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Abstract

One big limitation of computational tools for analyzing ChIP-seq data is that most of them ignore non-unique tags (NUTs)
that match the human genome even though NUTs comprise up to 60% of all raw tags in ChIP-seq data. Effectively utilizing
these NUTs would increase the sequencing depth and allow a more accurate detection of enriched binding sites, which in
turn could lead to more precise and significant biological interpretations. In this study, we have developed a computational
tool, LOcating Non-Unique matched Tags (LONUT), to improve the detection of enriched regions from ChIP-seq data. Our
LONUT algorithm applies a linear and polynomial regression model to establish an empirical score (ES) formula by
considering two influential factors, the distance of NUTs to peaks identified using uniquely matched tags (UMTs) and the
enrichment score for those peaks resulting in each NUT being assigned to a unique location on the reference genome. The
newly located tags from the set of NUTs are combined with the original UMTs to produce a final set of combined matched
tags (CMTs). LONUT was tested on many different datasets representing three different characteristics of biological data
types. The detected sites were validated using de novo motif discovery and ChIP-PCR. We demonstrate the specificity and
accuracy of LONUT and show that our program not only improves the detection of binding sites for ChIP-seq, but also
identifies additional binding sites.
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Introduction

Next-generation sequencing technologies have been widely used

to address many biological and medical questions on a genome-

wide scale. For example, ChIP-seq was one of the first high

throughput techniques that utilized massively parallel sequencing

platforms to interrogate in vivo protein-DNA interactions [1–4]

and histone modifications [1,5–7]. More recently, sequencing

techniques have been coupled with mRNA samples to measure

gene expression (RNA-seq) [8]; other sequencing technologies

include Hi-C [9–10] and BS-seq [11].

Despite the large number of computational tools, such as

MACS [12], QuEST [13], SISSRs [14] and many other peak

identification programs [15–21] for ChIP-seq data, and Cufflinks

[22], Scripture [23] and SpliceTrap [24] for RNA-seq data, that

have been developed to analyze genomic datasets generated from

sequencing-based technologies, limitations in data analysis still

exist. One big limitation is that most of the existing tools ignore

non-unique tags (NUTs) that match the genome under study and

merely focus on unique matched tags (UMTs). However, NUTs

comprise up to 60% of all raw tags [25]. Effectively utilizing these

NUTs would increase the sequencing depth and allow a more

accurate detection of enriched binding sites, which in turn may

lead to more precise and significant biological insights.

A few recent studies [26–27] have investigated the effectiveness

of multi-matched tags in detecting new binding sites and discuss

the relationship of the NUTs with repetitive regions. However,

there are very few analytical tools currently available in the field to

address NUTs from ChIP-seq data. The only executable tool from

Chung et al [26] outputs many possible genomic locations for each

NUT with ranked E values which makes it hard to determine the

exact location for each NUT. Therefore, we have developed a

computational tool, LOcating Non-Unique matched Tags (LO-

NUT), that utilizes both UMTs and NUTS to improve the

detection of binding sites for ChIP-seq data. Our LONUT

algorithm applies a linear and polynomial regression model to

establish an empirical score (ES) formula by considering two

factors, the distance of NUTs to peaks identified using UMTs and

the enrichment score for the peaks. Each NUT is assigned to one

unique location on the reference genome based on the highest

ranked ES. Then, the set of newly located tags from the NUTs is

combined with the set of original UMTs to produce a final set of

combined matched tags (CMTs). We tested the LONUT program

on many different datasets in three study cases, representing three

different types of data. In the first study (Study Case 1), all six
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ChIP-seq datasets from MCF7 cells, are publically available [28].

In the second study (Study Case 2), we used LONUT to analyze

ChIP-seq data for a macromolecular complex in K562 cells

comprised of a master regulator, a repressive histone modification

mark and a histone methyltransferase. In the third study (Study

Case 3), we used LONUT to analyze publically available ChIP-seq

datasets for three transcription factors (TFs) in four cell types. The

detected binding sites were validated using de novo motif

discovery and ChIP-PCR. We show that our LONUT can not

only improve the identification of binding sites for ChIP-seq data

that are identified using only UMTs, but can also identify

additional sites; thus, we demonstrate the specificity and accuracy

of our tool LONUT.

