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Abstract
Introduction—Erlotinib (Tarceva) is an epidermal growth factor receptor (EGFR) tyrosine
kinase inhibitor, which effectively targets EGFR-mutant driven non–small-cell lung cancer.
However, the evolution of acquired resistance because of a second-site mutation (T790M) within
EGFR remains an obstacle to successful treatment.

Methods—We used mathematical modeling and available clinical trial data to predict how
different pharmacokinetic parameters (fast versus slow metabolism) and dosing schedules (low
dose versus high dose; missed doses with and without make-up doses) might affect the evolution
of T790M-mediated resistance in mixed populations of tumor cells.

Results—We found that high-dose pulses with low-dose continuous therapy impede the
development of resistance to the maximum extent, both pre- and post-emergence of resistance.
The probability of resistance is greater in fast versus slow drug metabolizers, suggesting a
potential mechanism, unappreciated to date, influencing acquired resistance in patients. In case of
required dose modifications because of toxicity, little difference is observed in terms of efficacy
and resistance dynamics between the standard daily dose (150 mg/d) and 150 mg/d alternating
with 100 mg/d. Missed doses are expected to lead to resistance faster, even if make-up doses are
attempted.

Conclusions—For existing and new kinase inhibitors, this novel framework can be used to
rationally and rapidly design optimal dosing strategies to minimize the development of acquired
resistance.
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Erlotinib (Tarceva; OSI Pharmaceuticals, Farmingdale, NY) is an orally active selective
inhibitor of the epidermal growth factor receptor (EGFR) tyrosine kinase.1 More than 70%
of patients with non–small-cell lung cancer (NSCLC) harboring specific mutations in the
EGFR kinase domain exhibit a radiographic response to erlotinib as defined by Response
Evaluation Criteria In Solid Tumors (RECIST) standards on tumor reduction.2–5 However,
the evolution of acquired resistance remains a significant obstacle to successful treatment,
with most patients usually progressing within 10 to 16 months.6–9 In more than 50% of these
patients, acquired resistance to erlotinib or the related drug, gefitinib, is mediated by a
second-site mutation (T790M) within EGFR.6,7,9

A major assumption for achieving clinical successes using small-molecule tyrosine kinase
inhibitors (TKIs) in cancer therapy is that prolonged target inhibition is essential. Thus,
TKIs usually have long half-lives and are administered on a clinically tolerable schedule that
results in continuous target suppression. For example, the oral kinase inhibitor imatinib,
used in frontline therapy for chronic myeloid leukemia (CML), causes prolonged inhibition
of the breakpoint cluster region-Abelson tyrosine kinase 1 (BCR-ABL) kinase 24 hours after
a single dose; the drug has a half-life of 18 hours and a long-acting metabolite with a half-
life of 40 hours.10,11 Other approved TKIs have similarly long half-lives in patients,
including erlotinib (36 hours), gefitinib (48 hours), lapatinib (24 hours), sunitinib (40–60
hours), and sorafenib (25–48 hours). However, investigators recently demonstrated that
intermittent target inhibition by another ABL TKI, dasatinib, was sufficient for activity in
CML,12 suggesting that TKIs can be dosed alternatively and remain clinically effective.
These findings have prompted us to investigate optimal dosing strategies for EGFR TKIs in
EGFR-mutant lung cancer.

In our previous work, we developed isogenic TKI-sensitive and TKI-resistant pairs of cell
lines that mimic the behavior of human EGFR-mutant tumors.13 We determined that the
drug-sensitive and drug-resistant EGFR-mutant cells exhibited differential growth kinetics,
with the drug-resistant cells showing slower growth. We then used evolutionary cancer
modeling to elucidate novel dosing strategies that prevent or delay progression of EGFR-
mutant lung cancer caused by acquired resistance.

