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Regulatory T (Ty) cells maintain tolerance to self-antigens and control immune responses to alloantigens
after organ transplantation. Here, we show that CD4* CD25* human Ty cells suppress virus-specific T-cell
responses. Depletion of Ty cells from peripheral blood mononuclear cells enhances T-cell responses to
cytomegalovirus and human immunodeficiency virus antigens. We propose that chronic viral infections lead to
induction of suppressive Ty cells that inhibit the antiviral immune response.

CD4" CD25" regulatory T cells (Tg cells) are a subset of
circulating CD4 ™" T cells with suppressive properties (21, 24).
They were first identified in mice as cells capable of maintain-
ing self-tolerance by suppressing autoreactive T cells (1, 22), or
suppressing alloreactive immune responses after organ trans-
plantation (8, 15, 23). Human Ty, cells have been identified and
characterized in peripheral blood and the thymus (2, 13, 18,
25). Although the phenotypic characterization of Ty cells is
still incomplete, CD25 has been used to distinguish a function-
ally relevant suppressive T-cell subpopulation.

Tk cells develop in the thymus as cells that recognize anti-
gens with high affinity yet escape negative selection (14). Ty
cells can also be induced in the periphery after antigen activa-
tion and are termed adaptive Ty (4). These adaptive Ty cells
can be induced in vitro by cytokine priming and coculture with
immature dendritic cells (6, 12, 29) and in vivo after repeated
exposure to superantigen (7). In addition to suppressing auto-
and alloreactive T cells, Ty cells can also suppress immune
responses to human tumors and to bacterial and acute viral
infections in animal models (3, 26, 28). However, it is not
known whether Ty cells suppress immune responses in human
chronic viral infections. Here we show that depletion of
CD25" T cells from peripheral blood mononuclear cells
(PBMC) augments T-cell immune responses to cytomegalovi-
rus (CMV) and human immunodeficiency virus (HIV) anti-
gens. Ty cells may play an important role in controlling and
suppressing the immune responses in chronic viral diseases.

MATERIALS AND METHODS

Study samples. Blood samples from healthy blood donors were obtained
under approved University of California—San Francisco Committee on Human
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Research Institutional Review Board protocols. Blood samples from HIV-in-
fected patients were obtained from 16 adult patients recruited after informed
consent from the UCSF Options cohort (median CD4 T-cell count = 544 cells/
pl; range, 483 to 799 cells/pl; and median viral load, 26,700 copies/ml; range,
1945 to >500,000 copies/ml). All but one of the patients were infected within 1
year prior to blood sampling, and none of the patients were currently under
antiretroviral treatment. PBMC from healthy seronegative donors and HIV-
infected individuals were isolated from heparinized whole blood by Ficoll-Paque
PLUS density gradient centrifugation (Amersham Pharmacia, Uppsala, Swe-
den). The cells were washed twice in RPMI 1640 (MediaTech, Herndon, Va.)
supplemented with 15% fetal calf serum (FCS) (Gemini BioProducts, Wood-
land, Calif.). PBMC not assayed immediately were frozen in FCS containing 10%
dimethyl sulfoxide (Sigma-Aldrich, St. Louis, Mo.). Frozen PBMC were thawed,
washed twice in RPMI 1640 supplemented with 15% FCS, and incubated over-
night at 37°C prior to use.

Phenotyping of CD25™ regulatory T cells (Tg). Briefly, fresh or frozen PBMC
were washed once in phosphate-buffered saline (PBS) containing 1% bovine
serum albumin (BSA) (Sigma-Aldrich, St. Louis, Mo.) and stained with fluores-
cently labeled antibodies for CD3-peridinin chlorophyll protein (PerCP), CD4-
fluorescein isothiocyanate (FITC), CD8-allophycocyanin (APC), CD25-FITC or
-phycoerythrin (PE), CD38-APC or -PE, and/or HLA-DR—APC (BD Bio-
Sciences, San Jose, Calif., and BD BioSciences PharMingen, San Diego, Calif.)
for 20 min at 4°C. The cells were then washed twice with PBS containing 1%
BSA, fixed in 1% paraformaldehyde, acquired on a flow cytometer (FACSCali-
bur; BD BioSciences), and analyzed using FlowJo software (Tree Star, San
Carlos, Calif.).

