
Evaluation of 3D fluoroscopic image generation from a single
planar treatment image on patient data with a modified XCAT
phantom

Pankaj Mishra1, Ruijiang Li2, Sara St. James1, Raymond H Mak1, Christopher L Williams1,
Yong Yue1, Ross I Berbeco1, and John H Lewis1

Pankaj Mishra: pmishra@lroc.harvard.edu; John H Lewis: jhlewis@lroc.harvard.edu
1Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School
2Department of Radiation Oncology, Stanford University School of Medicine

Abstract
Accurate understanding and modeling of respiration-induced uncertainties is essential in image-
guided radiotherapy. Explicit modeling of overall lung motion and interaction among different
organs promises to be a useful approach. Recently, preliminary studies on 3D fluoroscopic
treatment imaging and tumor localization based on Principal Component Analysis (PCA) motion
models and cost function optimization have shown encouraging results. However, the performance
of this technique for varying breathing parameters and under realistic conditions remains unclear
and thus warrants further investigation. In this work, we present a systematic evaluation of a 3D
fluoroscopic image generation algorithm via two different approaches. In the first approach the
model’s accuracy is tested for changing parameters for sinusoidal breathing. These parameters
included changing respiratory motion amplitude, period, and baseline shift. The effects of setup
error, imaging noise and different tumor sizes are also examined. In the second approach, we test
the model for anthropomorphic images obtained from a modified XCAT phantom. This set of
experiments is important as all the underlying breathing parameters are simultaneously tested, as
in realistic clinical conditions. Based on our simulation results for more than 250 seconds of
breathing data for 8 different lung patients, the overall tumor localization accuracy of the model in
left-right (LR), anterior-posterior (AP) and superior-inferior (SI) directions are 0.1 ± 0.1 mm, 0.5
± 0.5 mm and 0.8 ± 0.8 mm respectively. 3D tumor centroid localization accuracy is 1.0 ± 0.9
mm.

1. Introduction
Respiration-induced lung motion is a major cause of uncertainty in image-guided
radiotherapy (Jiang, 2006; Keall et al., 2006; Vedam et al., 2003). Two-dimensional
projection images can be used to account for respiratory motion-based uncertainties in tumor
localization (Seppenwoolde et al., 2002). However, these techniques do not provide 3D
information about the tumor or normal structures. Recently, there have been significant
developments in 3D lung motion modeling (Li et al., 2010; Sohn et al., 2005; Zhang et al.,
2007; Zhang et al., 2010). This approach takes into account the inherent correlation among
different organs and can effectively capture the overall lung motion. Accurate 3D
fluoroscopic imaging captures anatomical variations during radiotherapy treatment has the
potential to improve target localization and delivered dose calculations for tumors or normal

Correspondence to: Pankaj Mishra, pmishra@lroc.harvard.edu; John H Lewis, jhlewis@lroc.harvard.edu.

NIH Public Access
Author Manuscript
Phys Med Biol. Author manuscript; available in PMC 2014 February 21.

Published in final edited form as:
Phys Med Biol. 2013 February 21; 58(4): 841–858. doi:10.1088/0031-9155/58/4/841.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



tissue that move with respiratory motion, and could play an important role in adaptive
radiotherapy.

The generation of 3D fluoroscopic images based on single 2D x-ray projection images is
comprised of two components. The first component is the creation of a patient specific
motion-model based on information available prior to radiotherapy treatment (e.g., 4DCT)
(Sohn et al., 2005); (Low et al., 2005; Hertanto et al., 2012). The second component
involves the generation of 3D fluoroscopic images by incorporating prior knowledge in the
form of the patient-specific lung motion model, with 2D x-ray projection images. Both
components introduce variability to the accuracy of generated 3D fluoroscopic images. In
the past, there have been efforts to evaluate the accuracy of various motion models based on
deformable registration methods (Brock, 2009; Kashani et al., 2008), and initial studies on
the performance of 3D fluoroscopic image generation (Li et al., 2010). A complete step-by-
step analysis of 3D fluoroscopic image generation remains to be done.

