
Rod and cone photoreceptor cells are highly specialized 
to carry out their primary task: transforming absorbed light 
into electrical responses that can be processed and understood 
as vision by the central nervous system. Long-term pertur-
bations in components of the signal transduction cascade, 
energy metabolism, or structural integrity within the photo-
receptors or their supporting cells can increase the risk of 
photoreceptor cell death (see reviews in [1-3]). The resulting 
loss of vision is one of the most common causes of disability. 
However, the exact cellular and molecular mechanisms by 
which mutations or environmental insults lead to photore-
ceptor cell death are not completely understood.

One critical component of the phototransduction cascade 
is the cyclic nucleotide-gated (CNG) channels in the outer 
segment plasma membrane of rods and cones. Closure of these 
channels converts the chemical signal (a fall in intracellular 
guanosine 3′,5′-cyclic monophosphate [cGMP] concentration) 
that is initiated by light absorption, into membrane hyper-
polarization and decreased neurotransmitter release onto 

second-order cells (reviewed in [4]). The specialized CNG 
channels of cone photoreceptors are composed of CNGA3 
and CNGB3 subunits in a two plus two configuration around 
the central pore [5] (but see also [6]). Mutations in the genes 
encoding these subunits have been linked to complete and 
incomplete achromatopsia [7-17], progressive cone dystrophy 
[11,18], macular degeneration, and macular malfunction [14]. 
Recent studies have determined how several disease-asso-
ciated mutations in CNGA3 [15,19-24] and CNGB3 [25-27] 
subunits alter the functional properties of recombinant cone 
CNG channels, but the possible cellular consequences of these 
mutations are not well understood. For CNGA3 mutations, 
many have been shown to produce loss-of-function changes 
such as misfolding, intracellular retention, and/or reduced 
sensitivity to ligands. Recently, trafficking defective CNGA3 
subunits bearing select disease-linked mutations were shown 
to produce endoplasmic reticulum (ER) stress, activation of 
the unfolded protein response, and decreased cell viability 
[28]. Similarly, in CNGA3-deficient (CNGA3−/−) mice, cones 
exhibit altered trafficking and/or expression levels for various 
proteins involved in the phototransduction cascade and apop-
totic cell death [29].
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Purpose: To determine if achromatopsia associated F525N and T383fsX mutations in the CNGB3 subunit of cone pho-
toreceptor cyclic nucleotide-gated (CNG) channels increases susceptibility to cell death in photoreceptor-derived cells.
Methods: Photoreceptor-derived 661W cells were transfected with cDNA encoding wild-type (WT) CNGA3 subunits 
plus WT or mutant CNGB3 subunits, and incubated with the membrane-permeable CNG channel activators 8-(4-chlo-
rophenylthio) guanosine 3′,5′-cyclic monophosphate (CPT-cGMP) or CPT-adenosine 3′,5′-cyclic monophosphate (CPT-
cAMP). Cell viability under these conditions was determined by measuring lactate dehydrogenase release. Channel li-
gand sensitivity was calibrated by patch-clamp recording after expression of WT or mutant channels in Xenopus oocytes.
Results: Coexpression of CNGA3 with CNGB3 subunits containing F525N or T383fsX mutations produced channels 
exhibiting increased apparent affinity for CPT-cGMP compared to WT channels. Consistent with these effects, cytotoxic-
ity in the presence of 0.1 μM CPT-cGMP was enhanced relative to WT channels, and the increase in cell death was more 
pronounced for the mutation with the largest gain-of-function effect on channel gating, F525N. Increased susceptibility 
to cell death was prevented by application of the CNG channel blocker L-cis-diltiazem. Increased cytotoxicity was also 
found to be dependent on the presence of extracellular calcium.
Conclusions: These results indicate a connection between disease-associated mutations in cone CNG channel subunits, 
altered CNG channel-activation properties, and photoreceptor cytotoxicity. The rescue of cell viability via CNG channel 
block or removal of extracellular calcium suggests that cytotoxicity in this model depends on calcium entry through 
hyperactive CNG channels.
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Several mutations in CNGB3 have gain-of-function 
effects on channel gating [25,26], producing CNG channels 
that are more sensitive to cGMP. How these gain-of-function 
changes in CNG channel gating may lead to cone dysfunction 
and degeneration is a question that has not yet been addressed. 
Since CNG channels are the main pathway for Ca2+ entry 
into the outer segment of photoreceptors [30,31], we hypoth-
esized that gain-of-function mutations in CNGB3 increase 
susceptibility to cell death via a Ca2+ overload mechanism. To 
address this issue, we have used photoreceptor-derived 661W 
cells as an in vitro model to investigate the effect of CNG 
channel mutations on cell viability. These cells exhibit many 
of the cellular and biochemical features of cone photoreceptor 
cells [32-34], but are reported to lack endogenous CNGA3 
subunits [35]. Our experimental approach was to compare the 
viability of cells expressing wild-type (WT) or mutant CNG 
channels, measured primarily using lactate dehydrogenase 
(LDH) release as a reporter for cell death, after exposure 
to physiologically relevant concentrations of the membrane 
permeable channel activators 8-(4-chlorophenylthio) (CPT)-
cGMP and/or CPT- adenosine 3′, 5′-cyclic monophosphate 
(cAMP). In this study, we have found that two mutations in 
CNGB3, which were linked previously to achromatopsia, 
progressive cone dystrophy, and/or macular degeneration, 
increased susceptibility to cell death. The increase in cytotox-
icity associated with activation of mutant CNG channels was 
alleviated by the application of the CNG channel blocker or 
the removal of extracellular Ca2+. The results imply a connec-
tion between the altered gating properties of mutant CNG 
channels and photoreceptor cell death, providing insight into 
the cellular and molecular mechanisms underlying inherited 
retinal degeneration.

