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Abstract
A modified and updated version of the model of the dielectric response function of liquid water as
currently implemented in the PARTRAC code is presented. The updated version takes advantage
of the newer experimental information from the Sendai group and implements some
improvements in modeling and usability.
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1. Introduction
Monte Carlo (MC) radiation transport codes rely on realistic interaction cross sections of
charged particles with materials under consideration. MC track structure simulations follow
the primary charged particle, as well as all produced secondary electrons, from starting or
emission energy, down to total stopping in an event-by-event manner. They therefore
require consistent total and differential (energy (E) and momentum (ħK) transfer) cross
sections for all primary and secondary particles over a wide energy range. One established
method to calculate excitation and ionisation cross sections for charged particles is the plane
wave Born approximation (PWBA). Within the PWBA, the double differential cross section
factorizes in a kinematic factor and the energy loss function (ELF) η2(E, K) of the target
material. The ELF is a characteristic function of the target material and does not depend on
the incoming particle. Once this function is determined, interaction cross sections for all
charged particles can be obtained. It should be noted that the PWBA is a first order
perturbation theory and based on the assumption that the incoming charged particle is
sufficiently fast compared to the orbital electrons. It is common practice to correct the plain
PWBA for low-energy charged particle impact, either with semi-empirical correction
factors, higher order corrections (see e.g. Emfietzoglou and Nikjoo, 2005; Dingfelder et al.,
1998), or by use of semi-empirical or more sophisticated models (see e.g. Dingfelder et al.,
2000; ICRU Report 55, 1996; Incerti et al., 2010), depending on the nature of the charged
particle. However, cross section calculations are not the scope of this manuscript and will
not be discussed further. The following will focus on the modeling of the ELF as basic input
to PWBA calculations.

The ELF is related to the dielectric response function (DF) ε(E, K) = ε1(E, K) + iε2(E, K) of
the material by η2(E, K) = Im(−1/ε(E, K)), where Im(.) denotes the imaginary part of the
argument. The ELF or DF is related to the generalized oscillator strength (GOS) for a single
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atom (low density limit), and to the optical constants (refraction and absorption index) in the
optical limit, i.e., for momentum transfer ħK = 0. These relations are used to obtain
experimental information on the materials. In case of liquid water, which serves as a
surrogate for soft biological tissue, two measurements are available: the optical reflectance
measurement on a liquid water surface by Heller et al. (1974), and the measurement by the
Sendai group (Hayashi et al., 2000), measuring the energy loss function of liquid water for
high momentum transfer using synchrotron radiation and extrapolating back into the optical
limit.

There are three major models of the DF of liquid water available in the literature: the Oak
Ridge model (Ritchie et al., 1991) and the PARTRAC model (Dingfelder et al., 1998, 2008)
are based on the optical reflectance data by Heller et al. (1974), while the model of
Emfietzoglou et al. (2005) is based on the Sendai group data. All models are based on
representing the imaginary part of the DF as a superposition of functions representing
excitation and ionization levels of water. They differ in details on the representation and the
choice of parameter and use different extension algorithms for the momentum dependence
of the DF. All models were used to calculate interaction cross sections for charged particles
in liquid water, which are implemented in MC track structure codes.

This work describes an updated version of the PARTRAC model, as described in
(Dingfelder et al., 1998, 2008), using the newer Sendai-group data Hayashi et al. (2000)
instead of the older optical reflectance data from Heller et al. (1974). In order to effectively
use the newer data, the model needs to be updated and modified in some details. This is
described in the following.

2. The updated model for the dielectric response function of liquid water
The currently used model of the DF of liquid water for cross section calculations in
PARTRAC is still based on the old optical reflectance data from Heller et al. (1974). It is
described in detail in (Dingfelder et al., 1998) and summarized in (Dingfelder et al., 2008).
The DF is modeled as a superposition of Drude-like functions as defined in Appendix
Appendix A. Each function represents an excitation or ionization level. Parameter were
obtained by physically fitting the DF in the optical limit, i.e, for zero momentum transfer, to
existing experimental data and theoretical constraints like sum rules, mean excitation
energy, etc. as defined in Eq. 9 – 12. An elaborate extension algorithm is used to add
momentum (transfer) dependence to parameter of the Drude functions in the sense of an
impulse approximation. Drude functions have the advantage that Kramers-Kronig relations
can be performed analytically. Therefore, both the real and the imaginary part are
represented as superpositions of these functions and their Kramers-Kronig counterparts,
using the same set of parameter. The modified model follows the same approach but makes
extensive use of new available experimental information: the inelastic x-ray scattering
experiments of the Sendai group (Hayashi et al., 2000) to determine the ELF and their
extrapolation of the DF to the optical limit.

