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Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer in the United States after
cancers of the lung and the breast/prostate. While the incidence of CRC in the United States is
among the highest in the world (approximately 52/100,000), its incidence in countries in India is
among the lowest (approximately 7/100,000), suggesting that lifestyle factors may play a role in
development of the disease. Whereas obesity, excessive alcohol consumption, a high-calorie diet,
and a lack of physical activity promote this cancer, evidence indicates that foods containing
folates, selenium, Vitamin D, dietary fiber, garlic, milk, calcium, spices, vegetables, and fruits are
protective against CRC in humans. Numerous agents from “mother nature” (also called
“nutraceuticals,”) that have potential to both prevent and treat CRC have been identified. The most
significant discoveries relate to compounds such as cardamonin, celastrol, curcumin, deguelin,
diosgenin, thymoquinone, tocotrienol, ursolic acid, and zerumbone. Unlike pharmaceutical drugs,
these agents modulate multiple targets, including transcription factors, growth factors, tumor cell
survival factors, inflammatory pathways, and invasion and angiogenesis linked closely to CRC.
We describe the potential of these dietary agents to suppress the growth of human CRC cells in
culture and to inhibit tumor growth in animal models. We also describe clinical trials in which
these agents have been tested for efficacy in humans. Because of their safety and affordability,
these nutraceuticals provide a novel opportunity for treatment of CRC, an “old age” disease with
an “age old” solution.
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Introduction
Colorectal cancer (CRC), the third most commonly diagnosed cancer in the United States,
develops through a multistep process in which normal mucosa first transitions to
adenomatous polyps and then eventually to invasive carcinoma. CRC is a major cause of
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morbidity and mortality in the United States, with an estimated 143,460 new cases
diagnosed and 51,690 deaths occurring in 2012[1]. It is estimated that 5-10% of all CRCs
are due to inherited gene defects, but the great majority are sporadic and exhibit no heritable
tendency. Life style has been shown to play a major role in the incidence of most cancers,
especially CRC. Almost 70% incidence of CRC, has been linked to diet. Since certain type
of diets accelerate CRC while others prevent CRC. We will focus in this review on the
dietary agents that have been implicated in preventing this cancer.

Regardless of whether a cancer specifically results from a heritable mutation, extensive
research within the last few years has indicated that most cancers are caused by
dysregulation of as many as 500 gene products. These gene products include growth factors
(e.g., EGF, VEGF, and IGF-1), growth factor receptors (e.g., EGF receptor), protein kinases
(e.g., Src), inflammatory cytokines (e.g., TNF, IL-1, IL-6), inflammatory enzymes (e.g.,
COX-2, 5-LOX, PLA-2), proapoptotic proteins (e.g., TNF, Fas, TRAIL), antiapoptotic
proteins (e.g., bcl-2, bcl-xL, cFLIP, IAP-1, IAP-2, survivin), tumor suppressors (e.g., p53,
Rb), and transcription factors (e.g., NF-κB, AP-1, STAT3, HIF-1, PPARγ). Most of these
gene products and the associated signaling pathways have been linked with CRCs. Perhaps
one of the most important pathways in most CRCs is the pro-inflammatory pathway
activated through the transcription factor NF-κB. This transcription factor has been shown
to be activated by most risk factors linked to CRCs, including grilled meat, fried foods,
saturated fatty acids, chemical and physical stress, and environmental pollutants [2].
Furthermore, constitutively active NF-κB has been encountered in most CRCs. Once
activated, NF-κB regulates the expression of gene products that mediate survival (e.g., anti-
apoptotic proteins bcl-2, bcl-xL, cFLIP, IAP-1, IAP-2, and survivin), proliferation (e.g.,
COX-2, c-myc, and cyclin D1), invasion (e.g., 5-LOX, MMP-9, ICAM-1, ELAM-1, and
VCAM-1), and neo-angiogenesis (e.g., VEGF, IL-8, TNF, and IL-1) [3]. Most currently
available agents that downregulate these pathways are highly specific for their targets (e.g.,
inhibitors of COX-2, VEGF, and EGFR). Such agents are unlikely to prevent diseases such
as CRC which is caused by dysregulation of multiple gene products. Moreover, these agents
are expensive and have numerous side effects [4-7]. A multi-targeted approach is therefore
required for both treatment and prevention. It is worth noting that the same molecular targets
are used for both prevention and treatment strategies [2, 8].

The incidence of CRC in the US (530 cases per million) is among the highest in the world.
This contrasts with regions such as the Indian subcontinent (30 cases per million), in which
CRC incidence is among the lowest in the world. Epidemiological and migration studies of
Indians suggest that, to a large extent, these dramatic international differences in incidence
rates can be explained by differences in environment, lifestyle, and diet. What is so unique
about the Indian environment, lifestyle and/or diet that CRC risk in India is
disproportionately lower than in the US? Given that food-derived compounds are constantly
present in the intestine and may regulate the homeostasis of intestinal mucosa, one likely
explanation is the nature of the Indian diet. Based on statistical and epidemiological data,
Richard Doll and Richard Peto have postulated that 10–70% (average 35%) of human cancer
mortality is attributable to diet [9]. Multiple lines of compelling evidence from
epidemiological, clinical, and laboratory studies link cancer risk to nutritional factors. A
feature of the Indian diet that distinguishes its from the Western diet is its higher proportion
of dietary fiber, due largely to greater consumption of vegetarian food and lower intake of
red meat than is the case with a typical Western diet. However, the preponderance of
evidence suggests that, after accounting for other dietary risk factors, high dietary fiber
intake is not associated with a reduced risk of CRC [10-12] and indeed, dietary fiber
supplementation fails to reduce the risk of recurrence of colorectal adenomas in multiple
randomized trials [13-16]. An alternative hypothesis is that distinctive spices routinely used
in Indian cuisine confer protective effects against CRC. Evidence from multiple laboratories
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indicates that spices prevent CRC development by modulating proinflammatory pathways
closely linked with tumorigenesis.