The objective of this work is to systematically evaluate the accuracy of a 3D fluoroscopic
image generation algorithm. Since the method incorporates prior knowledge, it is important
to test the performance of the algorithm in situations where the patient’s anatomy or motion
during treatment varies compared to the imaging used as prior knowledge. The accuracy will
be evaluated under conditions of changing breathing period, breathing amplitudes, baseline
tumor positions, patient setup errors, imaging noise, and tumor sizes. The evaluation is first
carried out by varying these parameters for a sinusoidal breathing pattern, as the effect of
individual changing parameters can be analyzed. The evaluation is then extended to
measured 3D (irregular) patient tumor motions. The data for irregular breathing is based on
data from 8 lung patients and is generated using a modified anthropomorphic XCAT
phantom (Berbeco et al., 2005; Mishra et al., 2012). A major advantage of using the digital
XCAT phantom is the access to ground truth anatomy and tumor motion. The two error
metrics used to evaluate the model are tumor localization error and normalized root mean
squared error for the entire volume.

Evaluating the 3D fluoroscopic image generation algorithm for irregular patient breathing
patterns is of critical importance. The lung motion model is built from 4DCT training data,
thus essentially information corresponding to only one breathing cycle is used as prior
knowledge. While this may not be a problem for regular, periodic breathing patterns,
irregular patterns pose a challenge for accurate 3D image generation. Evaluation using real
patient tumor trajectories will allow assessment of the algorithm’s performance under
realistic situations and is a necessary step in determining its potential clinical utility.

2. Methods and Materials
2.1 Modified XCAT phantom

The non-uniform rational B-spline (NURBS)-based 4D eXtended CArdiac-Torso (XCAT)
phantom (Segars et al., 2010) is a flexible and realistic hybrid digital phantom. The XCAT
phantom uses a model for respiratory mechanics involving motion of diaphragm, liver,
stomach, spleen, thoracic cage and lungs (Segars et al., 2001). According to this model,
anterior-posterior (AP) and superior-inferior (SI) motion of the lung is governed by chest
wall and diaphragm motions, respectively. This phantom generates 3D imaging data with
regular breathing cycles. (Mishra et al., 2012) modified the existing XCAT phantom to
include irregular breathing cycles based on recorded patient tumor trajectories (Berbeco et
al., 2005). In this work, we use the realistic 4DCT data generated from the modified XCAT
phantom to carry out experiments for evaluation of the 3D fluoroscopic image generation
and tumor localization model. Typical sagittal and coronal slices of 4DCT data

Mishra et al. Page 2

Phys Med Biol. Author manuscript; available in PMC 2014 February 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



corresponding to 5 different phases from the modified XCAT phantom are shown in Figure
1.

2.2 Patient Data
The 3D patient tumor trajectories used in this work were acquired using the Mitsubishi Real-
time Radiation (RTRT) system in the Radiation Oncology Clinic at the Nippon Telegraph
and Telephone Company in Sapporo, Japan. Patient data was taken using simultaneously
acquired stereoscopic images of 1.5 mm gold fiducial markers in the lung tumors. The data
acquisition rate is 30 Hz. Patients in this study were not breath coached. The acquired data
only indicates 3D tumor centroid position for each time step which is then used to generate
3D images as described in section 2.1. For a detailed description regarding patient data
acquisition, see (Shirato 2000, Berbeco 2005).

2.3 Definition of terms used
Before describing 3D lung motion model and the experimental setup for its evaluation, we
would like to introduce some of the key terms used in the paper.

Reference image—The reference phase of (simulated) 4DCT to which each other 4DCT
phase is registered. The patient-specific 3D lung motion model (described in section 2.4) is
based on DVFs derived from deformable image registration. These DVFs must be defined
relative to a reference image. The end-of-exhale 4DCT phase is chosen as the reference in
this work.

