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Hepatitis B virus (HBV) infection accounts for over a half of cases of hepatocellular carcinoma (HCC), themost frequentmalignant
tumor of the liver. HBV-encoded X (HBx) plays critical roles in HBV-associated hepatocarcinogenesis. However, it is unclear
whether and how HBx regulates the expression of epidermal growth factor receptor (EGFR), an important gene for cell growth.
Therefore, the study aimed to investigate the association between HBx and EGFR expression. In this study, we found that HBx
upregulatesmiR-7 expression to target 3󸀠UTRof EGFRmRNA,which in turn results in the reduction of EGFR protein expression in
HCCcells.HBx-mediated EGFR suppression rendersHCCcells a slow-growth behavior.Deprivation ofHBxormiR-7 expression or
restoration of EGFR expression can increase the growth rate ofHCCcells. Our data showed themiR-7-dependent EGFR suppression
byHBx, supporting an inhibitory role ofHBx in the cell growth ofHCC.These findings not only identifymiR-7 as a novel regulatory
target of HBx, but also suggest HBx-miR-7-EGFR as a critical signaling in controlling the growth rate of HCC cells.

1. Introduction

Hepatocellular carcinoma (HCC), the third leading cause
of cancer-associated death worldwide, is a heterogeneous
and complex disease [1]. Chronic infections of hepatitis
virus, such as hepatitis B virus (HBV) and hepatitis C virus
(HCV), are known to contribute to the tumorigenesis inmost
of HCC [2]. Particularly, HBV infection-associated HCC
accounts for over a half of HCC cases and is endemically

observed in Asia and Africa [3, 4]. HBV-associated hepato-
cyte transformation is attributed to inflammatory responses,
destruction and regeneration of hepatocytes, and pleiotropic
activities of HBV-encoded proteins [5]. When HBV-infected
insults are destroyed, hepatocyte regeneration is activated
for the replacement of damaged or destroyed hepatocytes by
replication of mature hepatocytes [6]. Similar to wound heal-
ing, deposition of extracellular matrix components occurrs
during liver regeneration and thereby causes liver fibrosis
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and cirrhosis [7]. In the potentially mutagenic environment
caused by continual inflammation, repeated proliferation of
hepatocytes and constant liver regeneration may eventually
be selected for transformed hepatocytes and could link HBV
infections to the development of HCC [6].

In addition to HBV-initiated immune and inflammatory
responses, HBV-encoded proteins per se may also regulate
proliferation and regeneration of hepatocytes by altering
multiple cellular signaling transduction pathways [8]. The
HBV genome contains four overlapping open reading frames
(ORFs), which encode pre-S1/pre-S2/S, viral polymerase,
HBV X protein (HBx), and pre-C/C, respectively. Among
them, the HBx protein is the smallest one with 154 amino
acids and is thought to make the most significant con-
tribution to the development of HBV-associated HCC [9,
10]. However, the roles of HBx in proliferation, apoptosis,
and liver regeneration remain controversial. Results from
two studies using transgenic HBx mouse models reveal its
oncogenic function in enhancing tumor growth [11, 12].
Introduction of HBx into HCC cell lines can cause cells to
enter cell cycle through activation of Src kinase, Ras, and
MAPKs [13] or through induction of cyclin expression and
cyclin-dependent kinase activity [14]. Inhibition of apoptosis
by HBx by elevation of transcription factor nuclear factor
Kappa B (NF-𝜅B) has also been linked to the development
of HCC [15]. However, the results from several other HBx-
transgenic mouse studies do not support the direct link
between HBx and tumorigenesis of HCC [16, 17]. In contrast,
an inhibitory activity of HBx in hepatoma cell growth has
been shown both in vivo and in vitro [18–21]. Inhibition of
proliferation via GSK-3𝛽/𝛽-Catenin cascade [21], induction
of apoptosis via releasing cytochrome c from mitochondria
[22], and inactivating FLICE inhibitor protein (c-FLIP) [23]
have been proposed for the antigrowth activity of HBx. To
develop a complete understanding of HBx-associated liver
disease and hepatocarcinogenesis, it will be important to
reconcile these apparently conflicting data.