The Role of Nutraceuticals in Cancer Prevention
The use of plant-derived products (also called dietary botanicals) for the welfare of
humankind is extends back as far as recorded history. The quest for plants, parts of plants,
and components of parts of plants, that confer health benefits has perennially inspired
human curiosity. At one time, the major source of medicine was the plants consumed by
humans—prompting Hippocrates to preach almost 25 centuries ago, “let food be thy
medicine and medicine be thy food.” This adage also calls to mind the common saying, “we
are what we eat.” This philosophy is consistent with the position of both the National Cancer
Institute and the American Cancer Society that eating more fruits and vegetables daily can
reduce an individual’s risk of developing cancer. However, an accurate determination of the
precise mechanisms by which the components of fruit and vegetables prevent cancer is
needed before their inclusion in dietary supplements or evaluation in prospective clinical
trials can be recommended. It is estimated that over 70% of cancers are preventable, with
dietary agents making a 35% contribution. It remains unclear what specific dietary agents or
nutraceuticals can prevent cancer. It is notable that more than half of all drugs approved by
the Food and Drug Administration for cancer therapy within the last 4 decades have been
either natural products, natural product derivatives, compounds based on natural products, or
mimics of natural products [17]; indeed, cancer chemoprevention with botanicals is
increasingly recognized as a promising research strategy [18]. In the current review, we
show that that numerous nutraceuticals have potential as treatments for CRC (see table 1, 2
and 3). These include acetoxychavicol acetate, anacardic acid, berberine, betulinic acid,
boswellic acid, butein, camptothecin, capsaicin, caffeic acid phenethyl ester, cardamonin,
celastrol, chalcones, coronarin, curcumin, deguelin, diosgenin, elephantopin, emodine,
embelin, escin, fisetin, flavopiridol, flavonoids, gambogic acid, garcinol, gossypol,
gossypin, guggulsterone, indole-3-carbinol, morin, naphthoquinone, nimbolide, noscapine,
oleandrin, piperine, piceatannol, pinitol, plumbagin, pomegranate, retnoids, honokiol,
sanguinarine, sesamin, silymarin, simvastatin, terpenoid, thymoquinone, tocotrienol,
triptolide, ursolic acid, withanolides, xanthohumol, and zerumbone. Various molecular
targets modulated by these nutraceuticals are shown in Table 1. These targets include
growth factors and their receptors, protein kinases, inflammatory biomarkers, and various
transcription factors. Various biomarkers that are downregulated by nutraceuticals are
shown in Figure 1. Those that are upregulated are shown in Figure 2. The use of these
nutraceuticals for both prevention (Table 2) and treatment (Table 3) of CRC can be
envisioned. The modulation of various biomarkers has been observed not only in colon
cancer cells in culture but also in animal models of CRC (tables 2 and 3).

Role of nutraceuticals in CRC prevention
There are numerous reasons to conclude that most cancers, and CRCs in particular, are
preventable. First, CRCs are more common in developed countries than in developing
countries The causes of this disparity are not fully understood but numerous studies have
indicated that lifestyle contributes as much as 95% to the incidence of all cancers. What is so
unique about the Indian subcontinent lifestyle is uncertain. There is evidence to suggest that
first, vegetarianism and certain spices unique to the diets of Indian people may contribute to
a lower incidence of CRC. Second, grilled meat, fried foods, environmental pollutants, and
certain viruses have been linked to colorectal tumorigenesis in rodent models. Third, dietary
components derived from fruits and vegetables have been shown to suppress colorectal
carcinogenesis in animals. Fourth, epidemiological studies and limited clinical trials in
humans suggest that increased consumption of fruits and vegetables reduces the risk of
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developing CRCs and improves clinical outcomes in those diagnosed with CRC. The foods
and active agents from Indian spices that have been linked with prevention of CRCs include
curcumin from Curcuma longa; piperine from Piper nigrum; [6]-gingerol from Zingiber
officinale; resveratrol from grapes, peanuts, and berries; catechins from tea; genistein from
soybeans; caffeic acid from mustard seeds and olive oil; quercetin from onions; ellagic acid
from pomegranate; diallyl disulfide from garlic; sulforaphane from broccoli; lycopene from
tomatoes; and indole-3-carbinol from cruciferous vegetables. Extensive studies have
provided “proof of concept” that these agents have potent anticancer and chemopreventive
effects against CRC and that they mediate their effects by targeting multiple molecular
targets. Only a select few agents that have been examined extensively are described below.

Curcumin
The active principle of Curcuma longa, curcumin, is perhaps the dietary agent about which
most is known with respect to gastrointestinal cancers. This agent gives curry powder
(turmeric) its yellow color; its active ingredient has been identified as diferuloylmethane.
Curcumin has been shown to protect animals from a wide variety of carcinogens that cause
gastrointestinal cancers. The protective effects of curcumin have also been reported in
patients with Crohn’s disease, ulcerative colitis, familial adenomatous polyposis (FAP), and
tropical pancreatitis. For instance, in one clinical trial of five FAP patients, polyps decreased
by approximately 60% in number and 50% in polyp size between baseline and after
treatment with curcumin [177]. A similar study involving 77 patients treated with celecoxib
showed reductions of only 28 and 30% in polyp number and burden, respectively [178].

Curcumin’s mechanism of action has been studied extensively [179]. Our group showed that
curcumin downregulated the activation of NF-κB [180], thus leading to the downregulation
of the expression of anti-apoptotic, cell-proliferative, invasive, and angiogenic gene products
[181]. In addition to downregulating NF-κB activation, curcumin can suppress activation of
STAT3 [182], HIF-1 [183], and PPAR-[184]. Curcumin also downregulates the activity and
expression of both cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) [185] as well as
the expression of TNF, IL-1, and IL-6. It additionally inhibits both the anti-apoptotic
activating transcription factor [186] and EGF receptor signaling [187]. In spite of interfering
with all of these targets, curcumin has been found to be relatively safe pharmacologically at
very high doses [188]. Moreover, no dose-limiting toxicity has been established in
previously published clinical trials.