METHODS

Molecular biology: Expression constructs for WT or mutant 
human CNGA3 and CNGB3 subunits in the vector pGEMHE 
were generated as described previously [26]. For expression 
in mammalian cells, cDNAs for CNGA3 or CNGB3 were 
subcloned into the pOPRSVI vector (Stratagene, La Jolla, 
CA) using unique restriction sites. The QuikChange® II 
Site-Directed Mutagenesis kit (Stratagene) was then used 
to generate point mutations in CNGB3. All mutations were 
confirmed by DNA sequencing.

Functional expression in Xenopus laevis oocytes: For heter-
ologous expression in Xenopus laevis oocytes, identical 
amounts of cDNA were linearized using SphI or NheI, and 
capped cRNA was transcribed in vitro using the T-7 RNA 
polymerase mMESSAGE mMACHINE® kit (Ambion, 
Austin, TX). cRNA concentrations and relative amounts were 

determined by denaturing gel electrophoresis and KODAK 
1D image analysis software (Rochester, NY), as well as by 
spectrophotometry. Oocytes were isolated as previously 
described [36] and microinjected with a fixed amount of 
cRNA for all constructs (approximately 5 ng of CNGA3 
and 20 ng of CNGB3, a ratio shown previously to efficiently 
generate heteromeric channels [5]). Oocytes were incubated 
in ND96 (96 mM NaCl, 2 mM KCl, 1.8 mM CaCl2, 1 mM 
MgCl2, and 5 mM HEPES, pH 7.6, supplemented with 10 μg/
ml gentamycin).

Electrophysiology: Two to seven days after microinjection 
of cRNA, patch-clamp experiments were performed using 
the inside-out configuration with an Axopatch 200B ampli-
fier (Axon Instruments, Foster City, CA). Recordings were 
made at 20–23 °C. Data were acquired using Pulse software 
(HEKA Elektronik, Lambrecht, Germany). Current traces 
were elicited by voltage steps from a holding potential of 
0 mV to +80 mV, then to −80 mV and back to 0 mV. Initial 
pipette resistances were 0.4–0.8 megaohms. Intracellular 
and extracellular solutions contained 130 mM NaCl, 0.2 mM 
EDTA, and 3 mM HEPES (pH 7.2). Intracellular solutions 
were exchanged using an RSC-160 rapid solution changer 
(Molecular Kinetics, Indianapolis, IN). Currents in the 
absence of cyclic nucleotides were subtracted. For channel 
activation by CPT-cGMP or CPT-cAMP, dose–response data 
were fitted with the Hill equation, I/Imax=([cNMP]h/(K1/2h + 
[cNMP]h)), where I is the current amplitude at +80 mV, Imax 
is the maximum current elicited by saturating concentration 
of ligand, [cNMP] is the ligand concentration, K1/2 is the 
apparent ligand affinity, and h is the Hill slope. We measured 
sensitivity to block by L-cis-diltiazem (RBI, Natick, MA) 
applied to the intracellular face of the patch in the presence 
of 0.1 μM CPT-cGMP. Data were fit with a modified Hill 
equation in the form I blocker/I=(K1/2h/(K1/2h + [blocker]h)). 
Data were analyzed using Igor (Wavemetrics, Lake Oswego, 
OR), SigmaPlot, and SigmaStat (Systat Software Inc., San 
Jose, CA). All values are reported as the mean±standard error 
of the mean of n experiments unless otherwise indicated. 
Statistical significance was determined using a Student t test 
or Mann–Whitney rank sum test, and a p value of <0.05 was 
considered significant.

Cell culture and transfection of cDNAs: The mouse photo-
receptor 661W cell line used in this study was generously 
provided by Dr. Al-Ubaidi (University of Oklahoma Health 
Sciences Center, Oklahoma City, OK). The 661W cells were 
routinely maintained in Dulbecco’s modified Eagle’s medium 
(Gibco, Carlsbad, CA), supplemented with 10% fetal bovine 
serum (Gemini Bioproducts, Sacramento, CA) and 1% 
penicillin/streptomycin (Gibco), at 37 °C in a humidified 
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incubator with 5% CO2; cells were subcultured every 3–5 
days. The 661W cells were transfected with pOPRSVI plas-
mids encoding human cone CNG channel subunits using 
Lipofectamine™ 2000 and OptiMEM (Life Technologies, 
Carlsbad, CA) according to the manufacturer’s protocol for 
cells in suspension. A reporter plasmid—a green fluorescent 
protein-expressing vector (pQBI25-fC2, Wako Pure Chemical 
Industries, Ltd., Japan) using a constitutive CMV promoter—
was transfected under the same conditions to assess transfec-
tion efficiency. Transfection efficiencies of greater than 70% 
of cells were routinely observed. In addition, the pOPRSVI 
plasmid was transfected alone as a negative control. The 
amounts of each vector were as follows (µg/10 cm2 culture 
surface): 2 FLAG- or GFP-CNGA3 plus 2 FLAG-CNGB3 
(WT, T383fsX or F525N); 4 GFP; or 4 pOPRSVI.

Immunoblotting: Western blot analysis of proteins from 661W 
cells transfected with FLAG-tagged WT and mutant cone 
CNG channel subunits was performed. Cells were gently 
rinsed with PBS, scraped and lysed into cell lysis buffer 
containing 20 mM HEPES (pH 7.5), 150 mM NaCl, 5 mM 
EDTA, 0.5% Triton X-100 (Surfact-Amps X-100; Pierce 
Biotechnology, Rockford, IL), and a protease inhibitor cock-
tail (Complete™ Mini EDTA-free; Roche Applied Science, 
Indianapolis, IN). Samples were run under reducing condi-
tions using NuPAGE® LDS Sample Buffer and Reducing 
Agent (Life Technologies). Samples were centrifuged for 2 
min at 10,000 × g to collect insoluble material. Proteins were 
separated by SDS-PAGE using 4%–12% Bis-Tris NuPAGE® 
gels in MES/SDS Running Buffer plus Antioxidant 
(Life Technologies), then transferred onto nitrocellulose 
membranes using the NuPage® Transfer Buffer (Life Tech-
nologies). Immunoblots were probed with monoclonal anti-
FLAG M2 antibody (Sigma-Aldrich, St. Louis, MO) and 
processed using chemiluminescent detection as previously 
described [19]. To verify that approximately equal amounts 
of total protein were loaded in each lane, the same blots 
were probed with MAB1501 pan-actin antibody (Millipore, 
Temecula, CA).