Results

Overview of LONUT algorithm
The algorithm of LONUT is composed of two major steps

(Figure 1A). In the pre-processing step, we obtain a set of all

possible alignments for each raw tag in the dataset by utilizing a

short-tag alignment tool, Bowtie aligner. The first step of LONUT

is to divide the input dataset into two subsets: a set of UMTs and a

set of NUTs based on the output dataset from the Bowtie aligned

tags file. For the set of UMTs, we apply BELT [29], a tool

developed in our laboratory to detect ChIP-seq binding sites, to

identify the peaks (enriched binding regions) that will be used as a

reference to assign the NUTs. We then establish an empirical

score formula by considering two possible factors, the distance of

each NUT to a peak (d) identified by BELT from UMTs and the

enrichment score for the peak (s) (Figure 1B; also see next

section). Then for each NUT having less than 100 possible

genomic locations, we calculate an empirical score (ES) based on

the empirical score formula. Based on the rank of the ES for all

copies of the aligned tags for each NUT, the copy with the highest

ES will be selected and each NUT will be assigned to one unique

location on the reference genome. We then combine the set of

newly located tags from the NUTs with the set of original UMTs

to produce a final set of CMTs.

Determination of ES formula
To integrate two different influence factors (d and s) into an

empirical score formula, we normalize them to the same

numerical scale in order to equalize the impact of the two factors.

We used a ChIP-seq dataset of H3K4me2 from MCF7 cells to

derive the formula. The data is composed of a total of 2,910,475

raw tags, of which 2,417,878 (83%) are UMTs and 492,597 (17%)

are NUTs. We found the ln scale of d is within the same scale of s

after multiplying a normalized factor. We then applied a linear

and polynomial regression model to fit two vectors of data points

of two factors varying from degree 1 to 7 (Figure 2A). We found

that the data points fit the best with a degree one. Thus, we

derived the ES formula ES F[1] as shown below. To determine if

the derived formula is the optimal one, we compared it to two

other formula ES F[2] and ES F[3], in which only one of the

influence factors is considered in each formula.

ES F[1] = 1/ln(d)+0.0608*s.

ES F[2] = 1/ln(d).

ES F[3] = 0.0608*s.

Two aspects were considered to measure the efficiency of these

formulas: 1) the similarity of UMT peaks and CMT peaks, i.e. the

ratio of Overlap Peaks (the number of common peaks between

UMT peaks and CMT peaks divided by the CMT peaks) and the

ratio of Extra Peaks (the number of new peaks only in CMT peaks

divided by CMT peaks); 2) the influence of LONUT on the

density of peaks, i.e. the average peak scores of the Overlap and

Extra peaks. Since the ratio of Overlap peaks represents the

similarity between CMTs and UMTs, the higher ratio may

indicate the quality of re-located NUTs is comparable to the

original UMTs; while the higher ratio of Extra peaks indicates that

LONUT has recovered a significant amount of NUTs and

suggests a higher efficiency of the formula. We performed a

comparison for all peaks (Table S1 in File S2) and subsets of

different levels of top peaks (Figure 2B) to evaluate the efficiency

for the three formulas in terms of the ratio of Overlap and Extra

peaks of H3K4me2 data in MCF7 cells. The results showed a

better performance for both ES F[1] and ES F[2] regardless of

how many peaks were examined. The other aspect for measuring

the efficiency of LONUT is to test the influence of LONUT on the

density of CMTs and UMTs, which could reflect how LONUT

changes the distribution of tags. We compared the average peak

scores of UMT peaks, CMT peaks, Overlap peaks and Extra

peaks on three formulas for all peaks (Table S2 in File S2) as well

as subsets of different level of top peaks (Figure 2C), showing that

although ES F[2] maintains a higher average CMT peak score

compared with ES F[1], its average Extra peak score is lower than

that of ES F[1], illustrating that the Extra peaks derived from ES

F[2] are much weaker that those from ES F[1]. Since LONUT

focuses on the extra tags in addition to UMTs, which are shown in

Extra peaks, ES F[1] is better than ES F[2]. Since both the

average CMT peak score and average Extra peak score of the

results of ES F[3] are lower than those ES F[1], it is clear that ES

F[1] has stronger and better performance. Taken together, our

results demonstrated that ES F[1] is the best method for LONUT.