Besides inflammatory mediators, such as interleukin-6
and interleukin-1, accumulating evidence indicates a critical
role of dysregulated growth and survival-related pathways in
HCC development [24]. Aberrant activation of Raf-MEK-
ERK and PI3K-Akt pathways driven by epidermal growth
factor receptor (EGFR) is commonly observed and impli-
cated in the tumor growth and progression of many human
cancer types, including HCC [25]. Moreover, activation of
EGFR signaling pathways via the overexpression of either its
cognate ligands or itself is strongly associated with the poor
prognosis of HCC [26, 27]. Interestingly, the poor prognosis
is particularly observed in HBV-infected HCC patients with
EGFR expression [27, 28]. Activation of oncogenic MAPK
and PI3K/Akt signaling pathways is also frequently observed
in HBx-expressing HCC cells [29, 30]. These observations
imply an association between EGFR and HBx in HBV-
associated HCC. However, there is a lack of direct evidence
to prove the modulation of EGFR expression by HBx in
controlling cellular growth of HCC.

In this study, our data surprisingly reveal that HBx
decreases, but not increases, cell proliferation of HCC
cells by suppressing EGFR protein expression. Mechanically,

targeting EGFR mRNA 3󸀠UTR by upregulated microRNA-
7 (miR-7) in response to HBx accounts for the suppression
of EGFR protein level in HBx-expressing HCC cells. Our
data support the inhibitory role of HBx in the cell growth of
HBV-associated HCC through the miR-7-depednent EGFR
suppression.

2. Materials and Methods

2.1. Cell Culture. The human hepatocellular carcinomas
Hep3B, HepG2, and their derivatives with HBx expression
were cultured in Dulbecco’s modified eagle medium: nutrient
mixture F-12 (DMEM/F12) supplemented with 10% fetal
bovine serum.

2.2. Chemicals, Antibodies, and Reagents. The antibody
against EGFR was purchased from Santa Cruz (Santa Cruz,
CA), and the antibody against HBx was from Abcam
(Cambridge, UK). We purchased antibody against myc-tag
from Sigma-Aldrich (St. Louis, MO). The validated siRNAs
for negative control, HBx, miR-7 mimic, miR-7 inhibitor,
and DharmaFECT 1 transfection reagent were all from
Dharmacon (Lafayette, CO). We purchased TransIT-2020
transfection reagent fromMirus Bio LLC (Madison,WI).The
QuickGene RNA-cultured cell kit was from Kurabo (Osaka,
JP). The RevertAid H Minus First Strand cDNA synthesis
kit was purchased from Fermentas (Glen Burnie, MD). The
VeriQuest Fast SYBR Green qPCR Master Mix was from
Affymetrix (Cleveland, OH). TaqMan Probe qPCR Master
Mix was purchased from Roche (Indianapolis, IN).

2.3. Transfection and Reporter Gene Assay. The luciferase
reporter gene containing full-length 3󸀠UTR of the miR-7-
targeting human EGFR gene was a gift from Dr. Keith Giles
(Western Australian Institute for Medical Research). Cells
with 60–80% of confluence were transfected with 0.5𝜇g of
EGFR-3󸀠UTR luciferase plasmid along with or without dif-
ferent doses of myc-HBx expression vector by using TransIT-
2020 transfection reagent according to the manufacturer’s
instruction. After 48 hrs of transfection, cells lysates were
harvested and subjected to luciferase assay system. Luciferase
activity was normalized to 𝛽-gal. For siRNA/microRNA
transfection, cells with 60–80% of confluence were trans-
fected with various siRNAs by using DharmaFECT 1 trans-
fection reagent. Cells were harvested at indicated time points
and subjected to further experiment.

2.4. Reverse Transcription-Quantitative Polymerase Chain
Reaction (RT-qPCR). Total RNA was extracted by using
QuickGene RNA-cultured cell kit according to the man-
ufacture’s instruction. One 𝜇g of RNA was subjected to
reverse transcription with the RevertAid H Minus First
Strand cDNA synthesis kit. The qPCR analysis of EGFR
and HBx mRNA expressions was performed on ABI 7500
system (Applied Biosystems) by using VeriQuest Fast SYBR
Green qPCR Master Mix and was normalized to GAPDH
or actin expression. The qPCR analysis of miR-7 expression
was performed on LightCycler 480 System (Roche) by using
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TaqMan Probe qPCRMaster Mix and was normalized to the
expression of small RNA (U47).