2.1. Optical dielectric function
Following the general approach in Dingfelder et al. (1998), the imaginary part of the DF in
the optical limit, i.e., for momentum transfer (Ka0) = 0 is divided in contributions from
excitations, outer shell ionizations, and inner shell ionization:

(1)
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The contribution from excitations is modeled as a superposition of derivative Drude
functions D*(E, Ek) (as given in Appendix Appendix A):

(2)

The contribution from the outer shells (all except the K-shell of oxygen) to ionizations is
given by Drude functions, cut at the ionization threshold Ej and smeared out to avoid sharp
edges. Above a certain cutoff energy, the Drude function is replaced by a simple power law,
Esj

 with shell dependent cutoff energies and exponents. The reason for this are twofold.
First, Drude functions converge to an asymptotic power law with exponents around −3.0.
Theoretical analysis (Inokuti, 1971) show that the generalized oscillator strength should
have an asymptotic exponent of −3.5, and therefore the DF or ELF an asymptotic exponent
of −4.5. Indeed, ab initio calculations performed for the optical oscillator strength of atomic
oxygen with the formalism described in (Segui et al., 2002) yield an exponent −4.5 for outer
shells, and an exponent of around −3.8 for the oxygen L-shell. Second, the Sendai group
(Hayashi et al., 2000) used a similar method to normalize their data using sum rules: they
obtained experimental values for energy transfers up to 100 eV, and used a power law with
an exponent of −4.48 for higher energy transfers. Therefore, a similar approach is necessary
to fulfill sum rules and to obtain a realistic mean excitation energy. The contribution from
the outer shells to the DF is given by

(3)

D(E, E0) is the Drude function, Θ(x) the Heavyside Step function, and G(x, x0) a Gaussian,
as defined in Appendix Appendix A. Ecut,j is the cutoff energy, and sj the exponent of
subshell j, and tj given by

(4)

The contribution from the oxygen K-shell is modeled using a scaled hydrogen GOS model,
as discussed and described in detail in Dingfelder et al. (2000). In the limit of high energy
transfers, the imaginary part of the DF becomes small, ε2 ≪ 1, and the real part of the DF
approaches unity, ε1 ≈ 1. It is therefore assumed, that for the K-shell of oxygen the ELF is
approximately the imaginary part of the DF, and that the contribution from the real part of
the DF can be neglected, i.e., η2 ≈ ε2. Therefore the contribution of the K-shell to ε2 is
given by

(5)

where the factor 2 accounts for two electrons in the K–shell. The factor ξ arises from a
renormalization. The known value of the total oscillator strength of the oxygen K–shell is
1.79, as stated in Section 4.1 of (Dingfelder et al., 2000). However, the integral of df(H)(E,
0)/dE over the continuum is 0.88. Therefore, the oscillator strength is renormalized by the
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factor ξ = 1.79/(2 × 0.88) = 1.017. The GOS for transition from the K-shell to the

continuum, for energy transfers , Zeff being the effective charge, then reads

(6)

with ,

and for energies E with 

(7)

with

(8)

The real part of the DF ε1(E, K = 0) is then calculated analytical using the Kramers–Kronig
relations for the Drude functions as described in Appendix Appendix C and ignoring the
power laws in the imaginary part of the outer shell contributions to the DF for energies
above the cutoff energies. At these energies, contribution from the outer shells to ε1 are
almost zero. Once the DF is obtained, the ELF can be calculated.

The model is then fitted to the new experimental data of Hayashi et al. (2000). The fit is
done for the imaginary part ε2 under two constraints: (i) the energy loss function

 is reproduced well, because this is the experimentally
measured quantity, while ε2 and ε1 are derived. The imaginary part of the DF, ε2, provides
detailed information on the excitation and ionization energies (peaks and shoulders at low
and higher energies). However, contributions overlap and need to be deconvoluted. On the
other hand, the ELF η2 is not sensitive to the excitation and ionization energies, but to the
widths of the ionization levels, which determine the curvature in the maximum of the ELF.
Excitations do not contribute there. (ii) all sum rules are fulfilled and a reasonable mean
excitation energy is achieved. In particular, the sum rules S1 and S2 and the mean excitation
energy I are given by

(9)

and
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(10)

The mean excitation energy I is given by

(11)

with

(12)

Emax is the maximum energy transfer. The sum rules S1 and S2 yield S1 = 1 and S2 = 1 for
Emax → ∞.

