interest that for some autoimmune diseases B-
cell depletion was reported to be associated with a decrease
in IgG autoantibody titers [77] and speci�c depletion of
autoreactive B cells by CD20mAb was demonstrated in mice
[233]. As bone marrow stem cells and early B-cell precursors
(pro-B cells) do not express CD20 [234], the new naïve B
cells repopulate the B-cell compartment once the drug has
cleared the system, allowing the immune response to return
to normal. Disease relapses in about 50% of patients either at
the time that B-cell numbers increase to pretreatment levels
or within 3 months, while in other cases clinical relapse can
be delayed for years [235]. Additional Rituximab courses
can induce subsequent remission [236]. Multiple Rituximab
courses are oen associated with progressive decrease in
circulating IgM [237] and IgG levels [238].

e antibody-independent effect of Rituximab treatment
may be due to the elimination of B cells as APC and sub-
sequent reduced stimulation of T cells [239, 240]. However,
not all CD20+ B cells are equally affected by Rituximab
treatment. B cells located in the peritoneal cavity are sur-
prisingly resistant to depletion [241]. While these B cells
express normal CD20 densities and are bound by CD20mAb,
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only about 50% of these cells are depleted. ese location-
dependent sensitivities to CD20mAb-mediated depletion
could have signi�cant conse�uences for therapy and may
be the reason of the heterogeneity of results in human
clinical trials. Other factors such as gender, age, and weight
[242] and immunological pro�le [243] affect the outcome of
Rituximab treatment.emajor side effect of B-cell depletion
is the risk of severe infections, which needs to be taken into
consideration when evaluating the risks and bene�ts of B-cell
depletion [244, 245].

In summary, B-cell depletion offers a promising therapy
for the treatment of a variety of autoimmune diseases. e
treatment is usually well tolerated; however, adverse events
include infusion reactions, infections, and hypogammaglob-
ulinemia.

6. Conclusions and Future Directions

e traditional concept of T-cell-mediated and autoantibody-
mediated autoimmune diseases needs to be adjusted to re�ect
the interaction of different immune cells in autoimmune
pathogenesis. e recognition of the contribution of B cells
in the pathogenesis of autoimmune diseases, which are
traditionally viewed as T cell mediated, led to promising
immune-modulating therapies.

Global B-cell depletion eliminates both protective and
pathogenic B cells.e success of B-cell depletion is therefore
dictated by the extent of depletion of protective versus
pathogenic B cells. e hopes that B-cell depletion would
allow the restoration of immunological tolerance with long-
term remissionwere not ful�lled, as is evident from the recur-
rence of autoimmune disease aer the B-cell compartment
is replenished. Selective depletion of antigen-speci�c B cells
may provide an alternative to global B-cell depletion. is
approach has the additional advantage that unlike Rituximab
treatment it may also eliminate CD20-long-lived autoreactive
plasma cells.

Severalmechanisms are currently investigated in different
in vitro and in vivomodels of autoimmune diseases, a few of
which will be discussed here.

Autoantigens can be fused to the IgG1 Fc domain
to activate complement and FcR-dependent effector cell
responses. is approach has been successfully evaluated in
vitro and in vivo for the treatment of multiple sclerosis by
autoantigen fused to Fc, which induced the effective and
speci�c effector lysis of autoantigen-speci�c B cells [246]. An
inhibitory B-cell signal can be induced by cross-linking of
the autoantigen-speci�c BCR with the inhibitory Fc𝛾𝛾RIIb.
Autoantigen fused to an Fc𝛾𝛾RIIb-binding mAb successfully
reduced autoantibody levels and disease symptoms in lupus-
prone MRL/lpr mice [247–249]. Autoantigen can also be
coupled to an antibody speci�c to complement receptor
1 (CR1). CR1 negatively regulates the proliferation and
differentiation of activated B cells aer binding C3b [250].
In a small clinical trial SLE patients treated with dsDNA
coupled to a CR1-speci�c monoclonal antibody showed a
signi�cant reduction of dsDNA autoantibody titers [251]. In
an early study, Blank et al. employed anti-idiotypic antibodies

directed to a pathogenic anti-DNA idiotype. Administration
of this anti-idiotypic antibody alone or coupled to the cyto-
toxin saporin induced a signi�cant reduction in anti-DNA
antibody titer and diminished clinicalmanifestation in lupus-
prone mice [252]. In a similar approach we demonstrated
that GAD65Ab-speci�c anti-idiotypic antibodies protected
NOD mice from development of T1D [253]. In addition to
the direct elimination of antigen-speci�c B cells, autoantigen-
fusion proteins can also bind pathogenic autoantibodies and
route them to clearance.

Recently Bollmann proposed the targeted elimination of
autoantigen-speci�c B cells using arti�cial antigens linked to
magnetic nanoparticles. Here the autoantigen-speci�c B cells
would be removed in an extracorporeal �ltration method
in an attempt to suppress or cure the autoimmune response
[254].

e feasibility of these speci�c B-cell depletion
approaches needs to be further evaluated; however, they offer
new therapeutic options for the treatment of autoimmune
diseases.
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