2.5. Cell Growth Assay. Cell growth was measured in MTT,
cell counting, and crystal violet staining assays. For MTT
assay, cells (2–5 × 103 cells/well) were seeded in 96-well plates
for indicated time periods, and then 1𝜇g/mLMTTwas added
to each well. After 4-hour incubation, formazan was solubi-
lized in 100 𝜇LDMSO/well and the absorbance wasmeasured
at 570 nm. For cell counting, cells were trypsinized and rela-
tive cell amounts were counted by using Countess Automated
Cell Counter (Invitrogen, Carlsbad, CA). For crystal violet
staining, cells were seededwith the same amount at the begin-
ning. Five to seven days later, relative cell amountswere deter-
mined by crystal violet staining. In brief, cells were washed
with 1X PBS once, followed by fixation, and staining with 1%
crystal violet in a solvent of 30% ethanol for 15–30 minutes at
room temperature. Then, cells were washed with tape water
till complete elimination of the background interfered.

3. Results

3.1. The Protein Level of EGFR Was Attenuated in Response to
HBx Expression in HCC Cells. To investigate the regulatory
roles of HBx in EGFR expression, the protein levels of EGFR
in Hep3B and HepG2 HCC cell lines and in their HBx-stable
transfectants, Hep3Bx and HepG2x cells, were examined
by Western blot analysis. Unexpectedly, we found that the
protein level of EGFR was obviously reduced in both HBx-
expressing Hep3Bx and HepG2x cells as compared with their
counterpart Hep3B and HepG2 cells (Figure 1(a)). To rule
out the possibility of the EGFR attenuation due to the effects
of clonal selection, we transiently enforced HBx expression
into Hep3B cells and analyzed EGFR protein expression. As
shown in Figure 1(b), the EGFR protein level was decreased
by the enforced HBx expression in Hep3B cells. In support
to these findings, silencing of HBx with siRNA could restore
EGFR protein level in Hep3Bx cells (Figure 1(c)). Taken
together, these results indicate an inhibitory effect of HBx on
EGFR protein expression in HCC cells.

3.2. The 3󸀠UTR Activity of EGFR Was Reduced by HBx in
HCC Cells. We next addressed the molecular mechanisms of
HBx-mediated EGFR suppression. Since the regulations of
gene expression by HBx have been widely reported [31–33],
we first examined whether HBx reduces EGFR protein
expression through transcriptional regulation. However, the
mRNA level of EGFR was comparable in Hep3B and Hep3Bx
cells (Figure 2(a), left panel) and was even slightly higher in
HepG2x cells than in HepG2 cells (Figure 2(a), right panel),
suggesting that HBx suppresses EGFR expression through
posttranscriptional regulation. It is well documented that
EGFR is subjected to polyubiquitination by Cbl and proceeds
to endocytosis, followed by lysosomal degradation upon
binding with ligands [34, 35]. In addition, the regulation
of EGFR activity has been reported to involve proteasomal
degradation with unclear molecular mechanisms [36, 37].
We thus examined whether HBx affects EGFR protein

expression via these degradation pathways. To this end,
both lysosomal and proteasomal inhibitors were applied. As
shown in Figure 2(b), however, neither lysosomal inhibitors
(bafilomycin A1 and NH

4
Cl) nor proteasomal inhibitors

(MG132 and bortezomib) could restore the EGFR protein
expression in Hep3Bx cells, suggesting that the HBx-reduced
EGFR protein expression is not mediated by enhanced
receptor degradation. Moreover, enforced expression of
HA-HBx into Hep3B cells did not affect the myc-EGFR
protein expression, which is driven by heterologous CMV
promoter (Figure 2(c)). These results further indicate that
HBx has no effect on both promoter activity and protein
stability of EGFR.