The cutoff energies and exponents for the power law part of the outer shells are chosen as
Ecut,j = 100 eV and sj = 4.48 (the actual value, the Sendai group used) for the outer three
shells, and as Ecut,j = 500 eV and sj = 3.80 for the 2a1 subshell.

The obtained model parameter from the fit are displayed in Tables 1 and 2. The excitation
energies Ek are in general a bit higher than in the old model (Dingfelder et al., 1998), as well
as the widths γk are larger. The oscillator strength is now more equally distributed within the
excitations, except the first electronic excitation, which remains more or less unchanged.
The total oscillator strength of the excitations sums up to 10.92 % of the sum rule, about the
same value (10.81 %) as for the old model. Contributions of the different subshells to the
sum rules are shown in Table 3. The S1 and S2 sum rules are fulfilled within 0.5 %. The
mean excitation energy is calculated to be I = 78.30 eV, which is close to the experimental
value I = 79.75 eV of Bichsel and Hiraoka (1992) and I = 77.8 eV of other model
calculations (Emfietzoglou et al., 2009), but higher than the currently recommended ICRU
value I = 75.00 eV (ICRU Report 49, 1993). Total I values for different maximum energy
transfers (10 eV to 100 keV) and contributions from the valence shells only (outer shell
ionisations and excitations) are shown in Figure 1.

The obtained dielectric response functions ε2(E, 0) and ε1(E, 0), as well as the calculated
energy loss function η2(E, 0) are shown in Figures 2–4. Displayed are the total function
(solid curves), contributions from different excitation and ionization subshells (dashed/
dotted curves) where applicable, and the experimental data obtained by the Sendai group
(Hayashi et al., 2000) (symbols).

2.2. Full energy and momentum transfer dependent dielectric function
As mentioned earlier in the text, an extension algorithm is used to add momentum transfer
dependence in the sense of an impulse approximation to the DF, as described in detail in
Dingfelder et al. (1998, 2008). Strictly speaking, this method is only valid for a pure Drude
model, i.e., using Drude functions without cutting them at the ionization threshold and
smearing them out, since the full DF and ELF have to fulfill the sum rules S1 and S2 for all
momentum transfers ħK. One possible solution is to re-normalize the Drude functions, and
do the Kramers–Kronig relations numerically to fulfill the sum rules. However, this is
numerically costly and introduces numerical uncertainty. Another approach is modify the
existing model slightly, and to calculate these corrections analytically.
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The modified model for the full DF then reads:

(13)

For excitations k the derivative Drude function is replaced by a derivative Drude function,
which depends on momentum transfer through the optical oscillator strength fk → fk(K),

(14)

The momentum dependent derivative Drude function is given by

(15)

where D*(E, Ek) is the derivative Drude function as defined in Appendix Appendix A, fk(0)
= fk the optical oscillator strength of the excitation k, as given in Table 1, and

(16)

The parameter ak, bk and ck are given in Ref. Dingfelder et al. (1998).

For outer ionization shells j we use

(17)

The momentum dependence of an outer ionization shell j consists of an energy dispersion of

(18)

in the sense of an impulse approximation, and a momentum dependence of the optical
oscillator strength

(19)

to fulfill the S1 sum rule. The effective (momentum dependent) oscillator strength fj(K) is
given by

(20)

where fj(K, Ej) is given by
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(21)

This integral can be solved analytically. The result is given in Appendix Appendix B. The
momentum dependent Drude function is given by

(22)

with Ej(K) as given above. γj(K) reserves the possibility to introduce a momentum
dependent width of the Bethe ridge, as already discussed by Ritchie et al. (1991) and by
Kuhr and Fitting (1999). It is given by

(23)

If it is not explicitly stated we will use gj ≡ 0 for all ionization shells throughout this study.

Recently, Emfietzoglou and co-workers have published a new version of their model for the
dielectric response function in water (Emfietzoglou et al., 2005). Based on Hayashi’s data,
they introduced a momentum dependent width considering a constant linear and a quadratic
term

(24)

where they suggest values of a = 10 and b = 6, K in atomic units. In addition to the
broadening of the Bethe ridge they introduce a “retarding” term to the energy dispersion,

(25)

where they suggest values of c = 1.5 and d = 0.4, K again in atomic units. They show that
their model “reproduces” Hayashi’s experimental data well.