Although curcumin does exhibit activity against CRC in various preclinical models, it has
several limitations. First and foremost, its bioavailability and tissue distribution are very
poor [189], although piperine, a component of Piper nigrum that is often consumed with
turmeric, has been shown to enhance the bioavailability of curcumin [190]. Second, it is not
curcumin but turmeric that is consumed routinely by people in the Indian subcontinent
where the incidence of CRC is relatively low. Third, people consuming turmeric do not
consume turmeric alone but rather in combination with other spices such as Piper nigrum
(black pepper) and Zingiber officinale (ginger). Fourth, turmeric exhibits activities that are
different from those of curcumin [191, 192]. Fifth, the activity of curcumin is potentiated by
turmerones and other minor components of turmeric [193]. For all of these reasons, further
in-depth exploration of turmeric is warranted.

[6]-Gingerol
Ginger, the rhizome of Zingiber officinale, is as reputed for its medicinal properties as is
turmeric. Ginger has traditionally been used in different parts of the world for various
human ailments and in particular to aid digestion and treat nausea and vomiting in
pregnancy [194]. Some pungent constituents present in ginger and other zingiberaceous
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plants have potent antioxidant, anti-inflammatory, antiemetic, antiulcer, cardiotonic,
antihypertensive, hypoglycemic, antihyperlipidemic, and immuno-stimulant properties.
Additionally, some of these constituents exhibit cancer-preventive activity in experimental
studies and clinical trials [195, 196]. These properties of ginger are attributed to the presence
of certain pungent vallinoids, specifically [6]-gingerol and [6]-paradol, as well as other
constituents such as shogaols and zingerone. Experimental studies have also revealed that
ginger and its most active constituent, [6]-gingerol, regulate the molecules in cellular signal
transduction pathways, including NF-κB, AP-1, growth factors, chemokines, MAPK, p53,
cyclin D1, VEGF, COX-2 and iNOS pathways [197-203]. By modulating multiple cell
signaling pathways, these components inhibit cancer development and/or progression. Both
[6]-gingerol and [6]-paradol have been found to induce cancer cell apoptosis [204]. [6]-
gingerol has also been shown to inhibit phorbol ester-induced inflammation, epidermal
ornithine decarboxylase activity, and skin tumor promotion in mice [205]. Specifically in
CRC, [6]-gingerol has been shown to reduce the incidence of CRCs in a rat azoxymethane
(AOM) model [206], and to inhibit CRC cell proliferation, and endothelial cell tube
formation [207], and G1 cell cycle arrest. [6]-gingerol inhibits these processes through
downregulation of cyclin D1 via inhibition of -catenin translocation [201]. [6]-shogaol has
been shown to induce apoptosis via reactive oxygen species (ROS) production, caspase
activation, and GADD153 expression [208]. The chemopreventive properties of both ginger
and turmeric have been linked in part to the upregulation of MAP kinase phosphatase-5
[209]. Ginger thus appears to contain a variety of constituents that may ultimately be of use
in cancer prevention and treatment.

Piperine
Black pepper (Piper nigrum), a native Indian botanical, has been used in Indian cooking for
centuries. It is valued for its distinctive sharp, stinging quality, which has been attributed to
its active ingredient, the alkaloid piperine. Since the discovery of Piper nigrum’s active
piperine, the use of black pepper has captivated the interest of modern medical researchers.
Many physiological effects of Piper nigrum, its extracts, or its bioactive compound piperine,
have been reported in recent decades. By stimulating the digestive enzymes of the pancreas,
piperine enhances digestive capacity and significantly reduces gastrointestinal transit time
for food [210]. Piperine has been shown to enhance the bioavailability of a number of
therapeutic drugs as well as phytochemicals through its inhibitory influence on enzymatic
drug biotransforming reactions in the liver and intestine [211]. Piperine strongly inhibits the
activity of hepatic and intestinal aryl hydrocarbon hydroxylase and uridine dinucleotide
phosphate-glucuronyl transferase [211]. Most clinical studies on piperine have focused on
its effect on drug metabolism as a means of improving the bioavailability of other botanicals
[189, 212, 213]. Piperine’s bioavailability-enhancing property is also partly attributed to
increased absorption caused by its effect on the ultrastructure of the intestinal brush border
[214, 215]. Piperine has been demonstrated, in in vitro studies, to protect against oxidative
damage by inhibiting or quenching ROS. Piper nigrum or piperine treatment has also been
found to lower lipid peroxidation in vivo and beneficially influence antioxidant status in
several experiments involving oxidative stress [215, 216].

1′-Acetoxychavicol Acetate
1′-Acetoxychavicol acetate (ACA), which is obtained from the rhizomes of Alpinia galanga,
is a component of traditional Asian condiments. It has both chemopreventive and
chemotherapeutic potential in animals as well as in vitro models of CRC. ACA has been
shown to induce apoptosis in CRC cell lines. It has also been reported that ACA inhibits
DNA synthesis, thereby inhibiting cell proliferation [217]. In rat intestine epithelial cells
(IEC6), ACA induced glutathione S-transferase (GST) and NAD(P)H: quinone
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oxidoreductase 1 (NQO1) activities, increased intracellular glutathione levels, and
upregulated intranuclear Nrf2 and cytosolic p21 [19]. It also has the ability to inhibit
azoxymethane (AOM)-induced colon tumorigenesis in rats [151]. Feeding these rats with
ACA significantly reduced the incidence of colon carcinoma by suppressing proliferation
biomarkers such as ornithine decarboxylase activity and colonic mucosal polyamine
contents. Such inhibition was also associated with elevated levels of activity of phase II
enzymes, including GST and QR, in the rat colon [151].