It is well known that microRNA (miRNA) targets the
3󸀠UTR of mRNA to inhibit protein translation [38]. HBx
was recently reported to enhance HCC progression via
deregulatingmiRNA expression [39].These observations and
our results of Figures 2(a)–2(c) led us to further investi-
gate whether HBx affects 3󸀠UTR activity of EGFR mRNA
through induction of miRNAs. Accordingly, the luciferase
gene constructed with full-length 3󸀠UTR of human EGFR
gene was employed. As shown in Figure 2(d), the 3󸀠UTR
activity of EGFR in Hep3Bx cells was lower than that in
Hep3B cells. Moreover, when the myc-HBx expression was
enforced into cells, we observed an attenuation of 3󸀠UTR
activity of EGFR by myc-HBx in a dose-dependent manner
(Figure 2(e)). Collectively, these results suggest that HBx
suppresses EGFR protein expression through targeting its
3󸀠UTR activity.

3.3. HBx Upregulated miRNA-7 (miR-7) Expression to Reduce
EGFR Protein Level in HCC Cells. The mechanism under-
lying the regulation of EGFR 3󸀠UTR activity by HBx was
further explored. It is well documented that miR-7 plays
critical roles in the downregulation of EGFR expression
in many cancer types [40–43]. The dysregulation of miR-
7 leading to HCC progression is also reported by Fang
et al., more recently [44]. Thus, we clarified whether HBx
upregulates miR-7 expression to target 3󸀠UTR of EGFR
mRNA and in turn leads to the attenuation of EGFR protein
level. First, we examined the expression of miR-7 in both
Hep3B/Hep3Bx and HepG2/HepG2x cell pairs. As shown
in Figure 3(a), both Hep3Bx and HepG2x cells presented a
higher expression level of miR-7 than their counterparts. To
confirm the induction of miR-7 expression by HBx, HBx
gene silencing with siRNA was applied. We found that the
miR-7 expression in Hep3Bx cells was inhibited by HBx
siRNA (Figure 3(b)), supporting that HBx suppresses EGFR
protein level through inducing miR-7. That is, adjustment of
miR-7 expression could modulate the protein level of EGFR
presented in HCC cells. Indeed, when miR-7 expression
was enforced into Hep3B cells, EGFR protein level was
decreased (Figure 3(c), compared lane 2 with lane 1). On the
contrary, when miR-7 expression was deprived fromHep3Bx
cells by using miR-7 inhibitor, the EGFR protein expression
was increased (Figure 3(c), compared lane 4 with lane 3).
Altogether, these results indicate that HBx upregulates miR-7
expression to downregulate the protein level of EGFR.
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Figure 1: The protein expression of EGFR was attenuated in response to HBx expression in HCC cells. (a) The protein expressions of EGFR,
HBx, and Tubulin inHCC cells were analyzed byWestern blot. Tubulin acts as an internal control. (b) Hep3B cells were transiently transfected
with myc-HBx expression vector for 48 hrs. EGFR protein expression was examined by Western blot. (c) Hep3Bx cells were transiently
transfected with si-control or si-HBx for 3 days. The gene silencing for HBx mRNA was determined by RT-qPCR. Under the condition,
EGFR protein expression was also analyzed by Western blot. Statistical analysis was performed by Student’s 𝑡-test. ∗𝑃 < 0.05 as compared to
the control group.

3.4. The miR-7-Dependent EGFR Suppression by HBx Slows
Down Cell Growth in HCC. Our above results led us to
further investigate the impact of HBx-mediated EGFR sup-
pression on HCC. It is known that EGFR signaling is a
strong mitogenic stimulator for cell proliferation, and a slow
cell growth is expectable when EGFR expression is reduced.
Therefore, we examined the growth curve in both HCC
cells lines and their HBx-expressing derivatives. As expected,
HCC cells with HBx expression, including Hep3Bx and
HepG2x cells, showed a retarded growth rate as compared
with their counterparts (Figure 4(a)). Consistently, HBx-
expressing Hep3B cells exhibited a delayed cell cycle as
evidenced by the increased cell accumulation in G0/G1 phase
(Figure S1(a), see in Supplementary Material available online
at http://dx.doi.org/10.1155/2013/682380) and longer duration
of S phase (Supplementary Figure S1(b))when comparedwith
their counterparts. Moreover, the cell number was increased
in Hep3Bx cells after HBx expression was silenced by siRNA
for 4 days (Figure 4(b)). These results suggest that HBx may
slow down HCC proliferation through downregulation of
EGFR expression in a miR-7-dependent manner. Indeed,

introduction of miR-7 inhibitor (Figure 4(c)) or myc-EGFR
(Figure 4(d)) into Hep3Bx cells could significantly increase
the cell growth as determined by crystal violet staining.
Collectively, these results indicate that the miR-7-dependent
EGFR suppression by HBx reduces cell growth of HCC.