Cell viability assays: For most experiments, the LDH Cyto-
toxicity Detection Kit (Roche Applied Science) was used 
according to the manufacturer’s protocol (see also [37]). 
Briefly, cultured 661W cells were transfected with the desired 
plasmid constructs as described above and then plated in 
96-well tissue culture plates at a density of approximately 
8×103 cells/well. Forty-eight hours after transfection, cells 
were treated with various concentrations of CPT-cGMP and/
or CPT-cAMP (Sigma-Aldrich) alone or together with L-cis-
diltiazem (Enzo Life Sciences, Inc., Farmingdale, NY) in 
Dulbecco’s modified Eagle’s medium supplemented with 1% 

fetal bovine serum for 24 h at 37 °C. Following treatment, 
half of the culture medium was transferred to another 96-well 
plate and the LDH released into the culture medium was 
measured to assess the number of damaged/dead cells. Cells 
in the original plate were then lysed and the total amount of 
cellular LDH was assessed. The percentage cytotoxicity was 
then calculated from the ratio of LDH concentration in the 
medium/cells, and was normalized to the percentage cyto-
toxicity in untreated cells transfected with control pOPRSVI 
plasmid only.

The viability of 661W cells transfected with WT 
or mutant CNG channels was also assessed using the 
LIVE⁄DEAD® Viability⁄Cytotoxicity Kit (Life Technolo-
gies) according to the manufacturer’s protocol. Briefly, cells 
were transfected under the conditions described above 
and plated into 4-well multi-chamber Lab-Tek glass slides 
(Nalge Nunc International, Rochester, NY). At the end of 
cyclic nucleotide treatment, cells were washed with PBS 
three times and stained with 2 μM calcein AM and 4 μM 
ethidium homodimer-1 solution at room temperature for 30 
min. Fluorescence microscopy was then performed to visu-
alize the live and dead cells. Imaging of cells was performed 
at the Washington State University Franceschi Microscopy 
and Imaging Center. Images were obtained using a 10× objec-
tive on an Axiovert 200M inverted microscope equipped 
with a Zeiss LSM 510 confocal laser-scanning system and 
a krypton-argon laser. Fluorescence was measured using an 
excitation wavelength of 488 nm, and a 522 DF 32 emission 
filter for green fluorescence and 635 DF 32 emission filter 
for red fluorescence.

Annexin V staining: For examination of apoptosis, 661W cells 
were transfected with WT channels, mutant channels, or 
vector only. Transfected cells were grown on poly-L-lysine-
coated glass coverslips at the same density as described above 
and 0.1 μM CPT-cGMP was applied 48 h post transfection. 
Cultures were stained with f luorescein-labeled annexin 
V according to the manufacturer’s instructions (Biotium 
Inc., Hayward, CA). Cells were subsequently stained with 
ethidium homodimer to identify necrotic cells (not shown 
in images), and with DAPI to facilitate cell counting. Cells 
that were annexin V positive but ethidium homodimer nega-
tive were counted. Cells were visualized using fluorescence 
microscopy (Leica, Wetzlar, Germany). The percentage of 
annexin V–positive cells was calculated by selecting a high-
density area of each coverslip and counting all cells within 
the focal field (typically >100 cells). Measurements were 
performed on coded samples to avoid biasing the results. 
Each transfection was replicated four times.
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Statistics: All statistical analyses were performed using Igor 
(Wavemetrics) and SigmaStat (Systat Software Inc.), and 
expressed as mean±standard error of the mean. Statistical 
significance was determined using a Student t test, analysis 
of variance, or the Mann–Whitney rank sum test, and a p 
value of <0.05 was considered significant.

RESULTS

Disease-associated mutations in CNGB3 increase channel 
ligand sensitivity: Disease-associated mutations in the 
CNGB3 subunit of cone CNG channels have been previously 
shown to produce channels with gain-of-function changes in 
channel-gating properties [25,26]. We investigated whether 
coexpression of mutant F525N or T383fsX CNGB3 subunits 
with WT CNGA3 subunits altered the sensitivity of the 
resulting channels to membrane-permeable analogs of cGMP 
and cAMP, CPT-cGMP, and CPT-cAMP. FLAG-tagged WT 
or mutant human CNGB3 subunits were heterologously 
expressed with WT human CNGA3 subunits in X. laevis 
oocytes. Patch-clamp recordings were performed with excised 
membrane patches using the inside-out configuration; chan-
nels were activated by the application of solutions containing 
cyclic nucleotides to the intracellular face of the membrane 
patch (Figure 1A). Many disease-associated mutations in 
CNGA3 subunits cause intracellular retention and reduced 
functional expression levels [15,19-24]. For the CNGB3 muta-
tions investigated here, maximum patch current density (Imax/
area), determined at +80 mV in a saturating concentration of 
CPT-cGMP (4 μM), was not significantly altered by the muta-
tions (WT: 55.1±10.9 pA/μm2, n=13; T383fsX: 86.6±17.0 pA/
μm2, n=9; F525N: 80.3±18.6 pA/μm2, n=15). This indicates 
that the number of functional CNG channels in the plasma 
membrane was not reduced by these mutations.