Berberine
Berberine is an isoquinoline natural alkaloid found in the roots, rhizomes, stem, and bark of
a wide variety of traditional herbs, including goldenseal, barberry and Oregon grape.
Numerous studies have shown that it can prevent and treat CRC. In in vitro assay, berberine
inhibited proliferation and induced apoptosis of various CRC cells. It induced cell cycle
arrest at the G2/M phase and caused apoptosis as evidenced by the loss of mitochondrial
membrane potential, release of cytochrome c, suppression of c-IAP1, Bcl-2, Bcl-xL,
induction of p21 expression, activation of caspases, and cleavage of PARP [22, 20]. In
addition, berberine-induced apoptosis was accompanied by phosphorylation of JNK and p38
MAPK, increases in FasL and t-BID levels, and ROS generation [22]. Berberine’s anti-
proliferative and apoptotic activity was found to be associated with the inhibition of NF-κB
and Wnt/β-catenin signaling pathways [152, 20]. Moreover, berberine modulated pgp-170
expression in cancer cells, which was associated with changes in drug resistance [25] and
inhibited arylamine N-acetyltransferase (NAT) activity in a human colon tumor cell line
[218]. In an AOM-induced colon carcinogenesis rat model, berberine significantly inhibited
the increases in lipid peroxidation, protein bound carbohydrates, and enhanced antioxidative
status [153]. Oral administration of berberine was also found to inhibit COX-2 activities
without inhibiting COX-1 activity in AOM-induced rat colon [154]. Thus, berberine inhibits
neoplastic transformation in rat colon.

Whole botanical is better than a single active principle
Whether genistein, lycopenes, statins, catechins, or resveratrol; evidence indicates that the
original sources of these nutraceuticals (soy, tomato, red yeast rice, green tea, and red
grapes, respectively) may exhibit activity in vivo superior to that of their isolated active
components. Indeed, numerous lines of evidence suggest that the whole botanical may be
better than its active principle. For instance, Curcuma longa contains curcumin, demethoxy
curcumin (DMC), bisdemethoxy curcumin (BDMC), turmeric oil (also known as
turmerones), cyclocurcumin, and other constituents. Although curcumin is a major
constituent (2-6%) of Curcuma longa, other components exist in minor but significant
amounts. Curcuma longa oil consists of aromatic turmerone (ar-turmerone), -turmerone, and
-turmerone. Curcuma longa oil has been linked with antifungal [219, 220], antibacterial
[221], insecticidal [222], mosquitocidal [223], antioxidant [224], antimutagenic [224], and
anticancer [225] activities. This oil has also been found to inhibit oral submucous fibrosis, a
precancerous condition for oral cancer in healthy volunteers [225]. Additionally, turmeric oil
has been shown to enhance the bioavailability of curcumin in human volunteers [193, 226].

A synergy has been observed between curcumin, DMC, and BDMC. Specifically, it has
been shown that the ability of curcumin to inhibit peroxidation of linoleic acid by 15-
lipoxygenase is synergistically enhanced by DMC and BDMC. Furthermore, we showed that
the anti-inflammatory activity of curcumin is enhanced when curcumin is combined with
DMC and BDMC [227]. Similarly, nematocidal activity levels have been reported to be
higher in turmeric than in curcumin alone [228]. Curcumin-free aqueous turmeric extracts
have been shown to suppress 7,12-dimethylbenz[α]anthracene (DMBA)-induced rat
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mammary tumor formation [192] and to inhibit benzo(a)pyrene-induced forestomach
papillomas in mice [191]. Consistent with evidence that a whole botanical may potentially
be more effective than its active principle, there is also an evolving body of evidence to
suggest that whole botanicals exhibits potent antitumor activity at clinically meaningful
doses. Various reports indicate that turmeric alone blocks glucuronidation and sulfation in
Caco-2 cells in vitro [229], inhibits early activation of the Epstein-Barr-virus antigen [230],
inhibits benzo(a)pyrene-derived DNA adduct formation [231], and suppresses the growth of
Helicobacter pylori [232]. In rodents, 1% dietary turmeric was found to inhibit DMBA-
induced carcinogenesis [233], abrogate croton oil-induced skin tumor formation [234], and
suppress nitrosodiethylamine-induced hepatocarcinogenesis [235]. In addition, turmeric was
found to prevent benzo[a]pyrene-induced forestomach tumors in Swiss mice and methyl-
(acetoxymethyl)-nitrosamine-induced oral mucosal tumors in Syrian golden hamsters [236].
In a study of DMBA-induced mammary tumorigenesis in C3H (Jax) mice and Wistar rats,
dietary turmeric suppressed mammary tumor virus-related reverse transcriptase activity,
abrogated preneoplastic changes in the mammary glands, and decreased tumor incidence
and tumor burden [237].

Combination of botanicals is expected to be superior to a single botanical
alone

There is considerable interest in evaluating the likelihood that a combination of key
botanicals might exhibit synergistic protective activity against CRC. A wide variety of
botanicals and their phenolic compounds and flavonoids possesses potent antioxidant,
antimutagenic, and anticarcinogenic activities. Multiple studies have suggested that a
combination of botanicals and/or their active principles might be more efficacious than any
one botanical alone. Piperine has been shown to enhance the bioavailability of curcumin in
rodents and humans in part through the inhibition of glucuronidation [190]. We have also
confirmed that piperine enhances the bioavailability of curcumin in human subjects [189]. In
one study testing this combination, oral curcumin with piperine reversed lipid peroxidation
in patients with tropical pancreatitis [212]. In another study, the combination of piperine
plus curcumin significantly enhanced anti-immobility, neurotransmitter-enhancing
(serotonin and dopamine), and monoamine oxidase inhibitory effects compared with
curcumin alone [213]. When 5-lipoxygenase, the key enzyme involved in biosynthesis of
leukotrienes, was evaluated in human polymorphonuclear leucocytes, the order of inhibitory
activity was noted to be quercetin > eugenol > curcumin > cinnamaldehyde > piperine >
capsaicin > allyl sulfide [238]. Furthermore, the inhibitory potency of aqueous extracts of
these botanicals correlated with the active principles of their respective botanicals, with the
combination of active principles or extracts synergistically inhibiting 5-LOX activity [238].