Here, we studied how patient-specific pharmacokinetic processes and therapeutic dosing
strategies might alter the dynamics of resistance in heterogeneous cell populations. Using
our previous cell-line measurements13 and additional clinical data,14 we modeled the
pharmacokinetic processes under various dosing schedules to obtain an accurate description
of the temporal plasma concentration of erlotinib over time. We then constructed a hybrid
approach combining models of these pharmacokinetic processes with evolutionary models
of the dynamics of resistance in the cell population, enabling us to study detailed time-
dependent features of pharmacokinetic processes such as the speed of drug elimination and
its impact on the emergence of resistance. We also determined how patient noncompliance
(e.g., missed doses) and treatment withdrawal upon progression of disease affect the risk of
developing resistance. This mathematical framework allowed us to generate novel predictive
theoretical models of EGFR-mutant lung cancer, which could be used to improve treatment
of patients with the disease.
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MATERIALS AND METHODS
Evolutionary Modeling of EGFR-Mutant Cancer Cells

The population of EGFR-mutant cells was modeled as a multitype, inhomogeneous,
continuous-time birth–death process. The numbers of sensitive and resistant cells at any
particular time t are given by X(t) and Y(t), respectively. We considered a population that
initially consists of M(1-s) sensitive and Ms resistant cells, where s varies between 0 and 1;
thus the case when s = 0 corresponds to a fully sensitive initial population of size M.
Sensitive cells proliferate and die with rates λX(t) and μX(t), whereas resistant cells
proliferate and die with rates λY(t) and μY(t). These time-dependent rates reflect the effect
of treatment on the population and thus depend on how the drug concentration in the body
varies over time. Note that in our model, the parameters describing cell death, denoted by
the rates μX(t) and μY(t), take into account both apoptosis and any other potential forms of
cell death that cells might undergo.

During each replication of a sensitive cell, the EGFR T790M mutation may arise with
probability μ, giving rise to a new resistant cell. The joint process X(t) = (X(t), Y(t))
represents the combined state of the sensitive and resistant populations at time t. We
obtained analytical formulae for the probability of resistance and estimates of the mean and
variance of sensitive and resistant cells under general time-dependent dosing schedules. The
derivation of the analytical approximations is outlined elsewhere.15,16

Pharmacokinetics refers to the processes by which a drug is absorbed, distributed,
metabolized, and eliminated by the body.17 Because these processes directly impact the
concentration of drugs in different organs over time, any mathematical model describing the
effects of treatment schedules on the evolution of resistance should incorporate
pharmacokinetic considerations.18,19 We thus used clinical data in conjunction with a
pharmacokinetic model to describe the drug concentration as a function of time for a given
treatment schedule.

To study the dynamics of resistance emerging during a particular dosing schedule, we
coupled the pharmacokinetic model with our stochastic evolutionary model of the cancer
cell population. This combined mathematical framework was then used to investigate the
effects of pharmacokinetic processes on the risk of resistance. In particular, for a given
treatment schedule defined by a dose intensity over time, the pharmacokinetic model was
used to obtain the drug concentration, C(t), in the body as a function of time. We
subsequently used experimentally determined relationships between the drug concentration
and the birth and death rates of sensitive and resistant individuals to obtain the parameters of
the stochastic model, λX(t) and μX(t) as well as λY(t) and μY(t). The stochastic model was
then used to investigate the dynamics of resistance emerging during pharmacological
interventions directed at cancer cells. This hybrid methodology can be extended to include
arbitrarily complex pharmacokinetic models with multiple compartments describing many
different pharmacokinetic processes.20,21 However, here we used a simple exponential drug-
elimination model as dictated by the clinical pharmokinetic data on erlotinib.

Determining Growth- and Death-Rate Parameters
Sensitive and resistant cells may have distinct growth and death rates, which vary depending
on the drug concentration. These evolutionary model parameters were experimentally
determined as previously described,13 using a pair of isogenic PC-9 human EGFR-mutant
cell lines with and without the T790M point mutation. Measurements were performed at
erlotinib concentrations of 0, 1, 3, 10, and 20 μM.
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Note that we considered pharmacokinetic data and models of dosing schedules in human
patients. However, when comparing the dynamics of resistance among these schedules, we
used the available in vitro growth kinetic data from our model system. This limitation
prevented us from making predictions about the actual temporal dynamics of resistance
evolution in human patients because in vitro growth kinetics occur on a different time scale
than the in vivo kinetics do. However, even though in vivo growth kinetic data are
unavailable, we were able to gain valuable insights from this model system about the
relative comparison of various dosing schedules because the relative differences in growth
kinetics in vitro are likely preserved in patients.