Study case 1
In the first study case, we chose six datasets, including Estrogen

Receptor (ER), RNA Polymerase II (Pol-II), histone modifications

(H3K4me2 and H3K4me3), and DNA methylation (DNAme), all

from the MCF7 cell line. The NUT ratio (measuring against all

total tags in each dataset) ranged from 17% for H3K4me2 to 34%

for DNAme with an average NUT ratio of ,25% (Figure 3A and

Table S3 in File S2). To demonstrate the efficiency of LONUT,

we compared the peaks before running LONUT (peaks identified

from UMT sets) and after running LONUT (peaks identified from

CMT sets). We used our BELT program to call peaks at the same

threshold and bin size for each pair of sets (UMT and CMT for

the same data) with a FDR less than 10% for all datasets (see a

summary of parameters used for the BELT in Table S4 in File
S2). Interestingly, we found that the two active histone marks

(H3K4me2 and H3K4me3) had the highest Overlap peaks and

ratios (,80%) and fewer Extra peaks were identified using

LONUT (,25%); for Pol-II, ER and DNAme, we found that

the Overlap ratio was ,40–60% (Table S5 in File S2). To

understand what extent the NUTs contribute to the CMT peaks,

we calculated the ratio of UMTs/CMTs ( = UMTs+NUTs) for

each peak for CMT peaks set for ER and Pol-II data respectively.

We first ranked CMT peaks based on BELT enriched peak score,

and calculated the ratio of UMTs/CMTs by averaging every 100

peaks (Figure S1 in File S1), showing the ratio is decreasing

along the decrease of the order of ranking peaks, but stable at 0.6

for Pol-II data and 0.35 for ER data. In addition, we compared the

average of the peaks scores between the sets of UMT and CMT

peaks (Table S6 in File S2), and found that the average of the

CMT Peak Score is higher than the average of the UMT Peak

Score, but lower than the average of the Overlap Peak Score,

indicating that assigned NUTs are able to contribute to the

LONUT
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strength of sites identified in ChIP-seq or DNAme datasets. We

also observed that the average of the Extra Peak Score is lower

than the average of CMT Peak Score and the average of Overlap

Peak Score, but higher than the average of UMT Peak Score

except for the two active histone marks data, illustrating that

LONUT can identify enriched regions which are denser than the

UMT peaks. Taken together, our results suggest that the newly

identified peaks by LONUT are just as good as the original peaks

identified by UMTs.

To test the accuracy of our LONUT algorithm, we applied

ChIPMotifs [30] for de novo motif discovery using ChIP-seq peaks

from ER_E2 data (Figure 3B and Table S7–12 in File S2). We

used seven sets of peaks, one set was from the UMT Peak set,

where we retrieved the Top 1000 peaks with a length of 300 bp for

each peak extended 150 bp each side from the mid-point of the

peak; r three sets were from the CMT Peak set and included a set

of Top 1000 peaks, a set of Middle 1000 peaks and a set of Bottom

1000 peaks; the remaining three sets were from the Extra Peak set

including a set of Top 1000 peaks, a set of Middle 1000 peaks and

a set of Bottom 1000 peaks. We identified the canonical ER

binding motif in all seven r sets, except that only half of ER motif

was found in the sets of CMT and Extra Bottom 1000 peaks,

demonstrating that the NUTs are indeed located to an accurate

genomic location by our LONUT program.

Study case 2
To further evaluate the effectiveness of LONUT on a

macromolecular complex, we tested it on three ChIP-seq datasets,

KAP1, SETDB1, and H3K9me3, from K562 cells. Our previous

studies have shown that KAP1 and SETDB1 co-localize at sites of

H3K9me3 [31,32]. An overview of the tag distribution of UMTs,

NUTs and CMTs in KAP1, SETDB1 and H3K9me3 in K562 cell

(Table S13 in File S2) showed that NUT ratios for the three

datasets were 26–34%. Similar to the first study case, we also

performed a comparison of Overlap and Extra peaks for the UMT

and CMT data in this study case (Table S14–15 in File S2). The

results showed that more than 50% of the CMT peaks overlap

with the UMT peaks for all three data, indicating that there exists

a strong correlation between the UMT peaks and the CMT peaks.

We next determined the sites in the genome that are identified as

being bound by all three marks (the modified histone, the histone

methyltransferase, and the KAP1 scaffold protein) using the UMT

and the CMT peak sets. We found 682 new sites associated with

274 genes in the genome having all three marks when using the

CMT peak sets. However, 201 of 274 genes were already in the list

of 1,047 genes in the UMT peak sets (Figure S2 in File S1),

indicating the newly identified genes in study case II are really

new. Location analysis showed the same trends of binding site

distribution for all three co-bound sets using UMT, CMT and

additional peaks (Figure 4A). GO analysis also showed that the

274 genes corresponding to the additional 682 sites have the same

functional categories of Zinc Finger C2H2-type genes as do the

genes identified by the co-bound sites in the UMT and CMT peak

sets (Figure 4B–D). These analyses demonstrate that LONUT is

able to identify more commonly bound target loci for this

complex.