Human Studies
Clinical trials of nutraceuticals for CRC prevention and treatment in humans have
established a larger body of knowledge about curcumin than about all other nutraceuticals.
This agent has been examined in patients with ulcerative colitis (UC) and Crohn’s disease
(CD) [239]. In an open-label study, curcumin was administered to five patients with
ulcerative proctitis and five with CD. All proctitis patients improved, with reductions in
concomitant medications in four, and four of five CD patients had lowered Crohn’s Disease
Activity Index scores and sedimentation rates. Curcumin was also examined in a
randomized, multicenter, double-blind, placebo-controlled trial of a maintenance therapy for
UC [240]. Eighty-nine patients with quiescent UC were recruited. Forty-five patients
received curcumin (1g after breakfast and 1g after the evening meal) plus sulfasalazine or
mesalamine for 6 months, and 44 patients received placebo plus sulfasalazine or mesalamine
for 6 months. Clinical activity index and endoscopic index were determined at entry, then
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every 2 months, at the conclusion of the 6-month trial, and at the end of 6-month follow-up.
Of 43 patients who received curcumin, two relapsed during 6 months of therapy, whereas
eight of 39 patients in the placebo group relapsed. These results indicate a significant
difference between curcumin and placebo. Furthermore, curcumin improved both the
clinical activity index and endoscopic index levels in patients, thus suppressing the
morbidity associated with UC. A 6-month follow-up was conducted during which patients in
both groups were on sulfasalazine or mesalamine. Eight additional patients in the curcumin
group and six patients in the placebo group relapsed.

Familial adenomatous polyposis is an autosomal-dominant disorder characterized by the
development of hundreds of colorectal adenomas and eventual colorectal cancer. Regression
of adenomas in this syndrome occurs with the administration of nonsteroidal anti-
inflammatory drugs and cyclooxygenase-2 inhibitors, both of which can have considerable
side effects. Curcumin was examined in combination with quercetin in FAP patients [177].
Five FAP patients with prior colectomy received curcumin 480 mg and quercetin 20 mg
orally 3 times a day. All 5 patients’ polyps had decreased in number and size from baseline
after a mean of 6 months of treatment with curcumin and quercetin. The mean percentage
decreases in the number and size of polyps from baseline were 60.4% and 50.9%,
respectively.

Recently, Carroll and colleagues trialed the use of curcumin for the prevention of colorectal
neoplasia [241]. The group examined the effects of oral curcumin (2g or 4g per day for 30
days on prostaglandin E2 (PGE2) within aberrant crypt foci (ACF; primary endpoint), 5-
HETE, ACF number, and proliferation in a non-randomized, open-label clinical trial of 44
eligible smokers with eight or more ACF on screening colonoscopy. Forty-one subjects
completed the study. A significant reduction (40%) in patients’ ACF numbers occurred in
the 4g dose group, whereas ACF numbers were not reduced in the 2g dose group.
Interestingly, neither dose of curcumin reduced PGE2 or 5-HETE within ACF or normal
mucosa or reduced Ki-67 in normal mucosa.

Numerous studies have also considered the use of curcumin for the treatment of CRC. A
dose escalation study conducted in healthy volunteers showed insignificant serum levels of
curcumin even when as much as 12,000 mg of curcumin was consumed daily [188]. Sharma
and colleagues have examined both pharmacodynamic and pharmacokinetic properties with
oral curcumin in patients with CRC [242]. Interestingly, Sharma and colleagues showed that
daily ingestion of 440mg of curcumin for 29 days (with 15 patients) was accompanied by a
59% decrease in lymphocytic glutathione S-transferase activity, but this was not the case at a
higher dose (2200mg). Another study [243] showed that a daily dose of 3.6g curcumin on
days 1 and 29 caused 62% and 57% decreases, respectively, in inducible PGE2 production in
blood samples taken 1 hour after dose administration compared with levels observed
immediately before predose. Garcea and colleagues [244] found that administration of
curcumin (3,600mg) decreased DNA adduct 3-(2-deoxy-beta-di-erythro-pentafuranosyl)-
pyr[1,2-alpha]-purin-10(3H)one M(1)G levels in malignant colorectal tissue from 4.8 +/- 2.9
adducts per 107 nucleotides to 2.0 +/- 1.8 adducts per 107 nucleotides. COX-2 protein levels
in malignant colorectal tissue were not affected by curcumin. In another study, 106
colorectal cancer patients were given 360mg of curcumin orally 3 times/day and then
monitored for cancer-induced weight loss, serum TNF levels, tumor cell apoptosis, and other
biomarkers on days 10, 20, and 30 after treatment [245]. The authors showed that curcumin
administration increased body weight, decreased serum TNF-levels, increased numbers of
apoptotic tumor cells, enhanced the expression of p53 molecules in tumor tissue, and
modulated tumor cell apoptotic pathways, as indicated by upregulation of bax and
downregulation of bcl-2. They concluded that curcumin treatment improves the general
health of patients. All these studies therefore indicate that curcumin is quite safe when
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consumed in large quantities. Paradoxically, however, its effect in patients is unrelated to
serum levels. Lower doses also appear to be more effective than higher doses in modulating
biomarkers in human subjects.