Depletion of CD25% cells. CD25" cells were purified with MACS CD25
MicroBeads (Miltenyi Biotec, Auburn, Calif.). Briefly, fresh or frozen PBMC
were washed twice in PBS containing 0.5% BSA and 2 mM EDTA, resuspended
in 80 pl of PBS containing 0.5% BSA-2 mM EDTA and 20 pl of MACS CD25
MicroBeads per 107 total PBMC, and incubated for 15 min at 6 to 12°C. PBMC
were washed twice in PBS containing 0.5% BSA and 2 mM EDTA and applied
to a magnetic column on a MidiMACS separation unit (Miltenyi Biotec). CD25"
and CD25~ T-cell fractions were collected. The CD25" cell fraction contained
>90% CD4* T cells. In some experiments the CD25" cell fraction was purified
to >99% CD4" T cells by cell sorting after staining with monoclonal antibodies
to CD3 and CD4 (FACSvantage; BD Biosciences).

Tetramer staining. PBMC were washed once in PBS containing 1% BSA and
stained with CD8-FITC, CD3-PE, and APC-conjugated HLA A*02 CMV pp65
Tetramer (NLVPMVATYV) (Beckman Coulter Immunomics, San Diego, Calif.).
After staining, the cells were washed twice in PBS containing 1% BSA and fixed
in 1% paraformaldehyde.

Cytokine flow cytometry. PBMC, PBMC depleted of CD25" T cells, or PBMC
cocultured with CD25™ T cells were stimulated with staphylococcal enterotoxin
B (SEB) (Sigma-Aldrich), CMV pp65 peptide (NLVPMVATYV) (Resgen In-



VoL. 78, 2004 T-CELL RESPONSES TO HIV AND CMV ANTIGENS 2455
PBMC
» 6.0, —_— @ 5.0 4 —ll— CD4 Tcells w 140
3 I CD25 depleted PBMC 3 3
o o —/\— cD8 Tcells S 490 =
— 5.0 404 - e
& & &
8 40 B Q10,0
o .0 &) O
‘s 5 301 5 80
X 3.0 X X
5 5§ 207 I
@ 20 7} ®
o o 8 4.0
Q o Qo
X 104 X 1.0 X
L . w w 204
iy iy iy
z bd z
L oo . . i 00 . — L o0 : :
CD4Tcels  CD8Tcells 1:40 1:20 1:10 1:5  1:3 ¥ ®8E Bd
_—mm N N
CD25- 8 8a §a
CD25+ : CD25- ° °9
S
o
+

FIG. 1. Ty cells suppress superantigen-induced cytokine production. IFN-y expression in T cells in PBMC was compared with that of T cells
in PBMC depleted of CD25* cells (a). The cultures were stimulated for 18 h with SEB. Brefeldin A was added for the last 5 h to promote cytokine
accumulation. Means *+ standard errors of the mean are shown (n = 3). (b) CD25" T cells were added back into PBMC depleted of CD25" cells
at increasing ratios. The CD25" T cells were stained with CFSE before being added back and were gated out of the analysis. (c) CD25" T cells
and sorted CD25" CD4™" T cells (>99% pure) were added back into PBMC depleted of CD25" cells. Means =+ standard errors of the mean are

shown (n = 2).