Estimating Pharmacokinetic Parameters for Erlotinib
Detailed measurements of erlotinib plasma concentrations have been recorded over time for
current smokers and nonsmokers.14 Healthy subjects were given single doses of 150 mg and
300 mg of erlotinib, and the erlotinib concentration of plasma was sampled 11 times over
the course of 72 hours. This approach showed that the metabolic clearance of erlotinib
occurs faster in smokers at both concentrations. We used data collected in this study to
estimate the pharmacokinetic rate of erlotinib elimination from the body. We considered a
function governing the erlotinib plasma concentration over time after each dose d of the
form C(t) = A e−kt. The parameter k represents the elimination rate of the drug and the
parameter A approximates the maximum concentration usually known as the Cmax; both
parameters depend on the initial dose and may vary between patients, such as between
groups of smokers and nonsmokers. Note that we used data on smokers and nonsmokers to
obtain an understanding of the diversity of pharmacokinetic rates within a patient
population. Even though the majority of lung cancer patients with EGFR-mutant tumors
have a history of not smoking, these rates serve as the extreme ends of the distribution of
rates within a heterogeneous patient population.

Figure 1A and B displays the erlotinib plasma concentration14 over time after a single dose
of 150 mg (Fig. 1A) and 300 mg (Fig. 1B). For each dose and test group, we performed least
squares regression to infer the two parameters, A and k, which are displayed in the panels.
Our choice of the functional form implies that Cmax is achieved immediately after each
dose; as shown by the panels, this functional form approximates the exponential decay
indicated in the data very well. Although the data points show that the erlotinib
concentration peaks approximately 2 to 3 hours after administration, the exponential form
used is appropriate because we considered dosing strategies changing on the time scale of
days, not hours; this modeling choice has the advantage of a smaller number of parameters
to fit. This assumption was made for all dose levels.

The fitted curves of concentration versus time with erlotinib shown in micromolar units
(μM) are provided in Figure 1C and D. These units are used in the remainder of the article.
The molecular weight of erlotinib, used in this conversion, is 429.9 g/mol.

We then extrapolated this data to understand the pharmacokinetic processes at a spectrum of
doses between 0 and 1600 mg erlotinib. Because our studies focused on patients whose
tumors harbored EGFR mutations, and because this patient population was enriched for
nonsmokers, we used pharmacokinetic data from the nonsmoker cohort of Hamilton et al.14

We observe a linear relationship between the Cmax and the oral dose (Fig. 1E). We therefore
used this fitted relationship as an estimate for A (in μM units) in our model: A (d) = 1.0182
+ 0.0114 d, where d is the oral dose.

We then investigated the rate k and its dependence on the administered dose. We obtained
values of k at doses 150 mg and 300 mg for nonsmokers and smokers.14 However, data for
other doses were not available. Because the rate of elimination at 300 mg was slightly lower
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than at 150 mg for both smokers and nonsmokers, we set k as the mean of the observed k at
150 and 300 mg (k[d] = 0.0465 hours−1 for nonsmokers). A nonconstant relationship
between d and k may exist, but in the absence of additional data points, we used the simplest
assumption.

RESULTS
Dosing Schedules Affect the Dynamics of Resistance

Erlotinib was approved for the treatment of unselected NSCLC at 150 mg/d. However, doses
of erlotinib 25 mg/d still lead to characteristic response rates and progression-free survival in
EGFR-mutant lung cancer.22 To date, no prospective randomized trials have been performed
in patients with EGFR-mutant lung cancer to determine which dosing strategy leads to
superior clinical outcomes. Here, we explored the effects of altering the dosing schedule on
the dynamics of resistance. In addition to the Food and Drug Administration-approved
schedule of 150 mg/d, we investigated doses of 25 mg/day and 50 mg/day as well as
schedules involving a high-dose pulse of 1600 mg/week with and without additional daily
low doses throughout the remainder of the week (Fig. 2). Variation in the number of
sensitive cells when changing from one schedule to the next is minimal. To determine the
probability of resistance over time for a variety of dosing schedules (Fig. 3A), we assumed
that initially, the tumor contains 1 million cells and has a mutation rate generating resistant
cells of 10−8 per cell division. Although a modification of these estimates would alter the
outcomes slightly, it would not affect the relative comparison between dosing schedules.

We first performed modeling under the assumption that cell populations contain no
preexisting resistance. A schedule including a once-weekly pulse of 1600 mg/week with a
break for the remainder of the week resulted in the highest probability of developing
resistance. This outcome occurs because during treatment breaks cells resume proliferation;
note that the rates of apoptosis are not significantly changed by the concentration of the
drug. By contrast, schedules combining a once-weekly pulse with low doses during the
remainder of the week were comparable with the 150 mg/d schedule. In both cases, sensitive
cell division is inhibited continuously.