Conclusion
Thus, this review clearly demonstrates that various nutraceuticals provided by the Mother
Nature have a huge potential for both prevention and treatment of CRC. However, more
clinical trials are required to prove neutraceuticals’ potential against this highly lethal
disease. Since these agents can be administered chronically without any concern for safety
and are highly affordable, their use has been the wave of the past and is likely to continue as
the wave of the future.
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Fig. 1.
Molecular targets in colorectal cancer that are downregulated by natural compounds.
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Fig. 2.
Molecular targets in colorectal cancer that are upregulated by natural compounds
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Table 1

Molecular target of natural compound in in vitro models of colorectal cancer

Cell lines/animals Targets References

Acetoxychavicol acetate

IEC6 GST, NAD(P)H, NQO1,
GSH, Nrf2, p21

[19]

Berberine

SW480 NF-κB, COX-2, VEGF, p21,
Bcl-2, survivin

[20]

HT-29 Survivin [21]

SW620 BID, c-IAP1, Bcl-2, Bcl-xL,
JNK, p38 MAPK, FasL

[22]

Colon 26 IL-6 [23]

HCT116 Cyclin B1, cdc2 kinase [24]

COLO 205,CT26 pgp-170 [25]

DLD-1 COX-2 [26]

Betulinic Acid

Colo-205 Glyco-genes [27]

RKO, SW480 Sp-1,-2,-3, survivin, VEGF,
EGFR, cyclin D1, PTTG-1, NF-κB

[28]

SW948, HCT116 Topoisomerase I and IIα [29]

PTC CYP1A2 [30]

SNU-C5 Bcl-2, Bad [31]

SW480 Caveolin-1 KLF4, PPARγ [32]

HT29 Bcl-2, cyclin D1, Bax [33]

Colo-205 p17 [27]

AKBA

HT29 Akt [34]

HCT116 Cyclin D1, cyclin E, CDK 2,
CDK4, Rb, p21

[35]

Butein

CLL.220.1 GSH [36]

COLO 320HSR,
CLL.220.1

GST [37]

Capsaiscin

HCT116 tNOX [38]

Colo 205 Bcl-2, Bax [39]

HCT116 p53, Mdm2, DR4, Fas (CD95),
Bax, Bcl-2

[40]

HT29 AMPK, ACC [41, 42]

HT29 PPARγ [42]

CAPE

HCT116, SW480 β-Catenin, cyclin D1, c-myc [43]

CT26 MMP-2, -9, VEGF [44]

Cardamonin
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Cell lines/animals Targets References

HCT116 DR-4, -5, DcR1, CHOP [45]

CDDO

SW480 PPARγ [46]

Colon fibroblasts IFN-γ, IL-1, TNFα, iNOS, COX-2 [47]

Celastrol

HCT116 CXCR4 [48]

SW620 TRAIL/APO-2L [49]

Deguelin

COLO205, HCT116 IL-8, IκBα, NF-κB, cFLIP,
Bcl-2, Bcl-xL

[50]

Diosgenin

HT29 p38 MAPK, DR5, COX-2 [51]

HT29, HCT116 COX-2, 5-LOX [52]

HCT116 HMG-CoA reductase, p21 ras,
β-catenin

[53]

HT29 Bcl-2 [54]

HCT15 Bcl-2, Bax [55]

Emodin

LS1034 Bcl-2, Bax [56]

WiDr MMP-2, -9, RhoB,
NF-κB, VEGF

[57]

DLD-1 PRL-3, ezrin [58]

DLD-1, HT2 SOD, GST, tGPx, LDH [59]

HCT116 VEGFR-1, -2 [60]

Escin

HT29 p21 (WAF1/CIP1) [61]

Fisetin

HCT116 p53 [62]

HCT116 Bcl-xL, Bcl-2, Bak, Bim,
FasL, DR5, TRAIL, p53

[63]

HT29 COX2, EGFR, PGE2, β-catenin,
NF-κB, Wnt, cyclin D1, MMP-7

[64]

HT29 CDK-2, -4, CDC25C, cyclin E,
cyclin D1, p21 (CIP1/WAF1)

[65]

Flavopiridol

HCT116 p53, Rad51, Cdk9 [66]

HCT116 Cdc2, survivin [67]

HCT116 p21 [68]

HCT116 p21, XIAP [69]

HCT116 Rb [70]

T84 cAMP [71]

Garcinol

HCT116 DR4, DR5, survivin, Bcl-2,
XIAP, cFLIP, Bid, Bax

[72]

HT29, HCT116 ERK1/2, survivin [73]
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Cell lines/animals Targets References

HT29 FAK, Src, MAPK, ERK, PI3K,
Akt, Bcl-2, Bax, MMP-7

[74]

Gossypol

HCT116 DR5, Bcl-xL, Bcl-2, survivin,
XIAP, cFLIP, CHOP, ERK1/2

[75]

CT26 Bcl-2, Bcl-xL [76]

HT29 p21, cyclin D1, Bcl-2, Bcl-xL,
Bag-1, Mcl-1, Bak

[77]

HT29, LoVo p53, Bcl-2, Bax [78]

Guggulsterone

HT29 p21, IGF1-Rβ [79]

HT29 CBR3 [80]

HT29 cIAP-1, cIAP-2, Bcl-2, Bid,
Fas, p-JNK, c-Jun

[81]

HT29 VEGF, ARNT, STAT3,
MMP-2, -9

[82]

Nimbolide

WiDr NF-κB, ERK1/2, p38, JNK1/2,
MMP-2, -9

[83]

HCT116 DR4, DR5, ERK, p38 MAPK,
I-FLICE, cIAP-1, cIAP-2, Bcl-2,
Bcl-xL, survivin, XIAP, p53, Bax

[84]

HT29 p21, cyclin D2, Chk2, cyclin A,
cyclin E, Cdk2, Rad17

[85]