Generated 3D fluoroscopic images—The final resultant images of the image
generation algorithm. The goal of the algorithm tested in this study is to generate 3D
fluoroscopic images based on prior knowledge from 4DCT and measured 2D projection
images. Generated 3D fluoroscopic images are time-varying 3D images.

For brevity, in figures 3D fluoroscopic images are referred to as fluoroscopic
images.

Ground truth 3D images/ test images—3D images representing the actual positions of
anatomy/tumor at a given time. These are generated using the XCAT software, and
compared to the generated 3D fluoroscopic treatment images to assess the accuracy of the
image generation algorithm. The advantage of using modified XCAT phantom is that it
gives exact voxel locations and their movements corresponding to different phases of a
breathing cycle.

For brevity, in figures ground truth test images are referred to as test images.

2D projection treatment images—2D projections images “measured” during treatment
using an on-board imager (i.e., gantry-mounted kilo-voltage imager). In this work, 2D
projection treatment images are simulated using the XCAT phantom’s ground truth 3D
images.

Optimization DRR—The 2D image created by applying the projection operator to the
deformed reference image in the iterative optimization scheme (eq. 2). This image is used
for comparison to the 2D projection treatment images.

2.4 3D fluoroscopic image generation algorithm
(Sohn et al., 2005) modeled inter-fractional deformation of adjacent organ structures in CT
images using eigenvector decomposition. A PCA-based method was subsequently used by
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(Zhang et al., 2007a) for estimating the thoracic tumor and normal lung tumor motion for
non-repeatable breathing patterns. This demonstrated that a model based on only a few PCA
coefficients could capture variations in respiratory motion. This work was extended in (Li et
al., 2010) to generate 3D fluoroscopic images from 2D treatment images via cost function
optimization. A brief description of the PCA motion model followed by 3D fluoroscopic
image generation is given as follows:

2.4.1. Principal Component Analysis (PCA) based lung motion model—To
capture the spatiotemporal evolution of lung motion a set of displacement vector fields
(DVFs) are calculated via deformable image registration between each 3D image
(corresponding to different phases) and a reference image. These DVFs can be compactly
represented by only a few (2-3) eigenvectors. Based on the lung motion model, a DVF for
any possible motion state t can be approximated by adding a mean DVF and a linear
weighted combination of eigenvectors:

(1)

where  is the mean DVF, un are the basis eigenvectors, wn(t) are the eigen-coefficients
(or weight vectors), and n is the number of eigenvectors used. In our model, N =3, i.e., 3
eigenvectors are used for the lung motion model. 3D fluoroscopic image for a given DVF
and a reference image can be calculated by using a suitable 3D interpolation technique (e.g.,
3D linear interpolation).

The key characteristic of PCA based eigenvector decomposition is that spatiotemporal
information in DVFs is separated into spatial and temporal components. PCA coefficients
wn(t) are time dependent whereas  and eigenvectors un are space-dependent. Generating
3D fluoroscopic images thus becomes dependent on a small set of time-dependent eigen-
coefficients wn(t).

2.4.2. Optimization-based 3D Fluoroscopic images—A new 3D fluoroscopic image
can be generated by optimizing coefficients wn(t) in the PCA lung motion model. These
weight vectors are iteratively calculated such that the optimization DRR for the reference
image f0 matches the 2D projection treatment image x. This is achieved by minimizing
following cost function:

(2)

where J(w) is the objective function representing squared L2-norm of the error between 2D
projection treatment image x and the optimization DRR of the 3D image f (obtained from
deforming the reference image f0). The relative pixel intensity between optimization DRR
and 2D projection treatment image is represented by λ. P is the projection matrix (Siddon,
1985) that computes the optimization DRR for a 3D image f on the x-ray detector. The
imager has a physical size of 40 × 30 cm2. The resolution of 2D projection treatment image
was sampled down to a resolution of 200 × 150 (2 × 2 mm2). The dot between P, f and λ, x
represents a dot product. A typical optimization DRR is shown in Figure 2.