We also determined the relative agonist efficacy for 
channel activation by a saturating concentration of CPT-
cAMP compared with the maximal activation by CPT-
cGMP (Imax, CPT-cAMP/Imax, CPT-cGMP). For photoreceptor CNG 
channels, cAMP is a partial agonist while cGMP is nearly 
a full agonist. Thus, changes in cAMP efficacy can report 
alterations in channel gating properties. Currents elicited at 
+80 mV by saturating concentrations of CPT-cGMP (4 μM) 
or CPT-cAMP (100 μM) revealed that CPT-cAMP is a partial 
agonist compared to CPT-cGMP, similar to the relationship 
between the natural agonists cAMP and cGMP. CNG chan-
nels containing the F525N mutation exhibited a significant 
increase in CPT-cAMP efficacy (Imax, CPT-cAMP/Imax, CPT-

cGMP=0.49±0.04, n=15) compared to that of WT heteromeric 
channels (Imax, CPT-cAMP/Imax, CPT-cGMP=0.25±0.03, n=10; p=0.001); 
this increase in relative CPT-cAMP efficacy agrees with the 

increase in unmodified cAMP efficacy previously reported 
for F525N [25]. Channels formed after the expression of 
CNGB3 T383fsX with CNGA3 showed a significant decrease 
in CPT-cAMP efficacy (Imax, CPT-cAMP/Imax, CPT-cGMP=0.07±0.01, 
n=8; p<0.001; Figure 1A). Reduced CPT-cAMP efficacy 
with coexpression of CNGB3 T383fsX is consistent with 
the expected lack of functional CNGB3 subunits and the 
resulting generation of homomeric CNGA3-only channels 
[26]. For F525N-containing channels, increased CPT-cAMP 
efficacy reflects a gain-of-function change in channel gating.

Next, we determined the effect of the CNGB3 mutations 
on the CPT-cGMP sensitivity of the channels. The currents 
elicited by various concentrations of CPT-cGMP were 

Figure 1. Disease-associated mutations in CNGB3 alter the gating 
properties of heteromeric channels. A: Representative current traces 
are shown for CNGA3 plus CNGB3 channels after activation by 
saturating concentrations of CPT-cGMP (4 μM) or CPT-cAMP (100 
μM). Current traces were elicited by voltage steps from a holding 
potential of 0 mV to +80 mV, −80 mV, and then back to 0 mV. B: 
Representative dose–response relationships for CPT-cGMP activa-
tion of CNG channels, after expression of CNGA3 plus CNGB3-WT 
(circles), T383fsX (squares), or F525N (triangles) subunits. Currents 
were normalized to the maximum cGMP current. Continuous 
curves represent fits of the dose–response relationship with the 
Hill equation as described in the Methods section. The parameters 
for each channel type were as follows: for WT, K1/2,CPT-cGMP=248 
nM, h=1.5; for T383fsX, K1/2, cGMP=111 nM, h=1.9; and for F525N, 
K1/2,CPT-cGMP=79 nM, h=1.7.
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measured at +80 mV. The apparent CPT-cGMP affinity (K1/2, 

CPT-cGMP) of WT and mutant channels was then determined 
from the dose–response relationships for channel activation, 
using fits with the Hill equation. Compared to WT hetero-
meric channels (K1/2, CPT-cGMP=254.0±18.1 nM, h=1.5±0.05, 
n=13), channels formed after expression of CNGB3 T383fsX 
with CNGA3 subunits were more sensitive to CPT-cGMP 
(K1/2, CPT-cGMP=105.1±7.3 nM, h=2.2±0.1, n=8; p<0.01; Figure 
1B). T383fsX likely represents a functional null mutation, 
producing only homomeric CNGA3 channels at the plasma 
membrane [26]. Consistent with this idea, homomeric 
CNGA3-only channels exhibited a similar apparent affinity 
for CPT-cGMP (K1/2, CPT-cGMP=113.9±7.9 nM, h=2.2±0.1, 
n=9; data not shown). Channels containing CNGB3-F525N 
exhibited a larger increase in apparent ligand affinity (K1/2, 

CPT-cGMP=86.8±10.6 nM, h=1.8±0.04; p<0.01; Figure 1B), in 
agreement with previous studies using unmodified cGMP 
[25]. Overall, 8-(4-chlorophenylthio)-modified cGMP was 
80–100 fold more potent than unmodified cGMP [19,26] for 
activation of human CNGA3 plus CNGB3 channels, similar 
to its increased potency observed with rod CNG channels 
[38,39]. These results illustrate the functional disturbances 
produced by F525N or T383fsX mutations, and help calibrate 
the physiologically appropriate CPT-cGMP concentration 
range for cone CNG channel activation.

Disease-associated mutations in CNGB3 increase suscepti-
bility to cell death in photoreceptor-derived cells: We used 
a cone photoreceptor derived cell line (661W) to investigate 
the possible effects of mutant CNG channels on cell viability. 
These 661W cells represent a well-established model for 
photoreceptor cell death studies [33,40-43], and have been 
shown to express several markers characteristic of cone but 
not rod photoreceptors [32]. First, we confirmed the expres-
sion of FLAG-tagged CNGA3 or CNGB3 in 661W cells via 
immunoblotting, after transfection of plasmids encoding 
WT or mutant channel subunits (Figure 2A). Constructs 
expressing WT CNGA3 or CNGB3, or CNGB3 subunits 
containing F525N or T383fsX mutations all produced robust 
protein levels for the respective subunits. As described previ-
ously [26], the T383fsX mutation generated severely truncated 
CNGB3 subunits having a molecular weight of approximately 
47 kDa, compared to ~74 kDa and ~95 kDa for WT CNGA3 
and CNGB3, respectively (Figure 2A).

To test the effect of the mutations on cell viability, cells 
were transiently transfected with WT or mutant CNGB3 
subunits together with CNGA3 subunits, and treated with 
CPT-cGMP for 24 h at concentrations ranging from 0.01 µM 
to 10 µM. An LDH-release assay was then performed to 
assess cytotoxicity induced by activation of CNG channels. 