We next evaluated these treatment schedules for the scenario that preexisting resistant cells
are present at a small frequency in the cancer cell population at diagnosis. For instance,
consider that 100 out of the initially present 1 million cells harbor the T790M point mutation
conferring resistance to erlotinib. In all cases, pulsed schedules were favorable to daily
schedules, because the use of high doses decelerates the overall growth of the resistant
population (Fig. 3B). In this scenario, the 1600 mg/week schedule outperformed the 150 mg/
d schedule, and continuing low doses during the remainder of the week further enhanced this
benefit. Collectively, these data show that the use of high-dose pulses with low-dose
continuing therapy impedes the development of resistance to the maximum extent. This
combination would also be optimal for situations in which the presence of preexisting
resistance is unknown.

Pharmacokinetic Effects Alter the Dynamics of Resistance
We next sought to understand the effects of interpatient pharmacokinetic variability on the
dynamics of resistance. Specifically, we aimed to determine how variability in the rate of
drug elimination (fast metabolism versus slow metabolism) affects the probability of
developing resistance and the size of the resistant cell population among patients. To study
plausible human ranges of variability in the rate of drug elimination, we used detailed
pharmacokinetic studies with 150 mg/d and 300 mg/d demonstrating that smokers have a
faster rate of drug elimination compared with nonsmokers.14 For these investigations, we
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did not consider the effects of the metabolites OSI-413 and OSI-420 against EGFR;
generally, these metabolites arise at 5% to 10% of the levels of erlotinib in the plasma and
have similar activity against EGFR as erlotinib does.

In the case of no preexisting resistant cells, the probability of developing resistance in fast
metabolizers was approximately two orders of magnitude higher than that for slow
metabolizers, for both a standard dose of 150 mg/d or a double dose of 300 mg/d (Figs. 3C
and D). Note that the plasma concentration for 300 mg/d in the fast metabolizers closely
matches that of the slow metabolizers receiving 150 mg/d (Fig. 3C). When the dose was
doubled for fast metabolizers, the probability of resistance decreased but remained an order
of magnitude larger than that for slow metabolizers on the 150 mg/d schedule. The
differences between the two cohorts were preserved for other dosing schedules such as the
1600/week plus 75 mg/d schedule (Fig. 3D).

If resistant cells existed prior to treatment (Fig. 3E), fast metabolizers had a higher expected
resistant clone size for any therapy schedule, because of faster elimination of the drug. In
particular, fast metabolizers receiving a high-dose pulse plus continuing low doses still had a
higher expected resistant cell population size than nonsmokers receiving the standard 150
mg/d dose. By taking a double dose of 300 mg/d, fast metabolizers could effectively reduce
the growth of the resistant population; however, the benefit conferred was not sufficient to
overcome the faster rate of drug metabolism.

Missed Doses, Make-Up Doses, and Alternating Doses
Despite a recommended daily dosing schedule, patients will miss, not infrequently, one or
several doses of drug. We used our predictive models to evaluate the effects of such
noncompliance (i.e., missed doses) on the dynamics of sensitive and resistant cancer cells.
Specifically, we considered the effects of missing 1, 2, and 3 days in succession, as
compared with the standard 150 mg/d dose, on the overall probability of developing
resistance in the case of no preexisting resistance (Fig. 4A and B). The probability of
resistance was affected by missing several days of treatment by several orders of magnitude
(10-fold–100-fold). Interestingly, noncompliance had little effect on the sensitive-cell
population (i.e., the bulk of the tumor). However, the effects of noncompliance on the
dynamics of resistance were significant.

We next investigated the effects of make-up doses after missed drug on the dynamics of
resistance (Fig. 4C and D). For a nonsmoker with no preexisting resistant cells, we
compared the probability of resistance on a compliant schedule, a schedule with missed but
no make-up doses, and a schedule with missed drug on 2 consecutive days followed by
doubled doses on 2 subsequent days. Interestingly, make-up doses did not reverse the effects
of missed doses.

We also modeled the effects of a schedule in which alternating doses of 150 mg and 100 mg
were administered on successive days. This schedule is sometimes prescribed for patients
who have dose-limiting toxicity at the 150 mg/d dose. There was little difference between
these two schedules in terms of efficacy and resistance dynamics (Fig. 4E and F).