Noscapine

LoVo Survivin, Bcl-2, Bax [86]

HCT116 p53, p21, Bcl-2, Bax [87]

Piperine

Caco-2 P-glycoprotein, CYP3A4 [88]

Gambogic acid

LOVO PI3K, Akt, Bad [89]

Curcumin

HuTu 80, Caco-2 GST, UGT [90]

HCT116 p53, p21 [91]

Caco2 P-gp [92]

HT29, HCT116 CD133, CD44, CD166, ALDH [93]

HCT116 STAT3 [94]

HCT116 ERK1/2, p38 MAPK, JNK [95]

HCT116 ABCG2, EGFR, IGF-1R,
NF-κB, β-catenin, COX-2,
c-myc, Bcl-xL, Bax

[96]

HCT116 IDPm [97]

HCT116 E2F4, cyclin A, p21, p27 [98]

HCT116, HT29 p53, p21, PUMA [99]

HCT116 EGFR, HER-2, IGF-1R, [100]

Caco2 AKT, COX-2, cyclin D1
VDRE, GR, CYP3A4,
CYP24, p21, TRPV6

[101]
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Cell lines/animals Targets References

HT29, HCT116 CD44, CD166, EGFR [102]

HCT116 NF-κB, EGFR, IGF-1R [103]

HCT116 NF-κB, Akt, Bcl-2, Bcl-xL,
IAP-2, COX-2, cyclin D1

[104]

HT29 Akt, COX-2, AMPK [105]

HCT116 p53, p21 (CIP1/WAF1) [106]

HCT116 PCNA, CDK2, CDK4, cyclin B,
p21, p27, p53, NF-B, Akt

[107]

HCT116, SW480 20S & 26S proteasome [108]

Plumbagin

HT29, HCT116 EGFR, Akt, GSK-3β,
PCNA, cyclin D1, COX-2

[109]

Reserpine

HCT116 β-catenin, cyclin D1,
c-myc, Siah-1

[110]

LS180 CYP3A5 [111]

Resveratrol

Caco-2, SW480 iNOS, IκB, TLR-4 [112]

HCT116 JNK, p38 [113]

HT29, SW480 AKT, STAT3 [114]

HCT116 p53, Bax, Bcl-2 [115]

SW480, HT29 ERK, JNK, Akt, FAK,
Fyn, Grb2, Ras, SOS

[116]

Caco-2 CYP1A1 [117]

SW480 PDCD4, PTEN, TGFβR, SMADs [118]

HT29 p27, cyclin D1, p53,
IGF-1R, Akt, Wnt

[119]

HT29 CHOP, GRP-78, XBP1 [120]

HCT116 DR4, Fas (CD95), p53,
Bax, Mdm2

[40]

HCT116 NF-κB, EGFR, IGF-1R [103]

Caco-2 Bak, FADD [121]

Lovo VEGF, MMP-9, HIF-1 [122]

RKO β-catenin [123]

HT29 COX-2, PGE2 [124]

Sanguinarine

HT29 Bax, Bcl-2 [125]

Silibinin

SW480 DR4, DR5, Mcl-1, XIAP [126]

CSLC AKT, mTOR, PP2Ac
β-catenin, IGF-1Rβ, ILGBP-1,
GSK-3β, PKB/Akt

[127]

SW480 β-catenin, GSK3, cyclin D1,
VEGF, iNOS, c-myc, survivin

[128]

HCT116 Cyclin B1, -D1, CDK2, p21,
p27, COX-2

[129]

LoVo Flt-1 [130]
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Cell lines/animals Targets References

Tocotrienol

SW620 β-catenin, Wnt-1, cyclin D1,
c-jun, MMP-7

[131]

HCT116 DR-4, DR5, ERK1, Bax,
c-IAP2, Bcl-xL

[132]

HT29, HCT116 HMG-CoA reductase, RhoA [133]

HT29 NF-κB, Bcl-2, Bax [134]

RKO p53, WAF1/p21, Bcl-2 [135]

Theaflavin

Caco-2 COX-2, TNFα, ICAM-1, NF-κB [136]

Thymoquinone

HT29 HDAC2 [137]

HCT116 p53, CHEK1 [138]

HCT116 p53, p21WAF1, Bcl-2 [139]

Ursolic acid

HCT116 Bcl-xL, Bcl-2, cFLIP, survivin,
cyclin D1, MMP-9, VEGF,
ICAM-1

[140]

HCT116 Sphingomyelinase [141]

SW480 Bcl-2, Bcl-xL, survivin [142]

HT29 EGFR, ERK1/2, p38 MAPK,
JNK, Bcl-2, Bcl-xL

[143]

HCT116 DR4, DR5, DcR2, JNK [144]

Withanolide

HCT116 NF-κB, COX-2 [145]

Xanthohumol

HCT116 CXCR4 [146]

HCT15 DNA topoisomerase I, MDR1 [147]

HCT116 Bcl-2 [148]

Zerumbone

HCT116 DR4, DR5, cFLIP, ERK1/2,
p38 MAPK, p53, Bax, p21

[149]

Caco-2, Colo320 IL-1, IL-1, IL-6, TNFα [150]