4. Discussion

In this study, our data showed downregulation of EGFR
protein level by HBx in HCC cells (Figure 1). As a conse-
quence, it renderedHCC cells withHBx expression to display
a phenotype of slow growth (Figure 4), which is consistent
with the previous findings that HBx plays an inhibitory role
in the HCC cell growth both in vivo and in vitro [18, 20,
21, 45–47]. In contrast, HBx has been proposed to positively
regulate cell proliferation and metastatic ability of HCC
tumor cells [48]. There also has been considerable confusion
regarding both proapoptotic and antiapoptotic functions of
HBxmediated by p53-dependent and -independent manners
during hepatocarcinogenesis [49, 50]. The differences in cell

http://dx.doi.org/10.1155/2013/682380
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Figure 2:The 3󸀠UTR activity of EGFR was reduced by HBx in HCC cells. (a) The mRNA expression of EGFR in HCC cells was examined by
RT-qPCR. The EGFR mRNA expression was normalized to actin expression. (b) Hep3Bx cells were treated with either lysosomal inhibitors
(bafilomycin A1 andNH

4
Cl) or proteasomal inhibitors (MG132 and bortezomib) for 6 hrs. EGFR protein expression was analyzed byWestern

blot. (c) Hep3B cells were transiently transfected with myc-EGFR expression vector along with or without HA-HBx plasmid for 48 hrs.
The protein expression of myc-EGFR was examined by Western blot with anti-myc antibody. (d) Hep3B and Hep3Bx cells were transiently
transfected with EGFR-3󸀠UTR luciferase plasmid for 48 hrs. Total cells lysates were harvested for luciferase activity analysis. The luciferase
activities were normalized to 𝛽-gal. Values of luciferase activity were means ± SE of three determinations. Statistical analysis was performed
by Student’s 𝑡-test. ∗𝑃 < 0.05 as compared to Hep3B cells. (e) Human embryonic kidney HEK293 cells were transiently transfected with
EGFR-3󸀠UTR luciferase plasmid as well as different doses of myc-HBx expression vector for 48 hrs. Total lysates were harvested for luciferase
activity analysis. The luciferase activities were normalized to 𝛽-gal. Values of luciferase activity were means ± SE of three determinations.
Statistical analysis was performed by Student’s 𝑡-test. ∗𝑃 < 0.05; ∗∗∗𝑃 < 0.001 as compared to control group.
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Figure 3: HBx upregulatedmiR-7 expression to reduce EGFR protein level inHCC cells. (a)ThemiR-7 expression inHCC cells was examined
by RT-qPCR.ThemiR-7 expression was normalized to small RNAU47 level. Statistical analysis was performed by Student’s 𝑡-test. ∗∗𝑃 < 0.01;
∗∗∗
𝑃 < 0.001 as compared to individual parental cells. (b) Hep3Bx cells were transiently transfected with si-control or si-HBx for 3 days. The

miR-7 expression was analyzed by RT-qPCR. The miR-7 expression was normalized to small RNA U47 expression. Statistical analysis was
performed by Student’s 𝑡-test. ∗∗𝑃 < 0.01 as compared to control group. (c) Hep3B and Hep3Bx cells were transiently transfected with miR-7
mimic or miR-7 inhibitor, respectively. Four days later, the EGFR protein expression was analyzed by Western blot.

contexts and experimental condition used in a particular
system may explain these conflict observations [5].