Treatment Withdrawal and Treatment beyond Progression
Finally, we used our methodology to study treatment strategies after the development of
T790M-mediated progression of the disease on a standard 150 mg/d schedule. We assumed
that initially, the population contains 100 resistant and 106 sensitive cells. On day 12 of
treatment in vitro, the resistant population size grows sufficiently large so that the total
population size begins to increase again after the initial decline. This time point marks the
time of progression on therapy (Fig. 5A). Three scenarios were then examined (Fig. 5B and
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C): (1) treatment withdrawal, (2) continuing therapy with 150 mg/d, and (3) change of the
treatment strategy to a high-dose pulse (1600 mg for 1 day) followed by 6 days on low dose
(75 mg/d). For each of these schedules, Figure 5B shows the total population size and the
number of sensitive cancer cells whereas Figure 5C displays the plasma concentration of
erlotinib over time. Treatment withdrawal (strategy 1) led to a rapid rebound of the numbers
of sensitive cells, therefore, the total population size increased rapidly. Continuation of 150
mg/d (strategy 2) led to a less-rapid rebound and the sensitive cells were kept in check.
Weekly high-dose pulses followed by low daily doses (strategy 3) provided a further modest
benefit. Thus, our mathematical modeling predicted that treatment beyond progression was
superior to drug withdrawal, and a schedule with high-dose pulses and low-dose
maintenance seemed modestly better than the use of 150 mg/d.

DISCUSSION
In this article, we outlined the use of a combined evolutionary and pharmacokinetic
modeling approach to study the emergence and dynamics of T790M-mediated resistance to
erlotinib in patients with EGFR-mutant lung cancers. We used a pharmacokinetic modeling
perspective informed by human subject data to model the concentration of erlotinib over
time in patient plasma for diverse dosing schedules. To study the evolution of drug-sensitive
and drug-resistant populations during these schedules, we used growth kinetic data from an
isogenic pair of NSCLC cell lines with and without the T790M mutation.13 Combining these
types of data through a novel hybrid modeling approach, we were able to investigate the
relative benefits of various treatment strategies and pharmacokinetic parameters.

We considered the evolution of resistance during administration of daily oral doses of 25,
50, and 150 mg as well as pulsed doses of 1600 mg weekly, with and without additional
low-dose continuations of 50 mg to 100 mg on the remaining 6 days. We found that when
preexisting resistant cells are present, all schedules containing pulsed doses are superior in
delaying the time to progression of disease (POD) by impeding the growth of resistant cells.
However, when preexisting resistance is not present, a schedule with a once-weekly 1600
mg pulse is an unfavorable choice as the probability of developing resistance increases
because of treatment breaks; during treatment breaks, sensitive cells resume proliferation,
potentially leading to the development of resistance. In contrast, the schedule of 1600 mg
weekly pulses plus continuation doses on the remaining 6 days achieves a probability of
resistance similar to that of the 150 mg/d standard dose. Therefore, we conclude that
independent of whether preexisting resistance is present, patients administered high-dose
pulsed therapy once a week plus low doses during the remaining 6 days would derive the
most benefit in terms of preventing or delaying progression of disease because of resistance.
We recommend that this regimen be tested in clinical trials for its safety, tolerability, and
efficacy.

Anecdotally, some patients are unable to tolerate the 150 mg/d regime and are administered
150 mg on alternate days with 100 mg, or a lower daily dose. We demonstrated that this type
of change has little effect on the dynamics of resistance because the resistant cell clones are
not substantially inhibited by erlotinib at levels below 150 mg. As long as the administered
dose is sufficiently high to largely inhibit sensitive-cell reproduction, the probability of
developing resistance and the expected size of the resistant cell clones are not significantly
affected.

We further investigated the impact of variation in pharmacokinetic processes on the
emergence of resistance. Previously, investigators showed that smokers eliminate erlotinib
significantly faster than nonsmokers.14 We predicted that when administered the same daily
dose of 150 mg/d, smokers would have an approximately 100-times higher chance of
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developing resistance than nonsmokers, when no preexisting resistance is assumed. We then
considered the effects on smokers who were administered a double dose of 300 mg/d instead
of 150 mg. This modification achieved a steady-state plasma concentration similar to that of
nonsmokers receiving 150 mg/d, but did not reduce the probability of resistance to levels
comparable with that of never smokers. These predictions were also mirrored when
considering the expected number of resistant cells as a function of time in the case of
preexisting resistance; smokers on 150 mg/d and 300 mg/d were predicted to have larger
pools of resistant clones than nonsmokers on a 150 mg/d dose. Collectively, our modeling
approach predicts that pharmacokinetic effects may play a crucial but previously
unappreciated role in the dynamics of acquired resistance to erlotinib. In addition to
smoking, a variety of reasons such as diet, lifestyle, other medications,23 inherited
differences, etc. could give rise to variability in pharmacokinetic rates. We envisage that
personalized pharmacokinetic profiling of erlotinib metabolism could further help to
minimize the chances of developing resistance in individual patients.