The results in each experiment were expressed as relative 
cytotoxicity normalized to percent cytotoxicity of untreated 
cells transfected with the pOPRSVI vector alone (control). 
As summarized in Figure 2B, incubation of cells expressing 
mutant CNG channel subunits with 0.1 µM CPT-cGMP 
produced a significant increase in relative cytotoxicity 
(T383fsX: 1.26±0.05, p<0.05; F525N: 1.59±0.05, p<0.01) 
compared to WT channels (1.11±0.04). The magnitude of 
the increase in relative cytotoxicity for the different channel 
mutations was in the same rank order as the increase in 
channel ligand sensitivity (Figure 1B). Furthermore, channel 
activation by 0.1 µM CPT-cGMP roughly mimics the low 

Figure 2. Disease-associated mutations in CNGB3 increase 
cytotoxicity. A: Western blot demonstrating expression of FLAG-
tagged wild-type (WT) and mutant cone CNG channel subunits in 
661W cells following transfection with indicated plasmids (above). 
Approximate locations of molecular weight markers (in kilodaltons) 
are indicated to the right of the immunoblot. Cell lysates were also 
probed with beta-actin antibody (below). The molecular weight of 
beta actin was ~42 kDa. B: The bar graph demonstrates increased 
cytotoxicity (measured as LDH release from dying cells) for 
cells expressing CNGA3 plus wild-type (WT) or mutant CNGB3 
exposed to various concentrations of CPT-cGMP for 24 h (n=46 
to 48). Cytotoxicity was normalized to that of control cells trans-
fected with vector (pOPRSVI) alone, incubated in the absence of 
CPT-cGMP; *, significant difference between groups indicated by 
bracket (p<0.05); +, significant difference between F525N groups 
with or without 0.1 μM CPT-cGMP treatment (p<0.01).

http://www.molvis.org/molvis/v19/1268


Molecular Vision 2013; 19:1268-1281 <http://www.molvis.org/molvis/v19/1268> © 2013 Molecular Vision 

1273

physiologic concentration of cGMP in photoreceptors and the 
low level of basal channel activity [30,44]. In the absence of 
CPT-cGMP treatment, cells expressing channels containing 
the F525N mutation also exhibited a small increase in rela-
tive cytotoxicity (1.21±0.03) compared to WT channels under 
these conditions (1.05±0.03; p<0.01), suggesting that activa-
tion of F525N-containing channels by endogenous cGMP 
(and/or endogenous cAMP) increased susceptibility to cell 
death. No significant difference in relative cytotoxicity was 
observed at CPT-cGMP concentrations of 1 µM or greater 
(data not shown). Together, these results suggest a correlation 
between elevated CNG channel activity and cell death.

To confirm the effects of mutant CNG channel subunits 
on photoreceptor viability, we used an alternate assay (LIVE/
DEAD Viability/Cytotoxicity Kit) to label live and dead 
cells. Cells were transfected with mutant or WT channels as 
described above; fluorescence microscopy was performed 
after 0.1 µM CPT-cGMP treatment, and calcein AM and 
ethidium homodimer-1 staining of the transfected cells. 
As shown in Figure 3, CPT-cGMP-treated cells expressing 
CNG channels with the F525N mutation exhibited more 
damaged/dead cells (red fluorescence) and less intact/viable 
cells (green fluorescence) compared to cells expressing WT 
channels or untreated F525N-expressing cells. In addition, 
a decrease in overall cell number was observed for CNGB3 
F525N-expressing cells (Figure 3).

Next, we used fluorescein-labeled annexin V, a protein 
with high affinity for phosphatidylserine, to test for potential 
apoptosis in F525N-expressing cells. Transfected cells grown 
on poly-L-lysine-coated glass coverslips were stained with 
annexin V (Figure 4A and B) and counterstained with DAPI 
to count the nuclei (Figure 4C and D). Images were merged 
(Figure 4 (E and F)) and cells were counted. As shown in 
Figure 4G, annexin V staining of cells transfected with 
CNGB3-F525N plus CNGA3 demonstrated significantly 
more annexin V–positive cells compared to control plasmid 
or WT CNGB3 plus CNGA3 (p<0.05).

Low concentration of CPT-cAMP can have a protective effect 
on the viability of cells expressing CNGB3 F525N: Although 
cGMP is the primary natural agonist for CNG channels 
in photoreceptors, both cAMP and cGMP coexist under 
physiological conditions. The level of intracellular cAMP 
also changes with illumination [45] and with photoreceptor 
degeneration [46]. In addition, photoreceptor cAMP concen-
tration is controlled in a circadian manner, with higher levels 
at night [47]. We found that the F525N mutation produced 
a significant increase in apparent affinity for CPT-cAMP 
(K1/2, CPT-cAMP=13.8±1.4 µM, h=1.4±0.08; n=15) compared to 
WT channels (K1/2, CPT-cAMP=28.1±2.6 µM, h=1.7±0.1; n=10, 

p<0.01), while the T383fsX mutation produced no significant 
change in CPT-cAMP sensitivity (K1/2, CPT-cAMP=29.8±1.9 µM, 
h=1.8±0.1; n=9; Figure 5A).

Since CNG channels containing F525N exhibited a 
twofold increase in apparent cAMP affinity compared to 
WT channels (Figure 5A), we hypothesized that activation of 
mutant channels by CPT-cAMP might also increase cytotox-
icity. Surprisingly, treatment of channel-transfected cells with 
CPT-cAMP (at concentrations ranging from 0.1 to 10 µM) 
produced no significant increase in relative cytotoxicity 
(data not shown). It has been demonstrated previously that 
cAMP and cGMP can have both synergistic and competitive 
interactions for CNG channel activation [48-50]. We applied 
CPT-cAMP and CPT-cGMP together to investigate the poten-
tial effect of this combination on cell viability. For F525N-
containing channels, the coapplication of 1 µM CPT-cAMP 