Study case 3
To test the performance of LONUT in identifying peaks from

additional site-specific TF ChIP-seq datasets, in the third study

Figure 1. An overview of the LONUT algorithm. A. A flow chart summarizing the steps beginning with an initial set of raw tags to a final set of
combined matched tags (CMTs). B. A graphic flow showing the detailed algorithm of locating each of NUTs to a unique reference genomic region
with an ES formula derived from a linear and polynomial regression model.
doi:10.1371/journal.pone.0067788.g001

LONUT
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case we chose publically available ChIP-seq data for three TFs,

NRSF, TCF7L2 and YY1, from four different cell lines. We found

that the overall NUT ratio for ChIP-seq of TFs was 30–40%

(Table S16 in File S2). A comparison of Overlap and Extra

peaks for the UMT and CMT data in this study case (Table S17–

19 in File S2) showed that in most cases more than 40% of the

CMT peaks overlap with the UMT peaks, indicating that there

exists a strong correlation between the UMT peaks and the CMT

peaks. However, ,40–60% of the peaks in the 0.95 threshold

CMT sets were newly identified due to relocation of NUTs. The

comparison of the average peak scores for different sets of peaks

including the UMT, CMT, Overlap and Extra peaks showed that

the highest one is for the Overlap peaks, while the average peak

scores of the CMT and Extra peaks for all four datasets are higher

than the average peak score of UMT peaks, illustrating that

adding the NUTs to UMTs reinforces the strength of previously

identified peaks and creates new enriched regions of tags which are

denser than the UMT peaks. An example of the tag densities in

two regions of the genome in the UMT and CMT TCF7L2

datasets is shown in Figure 5. We also conducted ChIP-PCR on

several 7 TCF7L2 NUT peaks (Figures S3 in File S1), showing

that some of the NUT peaks were as strongly enriched as the

previously identified TCF7L2 binding sites.

To further understand to the extent of the relationship of UMT

and CMT TCF7L2 peaks, we examined a set of 7,800 very high

threshold level UMT peaks for TCF7L2 (0.99 and bin-size of

150 bp). We found that 5,389 (69%) are overlapping with CMT

peaks at the same level. However, all of the 7,800 peaks are

overlapping with CMT peaks called at lower thresholds (Table
S20 in File S2). This analysis indicates that while the majority of

UMT peaks are retained in the CMT peak set, the signal

intensities for some of newly formed CMT peaks are stronger than

some of the original UMT peaks, thus resulting in some original

UMT peaks being pushed lower in the ranked list and falling out

of the top-ranked list of CMT peaks. In other words, the peaks are

not ‘‘lost’’, they are simply pushed into a lower ranking. An

example of this is shown in Figure S4 in File S1.

We also tested the accuracy of LONUT using de novo motif

ChIPMotifs. We were able to identify the canonical binding motifs

for all three TFs for both UMT and CMT peaks (Figure 6A and

Figure 2. The determination of an ES formula using ChIP-seq data of H3K4me2 in MCF7 cell. A. A polynomial regression model to fit two
vectors of data points of two influence factors (d and s) varying from degree 1 to 7 and we found that the data points fit the best with a degree one.
X-axis is ln(d) for each NUT and Y-axis is s for the peak score for that NUT. B. The ratio of Overlap and Extra peaks with three ES formulas tested at
different level of top peaks, showing a better performance for both ES F[1] and ES F[2] at all level of top peaks examined. C. An average peak score of
CMT peaks with three ES formulas tested at different level of top peaks, showing that although ES F[2] maintains a higher average CMT peak score
compared with ES F[1], its average Extra peak score is lower than that of ES F[1], illustrating that the Extra peaks derived from ES F[2] are much weaker
that those from ES F[1].
doi:10.1371/journal.pone.0067788.g002

LONUT
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Table S21–28 in File S2). For the TCF7L2 data, we split the

CMT peaks into three subsets including top 1/3 peaks, middle 1/3

peaks and bottom 1/3 peaks. We then selected 500 peaks from

each subset and 500 peaks that were identified using CMTs but

not identified using UMTs for the de novo motif analysis. We were

able to recover a 6-mer TCF7L2 core motif from all sets of peaks.