We also considered the effects of missed doses during the 150 mg/d standard schedule,
given that if no preexisting resistance is present, missed doses significantly increase the
probability of developing resistance even though the overall debulking of the tumor is not
significantly affected. Taking make-up doses on subsequent days after missing doses does
not significantly alter the probability of resistance, and therefore, patient compliance is an
important factor in preventing resistance.

We also investigated the effects of treatment withdrawal and modifications after POD
because of drug resistance on the standard 150 mg/d schedule. We considered the options of
(1) drug withdrawal, (2) continuation on the 150 mg/d schedule, and (3) switch to 1600 mg/
week plus 75 mg on days 2 to 7.3 We found that treatment withdrawal would result in the
fastest rebound kinetics of the overall tumor population. In contrast, both continuation of
standard therapy and switching to a high-dose pulsed with continuation schedule would
impede the growth rate of the tumor population size.

Finally, a phase I dose-escalation study demonstrated that for a twice-weekly treatment
schedule, the dose-limiting toxicity was 1200 mg, whereas the maximum tolerated dose was
1000 mg.24 To model the effect of the highest twice-weekly pulsed regimen, we performed
comparisons of the schedule of 1600 mg/week plus 50 mg on days 2 to 7 with a 1200 mg
twice-weekly schedule (doses on days 1 and 4). Figure 6A shows the corresponding drug
concentration temporal profile for each of these schedules. Figure 6B displays the expected
number of resistant cells in the scenario in which 100 out of 106 cells are drug resistant at
the start of therapy. These two schedules produced very similar outcomes. Figure 6C shows
the probability of resistance as a function of time for the scenario in which initially all tumor
cells are sensitive. We observed that the 1600 mg/week plus 50 mg/d schedule is superior to
the 1200 mg twice-weekly schedule. Because the 1200 mg twice-weekly schedule has a
significantly higher overall drug intake but does not produce a better outcome in either
scenario, we conclude that the high-dose pulse of 1600 mg followed by low doses on
subsequent days is a superior choice. Correspondingly, doses less than 1200 mg twice a
week would be even less effective.

A limitation of our approach is the use of in vitro growth kinetics for the sensitive and
resistant cell populations, because of the difficulty of obtaining similar measurements in
vivo. We are therefore unable to make absolute quantitative predictions about realistic time
scales for the emergence of resistance because growth kinetics in the in vitro setting occur
on a time scale orders of magnitude more rapid than in in vivo settings. However, our
approach allows a complete set of detailed measurements of in vitro cell populations for a
wide panel of drug concentrations; this in turn enables the model to predict the resistance
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dynamics under a wide variety of treatment schedules. The relative benefits and
comparisons among the various treatment schedules can then be assessed; these predictions
are valid in the in vivo setting as long as the relative differences in growth rates are constant
between in vivo and in vitro situations.