ABCCG2, ATP-binding cassette sub-family G member 2; ACC, acetyl-CoA carboxylase; AKBA, acetyl-keto-beta-boswellic acid; AMPK, AMP-
activated protein kinase; AR, aldose reductase; ARNT, aryl hydrocarbon receptor nuclear translocator; Bag-1, Bcl-2-binding protein; CAPE,
Caffeic acid phenethyl ester; CBR3, Carbonyl reductase 3; CDDO, 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid; CDK, cyclin dependent kinase;
CHOP, CCAAT/enhancer-binding protein-homologous protein; COX-2, cyclooxygenase-2; CXCR4, Cysteine X Cysteine (CXC) chemokine
receptor 4; DcR, decoy receptor; DR, death Receptor; EGFR, Epidermal growth factor receptor; ERK, extracelluar signal- regulated kinases; FAK,
focal adhesion kinase; GPx, glutathione peroxidase; GR, glucocorticoid receptor; GRP, glucose-regulated protein; GSH, glutathione; GSK-3β,
Glycogen synthase kinase-3β; GST, glutathione S-transferase; HO-1, hemoxygenase-1; ICAM, intracellular cell adhesion molecule; IDPm,
NADP(+)-dependent isocitrate dehydrogenase; IFN, interferon; IGF, insulin-like growth factor; IL, interleukin; iNOS, inducible nitric oxide
synthase; IκBα, inhibitor of kappaB alpha; KLF, Krüppel-like factor; KLF4, Krüppel-like factor 4; LC3, microtubule-associated protein 1 light
chain 3; MAPK, Mitogen-activated protein kinase; MMP, matrix metalloproteinase; NF-κB, nuclear factor-kappaB; NQO1, quinone
oxidoreductase 1; Nrf2, NF-E2-related factor 2; PCNA, proliferating cell nuclear antigen; PGE2, prostaglandin2; Pgp, phosphoglycoprotein; PI3K,
phosphatidylinositol-3-kinase; PP2Ac, protein phosphatase 2Ac subunit; PPARgamma, peroxisome proliferator- activated receptor gamma; PRL-3,
phosphatase of regenerating liver-3; PTC, Primary tumor cells of colon adenocarcinoma; PTTG, pituitary tumor transforming gene; QR, quinone
reductase; SOD, superoxide dismutase; STAT3, signal transducers and activators of transcription 3; TNF, Tumor necrotic factor; tNOX, tumor-
associated NADH oxidase; TRAIL, TNF related apoptosis-inducing ligand; VDRE, vitamin D responsive element; VEGF, vascular endothelial
growth factor; VEGFR, vascular endothelial growth factor receptor; XIAP, X-linked inhibitor of apoptosis.
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Table 2

Prevention of colorectal cancer with natural compounds

Targets References

Rat Model

Acetoxychavicol acetate

GST, QR [151]

Berberine

β-Catenin [152]

SOD, catalase, GST, GPx [153]

COX-2 [154]

Capsaiscin

GST, QR [155]

HMG CoA reductase [156]

Morin

HMG CoA reductase [157]

SOD, catalase, GST, GPx, GR [158]

Curcumin

HSP70 [159]

Resveratrol

SOD, catalase, GPx, GST [160]

Silibinin

Bcl-2, Bax, IL-1β, TNFα, MMP7 [161]

CytochromeP450, GST [162]

Theaflavin

COX-2, iNOS [163]

Thymoquinone

Catalase, GPx, SOD [164]

Zerumbone

COX-2, prostaglandins [165]

Mouse Model

Curcumin

TNFα, IL-6, COX-2,
AMPK, NF-κB

[166]

iNOS, COX-2, ERK1/2,
Wnt-1, β-catenin

[167]

TNFα, IFNγ, COX-2,
β-catenin, p53

[168]

Resveratrol

NF-κB, PKC-2, iNOS, COX-2,
AR, HO-1, Nrf2

[169]

NF-κB, STAT3, iNOS, ERK [170]

Silibinin

PCNA, cyclin D1, Cip1/p21,
iNOS, COX-2, VEGF

[171]
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Targets References

Zerumbone

NF-αB, HO-1 [40]

Diosgenin

IL-1β, lipoprotein lipase,
triglyceride, HO-1, SOD-3

[172]

Noscapine

β-Catenin, cyclin D1, c-myc, p21 [173]

AMPK, AMP-activated protein kinase; AR, aldose reductase; COX-2, cyclooxygenase-2; GPx, glutathione peroxidase; GST, glutathione S-
transferase; ERK, extracelluar signal-regulated kinases; HO-1, hemoxygenase-1; HMG-CoA reductase, 3-hydroxy-3-methyl-glutaryl-CoA
reductase; HSP, heat shock proteins; NF-κB, nuclear factor-kappaB; IFN, interferon; IL, interleukin; iNOS, inducible nitric oxide synthase; MMP,
matrix metalloproteinase; Nrf2, NF-E2-related factor 2; PCNA, proliferating cell nuclear antigen; QR, quinone reductase; SOD, superoxide
dismutase; STAT3, signal transducers and activators of transcription 3; TNF, Tumor necrotic factor; VEGF, vascular endothelial growth factor
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Table 3

Therapeutic approach to colorectal cancer using natural compounds

Agent Cells Target Reference

Curcumin SW480 NF-κB, c-myc, cyclin D1, Bcl-2, CD31 [174]

Deguelin COLO 205 Ki-67, NF-κB, VEGF [50]

Guggulsterone HT-29 Bcl-2 [81]

Plumbagin HCT116 von Willebrand Factor [175]

Silibinin SW480 β-Catenin, GSK3β, cyclin D1, c-myc,
survivin, VEGF, iNOS

[128]

Thymoquinone HCT116 Ki-67 [139]

Ursolic acid HCT116 NF-κB, STAT3, β-catenin, EGFR, CD31,
p53, p21, Ki-67, Bcl-xL, Bcl-2, cFLIP,
survivin, cyclin D1, MMP-9, VEGF, ICAM1

[140]

Resveratrol HT-29 p21, PCNA [176]

COX-2, cyclooxygenase-2; EGFR, Epidermal growth factor receptor; ERK, extracelluar signal-regulated kinases; GSK-3β, Glycogen synthase
kinase-3β; NF-κB, nuclear factor-kappaB; ICAM, intracellular cell adhesion molecule; iNOS, inducible nitric oxide synthase; MMP, matrix
metalloproteinase; PCNA, proliferating cell nuclear antigen; VEGF, vascular endothelial growth factor
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