This supports that the newly formed peaks from CMTs are indeed

true binding sites. We further analyzed recovery rates for identified

binding motifs in both UMT and CMT peaks sets (Figure 6B),

showing that these known motifs for each factor are present in a

large percentage of the binding peaks with a gradually reduced

percentage as more peaks are considered. For example, more than

80% of the top 1,000 peaks in each dataset from each cell type

contain the 6-mer core motif (W1), with the percentage gradually

dropping to ,20% of all peaks. Interestingly, although many of

the Extra peaks did contain the expected motif, smaller recovery

rates were observed for Extra peaks for all four datasets.

Finally, we compared LONUT to another tool, developed by

Chung et al [26], where they derived an iterative weighting

scheme that also takes into account the number of tags mapped in

the vicinity of that tag. We selected a best E value for each NUT

from several E values output to combine to original UMTs since

their tool outputs several possible different genomic locations for

each NUT. We then used the same levels of thresholds for BELT

peaks that we used to compare CMTs identified by LONUT and

Combined Reads (CRs) identified by Chung’s tool (Table S29 in
File S2). We found that the overlap CMT peaks numbers between

the two programs are very high (63%) at a relatively lower

threshold of 0.95 with a bin size of 150 bp, and reaches 82% at a

higher threshold of 0.99. The overlapping Extra peaks between

two programs are 42.5% for the threshold of 0.95 with a bin size of

150 bp. This comparison showed that both tools tend to detect

real peaks at higher level and LONUT has a comparable

efficiency and accuracy to Chung’s tool. Moreover, LONUT has

a faster running speed and is easier to use (Notes in File S2).

Discussion

An important challenge for computational biologists is to

develop new software tools to analyze the large and increasingly

varied amount of sequencing-based ‘omics data that is being

generated by bench scientists. A big limitation of many existing

tools in the field is that they do not consider non-unique matched

tags (NUTs), creating a problem in the analysis of datasets from

technologies such as ChIP-seq. To fill this gap, we have developed

a program called LONUT (Locating Non-unique Matched Tags).

LONUT improves the detection of the enriched regions for both

ChIP-seq and MBD-seq data. Importantly, the ES formula, a core

part of the LONUT, was derived using real datasets by a statistical

regression model and thus is able to capture the underlying

characteristics of biological meaning based on individual data

types.

There are three potentially influential factors for locating a

NUT to the reference genome. The first is the distance of a NUT

alignment to its closest UMT peak, the second is the peak score of

the closest UMT peak of a NUT alignment, and the third is the

relationship of the tags with repeats regions, since it is possible that

many NUTs are derived from repeats regions. The current version

of LONUT only considers the first two factors to derive an

empirical formula to locate NUTs. To investigate the possibility of

contribution from the third factor, we examined the relationship

between the UMT, CMT, and Extra peaks with repeats regions,

using the newest version of Repbase [33] as a reference for the

Figure 3. Study case 1: an evaluation of the performance of LONUT on six ChIP-seq datasets from MCF7 cells. A. A summary of tag
distribution of UMTs, NUTs and CMTs. B. De novo motif discovery on ER_E2 ChIP-seq data using the ChIPMotifs, including motifs identified from the
UMT peaks, Top, Middle and Lower 1000 CMT peaks, and Top, Middle and Lower Extra peaks.
doi:10.1371/journal.pone.0067788.g003

LONUT
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repeats regions and found a slight increase in the overall ratio of

peaks in repeats regions in the CMT peaks as compared to the

UMT peaks, except for two active histone modifications

(H3K4me2 and H3K4me3) (Figure 7A). We observed that the

ratio of Extra peaks in repeats regions is higher than that of

Overlap peaks, showing that the addition of NUTs was more

valuable in identifying the peaks coming from repeats regions

(Figure 7A,B). Our results support the concept that the repeats

information may influence the assignment of NUTs to genomic

regions.

A few recent studies [25–26] have demonstrated the importance

of assigning NUTs to a unique genomic location and have shown

that the tags usually discarded by most researchers are indeed part

of functionally relevant regions. For example, Rosenfeld et al. [26]

investigated the effectiveness of utilizing NUTs in H3K9me3

datasets and suggested H3K9me3 may have a role in chromatin

organization rather than being directly related to gene expression.

The study from Chung et al. [26] further illustrated that

incorporation of NUTs significantly increased sequencing depth,

leading to the detection of new binding sites. However, all of these

studies were focused on one or two ChIP-seq datasets. Our study

comprehensively investigated the influence of NUTs in many

different types of genomic datasets, testing the performance of

LONUT on 3 diverse datasets. We examined a comparison of the

ratio of Overlap peaks between UMT and CMT peaks, the

average of peak scores for CMT, Overlap and Extra peaks,

performed de novo motif discovery for the different peaks sets and

confirmed the validity of the newly identified peaks using ChIP-

PCR. Our results demonstrate the specificity and accuracy of the

new alignment tool LONUT.