In summary, our study demonstrates the power of mathematical modeling in predicting
improved treatment schedules with existing drugs. Such modeling may prove to be a useful
tool for screening potential drug compounds and designing clinical trials. Of note, our data
could help inform prospective clinical trials of erlotinib or other agents, but should not be
used to make treatment decisions. An important aspect of such studies is the characterization
of toxicity limits in human patients. If detailed toxicity constraints are known, then
mathematical modeling can be used to exhaustively and rapidly search the space of tolerated
schedules to optimize for biological endpoints such as the maximal delaying of POD,
maximal tumor reduction, etc. Because toxicity constraints for each patient may be
intrinsically tied to their pharmacokinetic processes, this further underscores the importance
of incorporating pharmacokinetic modeling into evolutionary models of resistance. This
approach could be applied to any cancer for which acquired resistance to targeted therapies
exists, for example, imatinib, dasatinib, or nilotinib in BCR-ABL-driven CML, crizotinib in
anaplastic lymphoma kinase fusion-driven NSCLC, and vemurafenib in mutant BRAF-
driven melanoma. Incorporation of modeling in parallel with drug development could
potentially lead to faster optimization of therapeutic outcomes.
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FIGURE 1.
Pharmacokinetics of NSCLC cells. Plasma concentration over time for smokers and
nonsmokers after (A) a 150 mg dose and (B) a 300 mg dose, both shown on a log-linear
plot. Fitted plasma concentration over time for smokers and nonsmokers after (C) a 150 mg
dose and (D) a 300 mg dose, both on a linear plot. E, The mean Cmax of erlotinib as a
function of the oral dose administered, with error bars reflecting the minimum and
maximum values observed. The average time of Cmax varied between 2 and 9 hours. Data
were obtained from the Tarceva Investigators Brochure and Hamilton et al.14
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FIGURE 2.
The choice of treatment schedule influences the plasma concentrations of erlotinib. Erlotinib
plasma concentration as a function of time during several dosing schedules (50 mg/d, 25 mg/
d, 150 mg/d, and 1600 mg/week, and 1600 mg/week with 50 mg on remaining days.

Foo et al. Page 12

J Thorac Oncol. Author manuscript; available in PMC 2013 June 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIGURE 3.
The choice of treatment schedule influences the probability of resistance and expected
number of resistant cells. Probability of resistance as a function of time under various dosing
schedules with no preexisting resistance. A, Initial population size: M = 106 cells with no
preexisting resistance. Expected size of resistant population as a function of time during
various dosing schedules. B, Initial population size: M = 106 cells containing 100 resistant
cells. C, Plasma concentration over time in smokers and nonsmokers for the standard 150
mg/d dose, and for smokers on the 300 mg/d schedule. D, Probability of resistance as a
function of time for smokers and nonsmokers with no preexisting resistance. Expected size
of resistant population as a function of time, under various dosing schedules for smokers and
nonsmokers with preexisting resistance. E, Initial population size: M = 106 cells with 100
resistant cells. For all panels, the mutation rate is μ = 10−8 per cell division.
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FIGURE 4.
The effect of patient noncompliance on the risk of resistance. A, Effect of missing doses on
the probability of resistance as a function of time, for nonsmoking patients with no
preexisting resistance. B, Dynamics of the number of sensitive cells for compliant and
noncompliant dosing schedules (missing 1, 2, and 3 days starting with day 7). C, Drug
concentration in plasma over time (in μM) for compliant schedule of 150 mg/d, a
noncompliant schedule missing days 7/8 and taking twice the dose on days 8/9, and a
noncompliant schedule missing days 7/8 with no make-up doses. D, Probability of resistance
for each of these schedules. E, Drug concentration in plasma over time (in μM) for schedule
taking 150 mg and 100 mg on alternate days, and the standard schedule of 150 mg/d. F,
Expected size of the resistant clone as a function of time for the schedules shown in (E),
assuming 100 preexisting resistant cells. For all panels, the mutation rate is μ =10−8 per cell
division and the initial population size is M = 106 cells with no preexisting resistance.
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FIGURE 5.
Effect of various treatment strategies in in vitro models of acquired resistance. Erlotinib
discontinuation after progression of disease is detrimental to patient survival. A, Dynamics
of the total population size (black), the number of sensitive cells (blue), and the number of
resistant cells (red) after the total tumor size begins to increase. B, The effects of various
strategies on the total population size and sensitive population size in response to (1)
treatment withdrawal, (2) continuing therapy with 150 mg/d, and (3) treatment alteration to a
high-dose pulse (1600 mg) followed by 6 days on low dose (75 mg/d). C, Drug
concentration in plasma over time (in μM) during various strategies, (1–3).
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FIGURE 6.
A high-dose pulsed strategy with low-dose continuation is superior to 1200 mg twice a
week. A, Drug concentration in plasma over time (in μ M) for a high-dose pulsed schedule
of 1600 mg/week plus 50 mg on days 2 to 7. B, The expected size of the resistant clone as a
function of time for the schedules shown in (A), assuming 100 preexisting resistant cells. C,
Probability of resistance for each of these schedules assuming no preexisting resistant cells.
For all panels, the mutation rate is μ =10−8 per cell division and the initial population size is
M = 106 cells with no preexisting resistance.
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