Of note, carboxy-terminal (C-terminal) truncation of
HBx is frequently observed in HCC patients with HBV infec-
tion [51, 52]. It has further been observed that overexpression
of C-terminal truncated HBx leads to cell growth of HCC
[19, 46], suggesting an inhibitory role of carboxy-terminal
domain of HBx in controlling cell proliferation. Consistently,
overexpression of centromere protein A (CENP-A), a protein
required for chromosome segregation in mitosis, has been
found to be closely associated with HBx carboxy-terminal
mutation in HCC [53]. The enhancement of proliferation
and cyclin D1 expression by HBx carboxy-terminal deletion
mutant (deleted at nucleotide 382–400) in LO2 hepatocyte
cells further supports the inhibitory role of C-terminal
domain of HBx in controlling cell proliferation [54].TheHBx
used in this study is full-length and does not contain this
deletion, raising the possibility that C-terminal domain of
HBx may be responsible for HBx-mediated EGFR suppres-
sion. Since it has been shown that HBx-mediated regulation
of NF-𝜅B activity varies depending on the residues of HBx
pointmutations [55], it is alsoworthy to explore in the further
studies whether any point mutation in HBx determines its
ability to suppress EGFR expression.

Dysregulation of miRNA expression has been widely
observed in HCC [56, 57]. Wang et al. first demonstrate that
HBx can regulate miRNA expression [39]. Several studies
also explore the pathological functions of aberrant miRNA
expression in HCC in response to HBx [29, 58–60]. Our data
further revealed that the molecular mechanism underlying
HBx-mediated EGFR suppression is due to the induction of
miR-7, which can bind to and target EGFR 3󸀠UTR, leading
to the downregulation of EGFR protein level (Figures 2 and
3). Disruption of the miR-7-EGFR regulatory trait increases
the growth rate of HBx-expressing HCC cells, suggesting
that HBx induces miR-7 to reduce EGFR expression and cell
growth (Figure 4). In consistence with our findings, dysregu-
lated miR-7 is recently detected in tumor tissues from HCC
patients and functions in suppressing cell growth by targeting
Akt/mTOR, a survival signaling pathway downstream of
EGFR [44]. Indeed, overexpression of miR-7 resulted in the
attenuation of Akt activity (Supplementary Figure S2) and it
is frequently reported to have an inhibitory effect on tumor
growth in various cancer types [44, 61–63], supporting the
tumor suppressive roles of miR-7.

Although the induction of miR-7 by HBx was demon-
strated for the first time in this study, further investigations
remain to understand the underlying regulatory mechanism.
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Figure 4:The regulatory trait of HBx-miR-7-EGFR conferredHCC cells a slow growth behavior. (a)The growth curves ofHep3B,HepG2, and
their derivatives were determined by MTT assay. Statistical analysis was performed by Student’s 𝑡-test. ∗𝑃 < 0.05; ∗∗𝑃 < 0.01 as compared to
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In addition to being targeted by miR-7, EGFR has also been
reported to inducemiR-7 transcription relying on its tyrosine
kinas activity [64], suggesting miR-7 as a negative feedback
regulator of EGFR expression.However, our data showed that
miR-7 is constitutively increased in stable HBx-expressing
cells even if EGFR expression is attenuated, indicating that
other mechanisms rather than EGFR signalingmediate HBx-
induced miR-7 expression. Interestingly, induction of miR-
7 is selectively found in differentiating neuronal progenitor
cells with overexpression of IKK𝛼, an upstream kinase for
activation of NF-𝜅B [65]. HBx has been widely found to
interact with NF-𝜅B to regulate gene expressions involved
in the HCC pathogenesis [31–33]. Our previous findings
also showed that IKK𝛼 is activated by HBx and translocates
into the nucleus to function as a chromatin modifier for
gene transcription. These observations raise the possibility
that HBx may induce miR-7 expression through IKK/NF-𝜅B
and nuclear IKK𝛼 signaling pathways in HCC cells, which
deserves further investigations.

5. Conclusion

This study linking viral regulatory protein HBx to EGFR
suppression reveals an inhibitory role of HBx in the cell
growth of HCC. HBx increases the expression of miR-7
and subsequently leads to the attenuation of EGFR protein
expression, which reflects a slow-growth phenotype of HBx-
expressing HCC cells. Our findings not only identify that
miR-7 is a novel regulatory target of HBx, but also enhance
the understandings of the pleiotropic roles of HBx in HBV-
associated HCC.
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