Materials and Methods

Study cases and datasets in this work
We have used three study cases and their associated datasets to

demonstrate the performance of our LONUT algorithm and the

practical use of the software tool. In Study Case 1, we used ChIP-

seq datasets from MCF7 cells, including Pol-II and ERa [25,34],

H3K4me2 and DNA methylation [35], and publically available

H3K4me3 (http://genome.ucsc.edu/). In Study Case 2, we used 3

ChIP-seq datasets from K562 cells that detect two different

components of a macromolecular complex, KAP1 (a scaffold

protein) and SETDB1 (a H3K9me3-specific histone methyltrans-

ferase), and the associated modified histone H3K9me3 [31,32].

Study Case 3 utilized ChIP-seq datasets for three transcription

factors, TCF7L2, NRSF and YY1, from four different cell lines;

Figure 4. Genomic sites bound KAP1, SETDB1 and H3K9me3 identified in the UMT and CMT peaks sets. A. Location analysis showing
the same trends of binding site distribution for all three co-bound sites using 2035 UMT, 2305 CMT and 682 additional peaks. B–D. GO analyses
identified 757 genes in the common CMT peak set (B); 1047 genes in the common UMT peak set (C) and 274 genes in the additional 682 peak set (D);
Zinc Finger C2H2-type genes are enriched in all three peak sets.
doi:10.1371/journal.pone.0067788.g004

LONUT
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these datasets were from the ENCODE Project (http://genome.

ucsc.edu/).

Establishing an empirical score formula
From a set of many possible alignments on the reference

genome for each raw tag produced using the short-tag alignment

tool Bowtie aligner [36], we established an empirical score formula

and then computed an Empirical Score (ES) for each multiple

aligned tag. In the initial alignment, we used default parameters

for Bowtie such that each raw tag was allowed to have at most 2

mismatches and at most 100 possible alignments on the reference

genome.

To determine an ES, we considered two factors. One was the

relative distance (d) of each multiple aligned tag to an enriched

peak or methylated region, with the assumption that a high quality

NUT should be close to or within an enriched region. The other

factor considered was the score (s) of the enrichment of the binding

region identified by our BELT program [29] using the uniquely

mapped tags, with the assumption that uniquely mapped tags

identify high confidence enriched regions. We then normalized the

two measurements to the same numerical scale to equalize the

impact of the two factors (see Results section - Determina-
tion of ES formula). ES was calculated using the following

formula,

ES~SdzbSp

where Sd is the normalized distance score using a linear fit with n

degree, Spis the peak score of the closest peak, b is the

normalization factor for the peak score.

We used a polynomial regression model to fit the data points

(aligned tags).

Sp~
Xn

i~0

ai dtð Þi, in which, dt~
1

ln dð Þ

where d is the relative distance of a NUT alignment to its closest

UMT peak, dt is the transformed distance value, ai is the

coefficient of each term in the polynomial function.

Assume that the total number of points is m, D is the designed

matrix representing

1 dt1 d2
t1 � � � dn

t1

1 dt2 d2
t2 � � � dn

t2

..

. ..
. ..

. ..
.

1 dtm d2
tm � � � dn

tm

2
6664

3
7775. The least square

estimation of the vector of polynomial regression coefficients a is,

a~ DTD
� �{1

DTSp

where Sp is the vector of peak scores.

Data preprocessing
LONUT utilizes several existing Bioinformatics tools, such as

Bowtie [36] and BELT [29]. Bowtie, an ultrafast, memory-

efficient short tag aligner, is used for aligning multiple matched

tags to the reference genome. We set the parameters for Bowtie as

the default such that each tag is allowed to have at most 2

mismatches and at most 100 copies of alignments on the reference

genome for each tags. BELT, a peak-calling program for ChIP-seq

data developed in our laboratory, is used for identifying the

enriched binding regions from uniquely matched tags.

Figure 5. Screenshots of NUT regions tested by ChIP-PCR. The Integrated Genome Browser (http://bioviz.org/igb/) was used to visualize
TCF7L2 ChIP-seq data in HCT116. The snapshots show called peaks for the CMT dataset (blue) and NUT peaks (red) above the raw read visualization
tracks. In each panel, the top visualization track contains CMT tags and includes NUTs. The bottom visualization track contains only UMTs. Below the
genomic coordinates for each snapshot, the small red box indicates the region for which PCR primers list in Figure S3 in File S1.
doi:10.1371/journal.pone.0067788.g005
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Implementation and usage of LONUT
LONUT is implemented in Perl language (Perl 5.88 or above).