Figure 3. CNGB3 F525N mutation impairs cell viability with 
CPT-cGMP treatment. Transfected 661W cells were treated with 
or without 0.1 μM CPT-cGMP for 24 h. After treatment, cells were 
labeled according to the LIVE/DEAD assay protocol: vital cells 
were stained by calcein AM and show green fluorescence (A, C, 
E, and G); damaged cells were penetrated by ethidium homodimer 
and show red fluorescent nuclei (B, D, F and H). Fluorescent images 
were obtained using a Zeiss LSM 510 confocal laser-scanning 
microscope as described in the Methods section.
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with 0.1 µM CPT-cGMP attenuated the increased relative 
cytotoxicity induced by CPT-cGMP alone (CPT-cGMP alone: 
1.59±0.05; CPT-cGMP with CPT-cAMP: 1.31±0.06, p<0.01; 
Figure 5B); differences in the relative cytotoxicity between 
WT (0.98±0.03) and mutant channels under these conditions 
remained statistically significant (p<0.01). As expected, rela-
tive cytotoxicity for cells expressing CNGB3 T383fsX was 
unaltered by coapplication of various concentration of CPT-
cAMP compared to CPT-cGMP treatment alone. This likely 
reflects the lower CPT-cAMP efficacy (Figure 1A) and lower 
CPT-cAMP apparent affinity (Figure 5A) of CNGA3-only 
channels generated by the expression of CNGB3 T383fsX 

with CNGA3. Treatment with a higher concentration of 
CPT-cAMP (10 µM) combined with CPT-cGMP (0.1 µM) 
produced cytotoxicity for mutant channels comparable to that 

Figure 4. CNGB3 F525N mutation increases annexin V–positive 
cells compared to wild-type channels. Transfected cells were 
treated with 0.1 μM CPT-cGMP for 24 h. For determination of 
cell death, cells were stained with fluorescein-labeled annexin V, a 
protein with a high affinity for phosphatidylserine (A and B). Cells 
were also counterstained with DAPI to count nuclei (C and D), and 
the two images were merged to count annexin V–positive cells 
(E and F). G: Summary bar graph for annexin V staining of cells 
transfected with control plasmid, wild-type CNGB3 plus CNGA3, 
or CNGB3-F525N plus CNGA3 plasmids. Fluorescent images were 
obtained using a Zeiss LSM 510 confocal system as described in the 
Methods. Scale bar in F (applies to A-F), 100 µm.

Figure 5. Effect of combined exposure to CPT-cAMP and CPT-
cGMP on cytotoxicity of cells expressing channels with disease-
associated mutations in CNGB3. A: Representative dose–response 
relationships for CPT-cAMP activation of CNG channels, after 
coexpression of CNGA3 with CNGB3-WT (circles), T383fsX 
(squares), or F525N (triangles) subunits (same representa-
tive patches as in Figure 1B). Currents were normalized to the 
maximum CPT-cGMP current. Continuous curves represent fits of 
the dose–response relationship with the Hill equation. Parameters 
for each channel type were as follows: for WT, K1/2,CPT-cAMP=28.3 
μM and h=1.4; for T383fsX, K1/2, cAMP=27.9 μM and h=1.6; and for 
F525N, K1/2,CPT-cAMP=10.8 μM and h=1.0. B: Bar graph of the rela-
tive cytotoxicity for channel-expressing cells exposed to various 
concentrations of CPT-cAMP plus 0.1 μM CPT-cGMP (n=12). The 
dashed line represents the percentage of cell death in the vector-
only control group without treatment; * indicates significant differ-
ence between groups designated by bracket (p<0.05); + represents 
significant difference between the F525N group treated with 10 μM 
CPT-cAMP together with 0.1 μM CPT-cGMP and the F525N group 
without treatment (p<0.01).
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of 0.1 µM CPT-cGMP treatment alone (T383fsX: 1.30±0.05, 
p<0.01; F525N: 1.67±0.08; p<0.01, compared to WT chan-
nels). Together, these results show that a low concentration 
of CPT-cAMP when combined with CPT-cGMP can have 
a small protective effect on cell viability in the context of 
hyperactive F525N-containing channels. As CPT-cAMP is a 
less effective agonist relative to CPT-cGMP, this protection 
may be due to slight inhibition of channel activity compared 
to CPT-cGMP alone. Alternatively, protection may arise from 
some unknown, indirect pathway.

Protective effects of CNG channel blocker or removal of 
extracellular calcium for cells expressing CNGB3 F525N: 
L-cis-diltiazem is a known CNG channel blocker that has 
been used extensively to dissect the properties of the native 
and heterologously expressed CNG channels [19,51-54]. In 
addition, some evidence suggests that diltiazem can protect 
photoreceptors from degeneration in the context of conditions 
producing elevated cGMP levels [55-57]. Since the increased 
cytotoxicity described above for CNGB3 mutations may be 
related to enhanced channel activity, we hypothesized that 
application of CNG channel blockers would exert a rescuing 
effect. We first used patch-clamp recordings to determine 
the sensitivity of WT and mutant channels to block by L-cis-
diltiazem in the presence of CPT-cGMP. Figure 6A shows 
current recordings that illustrate block of CNG channels by 
10 µM L-cis-diltiazem after channel activation by 0.1 µM 
CPT-cGMP. The apparent affinity for L-cis-diltiazem (K1/2, 

L-cis-dilt.) was calculated by fitting dose–response relation-
ships for channel block with a modified Hill equation, as 
described in the Methods section (Figure 6B). Compared to 
WT heteromeric channels (K1/2, L-cis-dilt.=4.06±1.0 µM, n=5), 
F525N exhibited no significant change in apparent affinity 
for L-cis-diltiazem (K1/2, L-cis-dilt.=3.03±0.75 µM, n=5). In 
contrast, T383fsX exhibited a large decrease in diltiazem 
apparent affinity (K1/2, L-cis-dilt.=77.9±23.1 µM, n=4, p<0.01). 
Reduced sensitivity to block by diltiazem was in agreement 
with the previous finding that CNGB3 T383fsX prevents 
the formation of functional heteromeric channels, leading 
to CNGA3-only channels [26]. CNGA3-only channels are 
much less sensitive to block by L-cis-diltiazem compared to 
heteromeric channels composed of CNGB3 plus CNGA3.