For the K–shell the scaled Hydrogen GOS model is used, which contains already a
momentum dependence. In this case the contribution to the sum rule S1 is fixed to fK-shell =
0.179 through the normalization. For fK-shell(K) one should use

(26)

The real part of the dielectric response function ε1(E, K) is calculated using the Kramers–
Kronig relation. This can be done analytically. The results are given in Appendix Appendix
C for the general case K ≠ 0 and for the optical limit K = 0, which agrees with the formulas
given in Appendix A of Dingfelder et al. (1998).
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Appendix

Appendix A. Definitions and Formulas
In this appendix we sum up definitions of symbols and functions. Most of them can be also
found in Refs. Dingfelder et al. (1998) and Dingfelder et al. (2000). The Drude function
D(E, Ej) is defined

(A.1)

the derivative Drude function D*(E, Ek) as
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(A.2)

and the Gaussian function G(E, Ej) as

(A.3)

The parameter Ek/j, fk/j, γk/j and Δj are given in Tables 1 and 2, respectively.

Appendix B. Effective Oscillator Strength
The integral Eq. (21) (fj(K, Ej)) can be calculated analytically. We distinguish here between
Ej = Ej(0), the ionization energy, coming from the lower integration limit (step function) and
Ej(K), the momentum dependent, energy–dispersed parameter, coming from the integrand
(Drude function). In the optical limit, K = 0, both coincide.

In the general case (K ≠ 0) we obtain

(B.1)

for the three solutions for γj(K) is greater, less or equal to 2Ej(K). In case of the optical limit
the formulas reduce to

(B.2)

and should be used in this form to avoid unexpected “numerical” problems like division by
zero.

Appendix C. Kramers–Kronig Relations
Finally, to calculate the Kramers–Kronig relations for a cut Drude function, the following
integral is needed:

(C.1)
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with

(C.2)

Note: E0 is the cut off energy (lower integral border), En the later momentum dependent
binding energy.

This integral can be calculated analytically:

First case: γn > 2En. .

(C.3)

and for the optical limit K = 0

(C.

4)

Second case: γn > 2En. .

(C.5)

and for the optical limit K = 0

(C.6)

The integral (E0, ∞) is calculated as the difference of the integrals (0, ∞) – (0, E0). The first
integral (0, ∞) reflects a pure Drude model, the results are well known.
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Research Highlights

• Updated model of the dielectric response function and energy loss function of
liquid water is presented.

• The new model includes new available experimental information (Sendai data).

• It is an analytical model.

• The mean excitation energy is calculated as 78.3 eV.
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Figure 1.
The calculated mean excitation energy (I-value) as a function of maximum energy transfer.
Shown are total values and contributions from valence shells (excitations and outer shell
ionisations) only. Asymptotic values are 78.30 eV for the I-value, and 45.7 eV for the
valence contributions.
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Figure 2.
New Drude–model with cut high energy tails. Shown are the imaginary part of the dielectric
response function ε2(E, 0) with contributions from excitation levels and ionization shells,
compared with experimental data of Hayashi et al. (2000).
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Figure 3.
New Drude–model with cut high energy tails. Shown are the real part of the dielectric
response function, calculated analytically, compared with experimental data of Hayashi et
al. (2000).
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Figure 4.
New Drude–model with cut high energy tails. Shown are the energy loss function η2(E, 0)
together with contributions from excitation levels and ionization shells, compared with
experimental data of Hayashi et al. (2000).
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Table 1

Parameters for the dielectric response function for excitation levels of liquid water.

k excited state Ek (eV) fk γk (eV)

1 Ã1 B1 8.27 0.0120 2.00

2 B̃1A1
10.55 0.0243 2.70

3 Ryd A+B 12.65 0.0255 3.35

4 Ryd C+D 14.40 0.0240 3.40

5 diffuse bands 16.70 0.0235 3.60
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Table 3

Contribution of the different levels and shells to the sum rules and the mean excitation energy.

k/j level/shell S1(∞) S2(∞) S3(∞)

1 Ã1B1 0.01200 0.00257 0.00549

2 B̃1A1
0.02430 0.00537 0.01282

3 Ryd A+B 0.02550 0.00637 0.01647

4 Ryd C+D 0.02400 0.00763 0.02073

5 diffuse bands 0.02350 0.01143 0.03263

6 1b1 0.24135 0.25424 0.94490

7 3a1 0.23004 0.25732 0.96202

8 1b2 0.13706 0.16072 0.57203

9 2a1 0.10817 0.11901 0.58447

10 K-shell 0.17900 0.17925 1.22604

sum: 1.00489 1.00390 4.37760

I-value (eV) – – 78.30
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