The source code is platform independent and was tested on a

LINUX/UNIX system and HPC cluster system. It also provides a

data preprocessing program which requires alignment of non-

unique matched tags by Bowtie. The source code is available at

http://motif.bmi.ohio-state.edu/LONUT/.

The LONUT tool takes two outputs of results from Bowtie. 1)

Users can use the –r option if the input file of LONUT is the –r

result of Bowtie, i.e. the input of Bowtie is a sequence file; this is

the default option. If the user chooses this option, the name of

input file should be in this format: XX_seq_r_bowtie, where XX is

the name of input data. 2) Users can use the –q option if the input

file of LONUT is the –q result of Bowtie, i.e. the input of Bowtie is

a fastq file. If the user chooses this option, the name of input file

should be in this format: XX_q_bowtie, where XX is the name of

input data.

ChIP-PCR
To validate newly called peaks from the NUTs, we used ChIP-

PCR. The TCF7L2 ChIP assay in HCT116 cells was performed

as previously described [37]. Briefly, HCT116 cells (ATCC

#CCL-247) were grown in McCoy’s 5a Medium supplemented

with 10% fetal bovine serum and incubated at 37uC in a

humidified 5% CO2 incubator. Cells were harvested at 80%

confluence and cross-linked with 1% formaldehyde for 10 min at

room temperature. Cross-linking was stopped by the addition of

125 mM glycine for 5 min, and cells were washed twice with ice-

cold PBS and scraped from the dish. A nuclear extract was

prepared, and chromatin was sonicated to a size of 200–500 bp

using the Bioruptor from Diagenode for 45 minutes with cycles of

30 seconds ON, and 90 seconds. The TCF7L2 ChIP assay was

performed by incubating 100 mg of HCT116 chromatin with

10 mL of TCF7L2 antibody (Cell Signaling Technology, Danvers,

MA, USA; Catalog #C48H11, Lot #2) overnight on a rotating

platform at 4 degrees Celsius. Rabbit IgG was used as a negative

control (Alpha Diagnostics, Owings Mills, MD, USA; Catalog

Figure 6. An evaluation of the performance of LONUT on ChIP-seq datasets of three TFs from four cell lines. A. De novo motif
discovery on three TFs on four cell lines using the ChIPMotifs identifying the canonical binding motifs for all four data. For NRSF in GM12878 and H1
cells, and YY1 in K562 cells, we identified each canonical motif for both Top 500 CMT peaks and Top 500 Extra peaks. For the TCF7L2 data, we
particularly examined it three subsets including top 1/3 peaks, middle 1/3 peaks and bottom 1/3 peaks. We were able to recover a 6-mer TCF7L2 core
motif from all sets of peaks. B. A motif recovery plot showing that these 6-mer core motifs (W1) identified by our ChIPMotifs are present in a large
percentage of the binding peaks with a gradually percentage reduction along more peaks consideration.
doi:10.1371/journal.pone.0067788.g006
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#210-561-9515). Protein A/G magnetic beads (Pierce, Thermo

Scientific, Rockford, IL, USA; Catalog #88803, Lot

#NG1561272) were used to collect the immunoprecipitates and

eluted ChIP DNA was assayed by PCR using primers in Figure
S1 in File S1.

Supporting Information

File S1 Supplementary figures. Figure S1. The ratio of
UMTs/CMTs by averaging every 100 peaks. A. Pol-II

data, B. ER data. It showed the ratio is decreasing along the lower

level of ranking peaks, but stable at 0.6 for Pol-II data and 0.35 for

ER data, indicating that the newly identified peaks are just as

good. Figure S2. Screenshots for 2 of 274 genes that were
identified in the 682 new common peaks are genes that
were already in the list of 1,047 genes in the common
UMT peaks set. Top three tracks are UMT peaks for three

factors, and lower three are CMT peaks. It shows extra common

peaks are from same genes with UMT common peaks. Figure
S3. PCR validation of TCF7L2 peaks in HCT116. Primers

were designed for TCF7L2 peaks visualized using the Integrated

Genome Browser (IGB, http://bioviz.org/igb/). Primers for

positive sites in the first panel are described in Frietze et al.