vitrogen, Carlsbad, Calif.), HIV type 1 (HIV-1) Gag p24 (Protein Sciences,
Meriden, Conn.), HIV-1 SF2 p55 Gag (National Institutes of Health AIDS
Research and Reference Reagent Program), HIV Gag p55 peptide mix (BD
BioSciences PharMingen), Human CMYV viral lysate (Advanced Biotechnolo-
gies, Inc., Columbia, Md.), or with RPMI 1640 supplemented with 15% FCS and
incubated for 18 h. All antigens were used at a final concentration of 2.5 to 5
pg/ml. Brefeldin A (Sigma-Aldrich) was added at a final concentration of 5
pg/ml for the last 6 h of incubation. Cells were washed in PBS containing 2 mM
EDTA, fixed in 1% paraformaldehyde, and permeabilized in FACS permeabi-
lizing solution (BD BioSciences) for 10 min prior to being stained with CD8-
APC, CD3-PerCP, gamma interferon (IFN-y)-PE, and tumor necrosis factor
alpha (TNF-a)-FITC (BD BioSciences). The cells were washed twice in PBS
containing 1% BSA and fixed in 1% paraformaldehyde before being acquired on
a flow cytometer (FACSCalibur; BD Biosciences) and analyzed using FlowJo
software (Tree Star).

RESULTS AND DISCUSSION

CD4" CD25* Ty cells inhibit superantigen-induced IFN-y
expression in both CD4 and CD8 T cells. To assess the poten-
tial inhibitory capacity of Ty cells, we compared IFN-y expres-
sion in PBMC after superantigenic stimulation with or without
CD25" T cells. Depletion of CD25" cells dramatically aug-
mented the IFN-y expression in both the CD4 and CDS8 T-cell
compartments (Fig.1a). When autologous CD25" cells were
added back to a culture of PBMC depleted of CD25" T cells,
the IFN-y expression was suppressed in a dose-dependent
manner (Fig. 1b). The suppressive activity was found in the
CD4™" T-cell compartment of the CD25™ cell fraction (Fig. 1c),
and the suppression of cytokine expression was not due to
dilution of responding cells (data not shown). Similar results
were obtained by analyzing TNF-a expression (data not
shown).

Suppressive CD25* T cells can be induced from CD25~ T

cells by activation with superantigen alone. The CD4™" T-cell
population in peripheral blood of healthy blood donors con-
tains about 10 to 15% CD4" CD25" T cells (5). The role of
these cells in controlling and suppressing autoreactive T cells is
now well established, and the induction of the Ty cells has
been shown to take place in the thymus (10, 14, 19). However,
induction of suppressive T cells specific for exogenous antigens
that are not expressed in the thymus is likely to take place in
the periphery. Therefore, we hypothesized that Ty cells can be
generated in vitro from peripheral CD25™ cells. We depleted
CD25" T cells from PBMC (Fig. 2a), labeled the remaining
cells with 6-carboxyfluorescein succinimidyl ester (CFSE), and
cultured them for 7 days in medium containing SEB. At day 7,
40 to 60% of the T cells expressed CD25, as did a large
majority of the proliferating cells (Fig. 2b). Next, we wanted to
test whether the induced CD25" cells had suppressive prop-
erties. When the CD25™ cells were added to PBMC stimulated
with SEB, they suppressed IFN-y expression in the responding
T cells in a dose-dependent manner. No suppression was ob-
served when the CD25™ cells were added to the culture (Fig.
2c¢). From these results, we hypothesized that there may be an
expansion of Ty cells in conditions with persistent immune
activation. HIV infection leads to chronic immune activation
and is associated with increased frequency of CD38" CD8" T
cells (Fig. 3a). However, in a cross-sectional study, we did not
observe a higher percentage of CD4" CD25" T cells in pe-
ripheral blood in HIV-infected individuals (» = 10) than in
healthy blood donors (n = 10) (Fig. 3b). This may be due to
redistribution of CD4" CD25" T cells to lymphoid tissues.
Alternatively, the suppressive T cells occurring in peripheral
blood may represent a heterogenic population of CD4 T cells.
In mice, CD4" CD69" T cells have been shown to possess
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FIG. 2. Suppressive CD25" T cells can be induced from PBMC depleted of CD25" T cells after activation with SEB. PBMC were depleted of
CD25" cells (a), labeled with CFSE, and cultured in the presence of SEB for 7 days (b). At day 7 (c), the CD25" and CD25™ cell fractions were
added into fresh PBMC cultures from the same donor. The cocultures were stimulated for 18 h with SEB. Brefeldin A was added for the last 5 h
to promote cytokine accumulation. The CFSE-stained cells added into the fresh PBMC at day 7 were gated out of the analysis. Representative

data are shown.
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FIG. 3. The frequency of Ty cells in HIV patients is unaltered.
PBMC from HIV patients (n = 10) and healthy subjects (n = 10) were
stained with fluorochrome-labeled monoclonal antibodies and ana-
lyzed for the frequencies of CD4* CD25" T cells and CD8" CD38* T
cells. Means = standard errors of the mean are shown.