We next examined the potential protective effects of 
CNG channel blockers on cell viability by applying 10 µM 
L-cis-diltiazem, in the presence of 0.1 µM CPT-cGMP, to 
transfected 661W cells. Application of L-cis-diltiazem effec-
tively rescued cells from the increased cytotoxicity elicited by 
F525N channel activation (Figure 6C). Despite the reduced 
sensitivity to block by L-cis-diltiazem for T383fsX, the 
CPT-cGMP-induced increase in cytotoxicity was attenuated 

compared to no diltiazem treatment (Figure 6C). Thus, 
diltiazem may reduce cytotoxicity for T383fsX-expressing 
cells via some other mechanism independent of CNG channel 
block. For F525N-containing channels, rescue by L-cis-
diltiazem is consistent with a link between cytotoxicity and 
active (open) CNG channels.

CNG channel mutations that increase ligand sensitivity 
are expected to increase calcium entry through the hyper-
active, calcium-permeable channels. Calcium overload is 
thought to serve as an important trigger for photoreceptor 
degeneration [58]. Thus, we predicted that the increased 
cytotoxicity observed with CNGB3-F525N and T383fsX 
mutations would depend on extracellular calcium. To test 
this prediction, we assessed the relative cytotoxicity of trans-
fected cells maintained in normal or Ca2+-free media during 
CPT-cGMP treatment. As shown in Figure 7, removal of 
extracellular Ca2+ effectively attenuated the increased relative 
cytotoxicity elicited by F525N-containing channels compared 
to WT channel activation. Removal of extracellular Ca2+ 
produced no significant change in cytotoxicity for vector-
only control cells in the absence of CPT-cGMP (p=0.190; 
data not shown). In addition, the absence of extracellular 
Ca2+ had no significant effect on the relative cytotoxicity 
of cells expressing T383fsX subunits. These results suggest 
that other mechanisms independent of plasma membrane 
calcium entry might contribute to the T383fsX-induced 
increase in cytotoxicity. For example, active CNGA3-only 
channels may still enhance sodium entry, depolarization, and 
subsequent ATP depletion due to increased Na+/K+-exchanger 
activity [59,60]. Interestingly, removal of extracellular Ca2+ 
for cells expressing WT channels caused a mild increase in 
cytotoxicity (p=0.0115). Together, these results show that the 
increase in cytotoxicity arising from the activation of F525N-
containing channels, but not CNGA3-only channels in 
T383fsX-expressing cells, depends on extracellular calcium.

DISCUSSION

We have examined the cellular consequences of two different 
CNGB3 mutations linked to achromatopsia, cone dystrophy, 
and/or macular degeneration in humans. Our results indicate 
that the expression of CNGB3 subunits containing F525N 
or T383fsX mutations significantly increase susceptibility 
to cell death compared to WT channels in the presence of 
a low, physiologically relevant concentration of membrane-
permeable channel activator. Higher levels of CPT-cGMP are 
expected to activate other cellular pathways, including those 
known to be neuroprotective [61]. However, the mutations 
permit an influx of Ca2+ at CPT-cGMP levels that are too low 
to trigger these neuroprotective mechanisms, and therefore 
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cytotoxicity results. Importantly, the concentration of channel 
activator producing this difference in cytotoxicity was within 
the range showing the greatest difference between mutant 
and WT channel activation. This concentration of channel 
activator also mimics the low level of channel ligand and 
corresponding low level of channel activity existing in the 
photoreceptor outer segment in the dark [62-64]. In addition, 
increased susceptibility to cell death was prevented by a 
CNG channel blocker or by removal of extracellular calcium, 
consistent with the idea that photoreceptor death can arise 
via excess calcium entry through hyperactive CNG channels. 

Together, these results imply a connection between mutations 
in cone CNG channels, altered channel-activation properties, 
and cell death. This study highlights the critical role that CNG 
channels play in some forms of retinal degeneration, consis-
tent with the recent discovery that a CNG channel knockout 
(CNGB1−/−) can rescue rod photoreceptors in rd1 mice [65].

Drugs (e.g., L-cis-diltiazem) or other manipulations 
that block or inhibit photoreceptor CNG channel activity 
have potential therapeutic merit in the context of mutations 
that produce hyperactive CNG channels or elevated cGMP 
levels. One intriguing approach that has been proposed for 

Figure 6. Block of CNG channels by L-cis-diltiazem increases 
viability of cells expressing CNGB3 with disease-associated muta-
tions. A: Representative current traces elicited by 0.1 µM CPT-
cGMP in the absence or presence (arrow) of 10 µM L-cis-diltiazem. 
Current traces were elicited by the voltage protocol described in 
the Methods section. B: Dose–response relationships for block by 
L-cis-diltiazem in the presence of 0.1 µM CPT-cGMP for hetero-
meric CNG channels containing CNGB3-WT (circles), T383fsX 
(squares), or F525N (triangles) subunits. Currents were normal-
ized to the current elicited by 0.1 µM CPT-cGMP in the absence 
of L-cis-diltiazem. Continuous curves represent fits of the dose–
response relation with the modified Hill equation described in the 
Methods section. Parameters for each channel type were as follows: 
WT, K1/2,L-cis-dilt.=4.1 µM and h=0.5; for T383fsX, K1/2,L-cis-dilt.=135 
µM and h=0.3; and for F525N, K1/2,L-cis-dilt.=4.2 µM and h=0.7. C: 
Bar graph of the relative cytotoxicity for channel-expressing cells 
with or without 10 µM L-cis-diltiazem in the presence of 0.1 μM 
CPT-cGMP treatment (n=12). The dashed line indicates the extent of 
cell death in vector-only control cells without treatment. Significant 
differences were observed between groups indicated by brackets (*, 
p<0.05); + indicates significant difference between T383fsX groups 
treated with or without channel blocker (p<0.01). 
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hyperactive cone CNG channels is to adjust channel ligand 
sensitivity to normal levels via inhibition of gating with 
retinoids [66]. Similarly, augmented CNG channel inhibi-
tion via calmodulin or phosphoinositides might protect 
photoreceptors with hyperactive channels or elevated cGMP. 
Other alternatives include neuroprotection via growth factor 
receptor activation; targeting downstream effectors involved 
in cell death pathways; or enhanced calcium extrusion from 
photoreceptor outer segments [59,67].