Genome Biology, 13:R52, 2012. Primers for NUT peaks were

designed for peaks identified in the high-threshold CMT dataset

(p-value = 0.99). In order to assay novel peaks as determined by

the LONUT algorithm, NUT peaks were chosen as those absent

from UMT peak sets. Snapshots were taken for the regions

containing NUTS labeled above as ‘1’ and ‘2 as seen in the next

figure. All UMT peaks analyzed here were called as peaks in the

high-threshold UMT dataset (p-value = 0.99), but were not

present in the CMT dataset of the same threshold. PCR

enrichment of these sites demonstrates that these regions are still

enriched, even though they are not present in the high-threshold

CMT dataset. Figure S4. Exclusion of UMT peaks from the
CMT dataset. When UMT peaks and NUT peaks are combined

to create the CMT dataset, some UMT peaks are excluded from

this new dataset as illustrated in the above snapshot from a region

on chromosome 1. The peak on the left is a strong UMT peak, was

identified at two different thresholds, and was retained in the final

CMT dataset. The peak on the right, however was not included in

the CMT dataset at the highest threshold (red). The exclusion of

this UMT peak from the CMT dataset is a result of of new NUT

peaks with larger tag heights being included in the CMT dataset.

(PPTX)

File S2 Supplementary tables. Table S1. A comparison of

three formulas in a ratio of Overlap and Extra peaks for ChIP-seq

data of H3K4me2 in MCF7 cells. Table S2. A comparison of

three formulas in average peak scores of UMT peaks, CMT peaks,

Overlap peaks and Extra peaks for ChIP-seq data of H3K4me2 in

MCF7 cells. Table S3. A summary of tag distribution of UMTs

and NUTs in the first study case. Table S4. An overview of UMT

and CMT peaks for eight datasets in MCF7 cells. Table S5. A

summary of Overlap and Extra peaks in eight datasets in the study

case 1. Table S6. A summary of average UMT peak scores,

CMT peak scores, Overlap peak scores, Extra peak scores of eight

datasets in the study case 1. Table S7. Motif results in the UMT

Peaks set of ER_E2 data. Table S8. Logos of ER binding motif in

the UMT Peaks set of ER_E2 data. Table S9. Motif results in the

CMT Peaks set of ER_E2 data. Table S10. Logos of ER binding

motif in the CMT Peaks set of ER_E2 data. Table S11. Motif

results in the Extra Peaks set of ER_E2 data. Table S12. Logos of

ER binding motif in the Extra Peaks set of ER_E2 data. Table
S13. An overview of the tag distribution of UMTs, NUTs and

CMTs in KAP1, SETDB1 and H3K9me3 in K562 cell line.

Table S14. An overview of UMT and CMT peaks in KAP1,

SETDB1 and H3K9me3 in K562 cell line. Table S15. A

summary of Overlap and Extra peaks in KAP1, SETDB1 and

H3K9me3 in K562 cell line. Table S16. An overview of the tag

distribution of UMTs, NUTs and CMTs in NSRF, TCF7L2 and

YY1 in four human cell lines. Table S17. An overview of UMT

and CMT peaks in four datasets of the third study. Table S18. A

summary of Overlap and Extra peaks in four datasets of the third

study case. Table S19. A summary of the average UMT’s peak

scores, CMT’s peak scores, Overlap peak scores, Extra peak scores

of four datasets in the third study case. Table S20. A summary of

the comparison of 7,800 UMT peaks to CMT peaks at different

thresholds for TCF7L2 in HCT116 cells. Table S21. Motif

results in UMT’s peaks of H1 (NRSF) data. Table S22. Weblogos

of Motif results in UMT’s peaks of H1 (NRSF) data. Table S23.
Motif results in CMT’s peaks of H1 (NRSF) data. Table 24.
Weblogos of motif results in CMT’s peaks of H1 (NRSF) data.

Table 25. Motif results in UMT’s peaks of HCT116 (TCF7L2)

data. Table S26. Weblogos of motif results in UMT’s peaks of

HCT116 (TCF7L2) data. Table S27. Motif results in CMT’s

peaks of HCT116 (TCF7L2) data. Table S28. Weblogos of motif

results in CMT’s peaks of HCT116 (TCF7L2) data. Table S29.
A summary of CR (Chung et al) peaks and CMT peaks both called

by BELT.

(DOCX)

Figure 7. A comparison of the relationship between CMT peaks
and repeats regions. A. A comparison between ratios of peaks in
repeats regions for UMT, CMT, Overlap and Extra peaks using the
datasets from MCF7 cells. B. A comparison between ratios of peaks in
repeats regions for UMT, CMT, Overlap and Extra peaks using K562
datasets.
doi:10.1371/journal.pone.0067788.g007
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