CD3+CD8-

T-CELL RESPONSES TO HIV AND CMV ANTIGENS 2457

suppressive activity (11). This population only partly over-
lapped with the CD4" CD25"% T-cell subset. It is, therefore,
possible that using CD25 expression to identify suppressive
regulatory CD4™ T cells underestimates the real frequency of
suppressive T cells in healthy as well as HIV-infected
individuals.

CD4" CD25* Ty cells suppress antiviral immune re-
sponses. To investigate whether circulating CD25" T cells
suppress immune responses to viral antigens, we compared the
IFN-y expression of CMV-pp65-specific CD8™ T cells with or
without depletion of CD25* T cells. The frequency of HLA-
A2/CMV pp65 tetramer™ CD8" T cells was 0.57%, whereas
the percentage of responding IFN-y* CD8" T cells in the
PBMC culture was 0.26% (Fig. 4a). Thus, less than 50% of the
CD8" T cells specific for this antigen responded with TFN-y
expression in this individual. However, when the PBMC cul-
ture was depleted of CD25" T cells, the frequency of IFN-y*
CD8" T cells increased to 0.59%, similar to the frequency
identified with the CMV pp65 tetramer. When CD25" T cells
were added back, the IFN-y expression was suppressed to the
level observed before depletion.
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FIG. 4. Ty cells suppress antiviral immune responses. PBMC from a healthy CMV-infected individual were stained with a CMV pp65 tetramer
and with cell surface markers (a). The frequency of tetramer-positive CD8™ T cells was compared with the frequency of IFN-y-expressing T cells
in PBMC, PBMC cultures depleted of CD25™ cells, and PBMC cultures depleted of CD25™" cells to which the depleted cells were added back in
a 1:3 ratio. PBMC from an HIV-infected subject were stimulated with HIV antigens (b). The frequencies of IFN-y- and TNF-a-expressing T cells
in PMBC cultures and PBMC cultures depleted of CD25™" cells were compared. Representative data are shown.
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FIG. 5. Depletion of Ty cells enhances the antiviral immune response to HIV. PBMC from HIV-infected subjects (n = 6) were stimulated with
HIV and CMV antigens. The frequencies of IFN-y- and TNF-a-expressing T cells in PMBC cultures and PBMC cultures depleted of CD25™ cells
were compared. The cells were gated on the CD3" CD8™ and CD3" CD8™ T cells. The shaded area in each graph represents the level of detection.

Note: the scale on the y axis differs in the panels.

To further assess the degree of immunosuppression of an-
tiviral immune responses, we measured intracellular IFN-y
and TNF-a expression in T cells in response to several HIV
antigens in PBMC cultures and in PBMC cultures depleted of
CD25" T cells. In all HIV-infected subjects, the anti-HIV
immune response was considerably increased in both the CD4
and CD8 T-cell populations after depletion of CD25" T cells
(Fig. 4b and 5). These results indicate that suppressive CD25™*
T cells suppress the immune response to chronic viral antigens.

Based on these results, we propose that chronic viral infec-
tion leads to induction in the periphery of a Ty cell population
which is involved in the suppression of antiviral immune re-
sponses. Tx cells may thereby impair an otherwise successful
immune response. Our data support a mechanism of antigen-
specific induction of Ty cells, which then exert suppression in
a nonspecific manner (9, 27). In HIV infection, HIV-induced
Tg cells could potentially contribute to the generalized immu-
nosuppression (16, 17, 20), and it is possible that manipulation
of Ty cells could help restore antigen-specific immune respon-
siveness in chronic viral infections, such as HIV infection.
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