The CNGB3 F525N mutation is located within the cyto-
plasmic C-linker region, which connects the CNBD to the 
pore-forming domain and participates in the conformational 
changes that covert ligand binding into channel opening. 
The phenylalanine at this position is highly conserved across 
CNG channels and related hyperpolarization-activated cyclic 
nucleotide-regulated (HCN) channels. The crystal structure 
of the C-terminal domain of homologous HCN2 channels 
[68] provides potential insight into the structural changes 
that may arise from the F525N substitution in CNGB3. The 
HCN2 structure is thought to represent a compact ligand-
bound but closed conformation [69,70]. The residue in HCN2 
(F518) that aligns with F525 in CNGB3 resides in the F’ helix 
and appears to be buried in this C-linker closed conformation 
[68]. The F’ helix of HCN2, in concert with the C helix of the 
CNBD, has been shown recently to be part of a key confor-
mational rearrangement that occurs upon ligand binding and 
is proposed to help propagate the gating transition through 
the C-linker region to the pore [71]. The phenylalanine to 

asparagine substitution in CNGB3 reduces both side-chain 
volume and hydrophobicity. Consistent with a structure/func-
tion analogy to HCN2, one plausible interpretation for the 
effect of F525N on CNG channel gating is that it enhances 
channel activity via the destabilization of the closed-channel 
conformation.

We expect that in native photoreceptors of patients with 
gain-of-function CNG channel mutations such as F525N, 
the channels will have a higher probability of being open in 
the dark and fail to close appropriately during light stimula-
tion. Because CNG channels are the primary entryway for 
calcium into the photoreceptor outer segment [30], hyperac-
tive channels are expected to disturb calcium homeostasis in 
these cells. We hypothesize that abnormally high levels of 
calcium under these circumstances will lead to photoreceptor 
death. Similar cellular mechanisms have been described for 
mutations in genes encoding other critical proteins involved 
in phototransduction, adaptation, and recovery processes. 
Mutations that produce constitutively active guanylyl cyclase 
[72-74] or loss of cGMP-phosphodiesterase activity [75-77] 
result in increased intracellular cGMP levels. Increased 
intracellular cGMP, similar to an increase in channel sensi-
tivity to cGMP, is expected to lead to inappropriate opening 
of the channels, with more Ca2+ entering the photoreceptor. 
Numerous studies have reported that a sustained elevation of 
intracellular Ca2+ can result in apoptotic cell death (reviewed 
by Choi [78] and Leist and Nicotera [79]). In the retina, for 
example, the elevation of intracellular Ca2+ has been shown to 
trigger rod photoreceptor apoptosis and retinal degeneration 
[80]. Some of the Ca2+-dependent pathways producing photo-
receptor degeneration are thought to involve caspase and/or 
calpain activation as a central mechanism [57,81,82], but some 
diversity of cell death mechanisms, including autophagy, has 
also been reported [58,60,83,84]. The exact intracellular path-
ways involved in photoreceptor degeneration caused by cone 
CNG channel mutations remain to be determined.

For the F525N mutation, our results strongly suggest 
that channel hyperactivity and subsequent Ca2+ overload 
promote an increase in cell death. However, other possible 
mechanisms may contribute to cytotoxicity in the context of 
CNGB3 mutations. In particular, the cellular consequences 
of T383fsX are more difficult to interpret. This frameshift 
is effectively a null mutation, producing a truncated CNGB3 
subunit that does not combine with CNGA3 subunits to form 
functional heteromeric channels at the plasma membrane 
[26]. Homomeric CNGA3-only channels exhibit greater 
apparent affinity for cGMP compared to heteromeric chan-
nels, a gain-of-function phenotype. In addition, homomeric 
CNGA3 channels are insensitive to downregulation by Ca2+/

Figure 7. Removal of extracellular Ca2+ from culture media 
prevented the increase in cytotoxicity for cells expressing CNGB3 
F525N. Bar graph of the relative cytotoxicity for channel-expressing 
cells treated with 0.1 μM CPT-cGMP in normal or Ca2+-free 
Dulbecco’s modified Eagle’s medium media (n=12; *, p<0.05). 
The dashed line indicates the level of cytotoxicity in control cells 
expressing pOPRSVI plasmid alone cultured in normal media 
without CPT-cGMP. 
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calmodulin [85] or by phosphoinositides such as PIP3 [86,87]. 
It is possible that lack of proper regulation of the channels 
may contribute to enhanced channel activity and increased 
susceptibility to cell death. In addition, improperly localized 
[26] or misfolded CNGB3-T383fsX subunits may produce ER 
stress and induce the unfolded protein response, subsequently 
leading to cell death (see review in [88]). Similarly, we have 
demonstrated recently that disease-associated missense muta-
tions in CNGA3 can produce ER stress/ unfolded protein 
response activation with a concomitant loss of cell viability 
[28]. Consistent with this potential mechanism, removal of 
extracellular Ca2+ did not significantly alleviate the effect of 
T383fsX on cell viability. It is also possible that the prema-
ture stop codon upstream of the intronic sequence in CNGB3 
transcripts induces nonsense mediated messenger RNA decay 
during processing of the T383fsX message in vivo. Cone 
CNG channel deficiency in mice, including CNGB3−/−, has 
been shown recently to lead to photoreceptor degeneration 
that is associated with ER stress, defective trafficking of 
outer segment proteins, and apoptosis [89]. Further studies 
are needed to address these alternative mechanisms.
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