2.5 Experimental design
The 3D fluoroscopic image generation algorithm is evaluated based on: 1) systematically
varying parameters for a sinusoidal breathing pattern; and 2) measured patient tumor
motions. These evaluations are carried out on images generated from the modified XCAT
phantom. The resolution of generated 3D fluoroscopic images is 2, 2, 2.5 mm in x, y and z

Mishra et al. Page 4

Phys Med Biol. Author manuscript; available in PMC 2014 February 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



directions. The size of 3D images containing entire volume is 256×256×120. The details of
each experiment are described below.

Tumor location influences the diaphragm and chest wall motion and hence the production of
modified XCAT data. The tumor motion is inversely related to the distance from both the
chest wall and diaphragm motion (Segars et al., 2010). In these experiments tumor is located
close to both chest wall and diaphragm. Thus chest wall, diaphragm and tumor motion are
almost equal.

2.5.1 Experiments based on variations in sinusoidal breathing—3D training
images for all experiments related to sinusoidal breathing (except varying chest wall and
diaphragm motion experiments) were generated for an amplitude of 2 cm in superior-
inferior (SI) direction and 1.2 cm in the anterior-posterior (AP) direction. These 3D images
were generated for a breathing period of 5 s. Corresponding SI and AP amplitudes values for
varying chest wall and diaphragm motion experiments were 1 cm and 1.2 cm. The reasoning
for these values is explained in section 3.1.1. All images included default XCAT heart
motion.

• Varying magnitude: The magnitude of diaphragm motion is varied from 0 cm to 3
cm and 0 to 1.8 cm for the chest wall motion. Diaphragm motion is incremented by
0.5 cm. Chest wall increments are 0.3 cm.

• Changing breathing period: The breathing period was varied from 3 to 8 s at an
interval of 1 s.

• Baseline Shift: The diaphragm and tumor “home” positions were shifted from 0 cm
to 3 cm at increments of 0.5 cm. The chest wall motion was kept constant.

• Setup error: The isocenter was shifted by 0.5 cm in the SI direction.

• Imaging noise: The algorithm was tested for Poisson noise of high and low doses.
High dose (low noise) 2D projection treatment images were generated for 200,000
photons per detector and low dose (high noise) 2D projection treatment images
were generated for 25,000 photons per (Evans et al., 2011; Whiting et al., 2006)
detector.

• Different tumor sizes: Tumor diameters were varied from 10 mm to 30 mm at an
increment of 5 mm.

2.5.2 Experiments based on patient tumor trajectories—Modified XCAT phantom
was used to generate 4DCT training and test data from recorded tumor trajectories (section
2.2). A total of 8 patients’ tumor trajectories were used for XCAT phantom generation. For
each patient the first breathing cycle was used for creating patient-specific lung motion
models and next 10 breathing cycles were used for producing test data. Each breathing
cycles was sampled to produce 10 phases of 4DCT data.

2.6 Error metrics
Performance of the generation model is measured by two error metrics:

a. 3D fluoroscopic image generation accuracy: The first error metric evaluates the 3D
fluoroscopic image generation accuracy by calculating normalized root mean
square error (NRMSE), which is defined as follows:

(3)
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where f is the generated 3D fluoroscopic image and f* is the ground truth test
images obtained from modified XCAT phantom. Here i represent the voxel index.
NRMSE measures the voxel-wise difference in intensities of the two images. The
overall number of voxels covering entire lung is equal to 256×256×120.

In this manuscript, NRMSE error between reference image and ground truth test
images is referred as “initial NRMSE” whereas the NRMSE between generated 3D
fluoroscopic image and ground truth test image is referred as “final NRMSE”. An
improvement in NRMSE means that final NRMSE is less than initial NRMSE. In
other words improvement means the generated 3D fluoroscopic image more closely
matches the ground truth test images.

b. Tumor localization accuracy: The second error metric evaluates how accurately the
tumor position is represented in the 3D fluoroscopic images. Localization accuracy
is determined by calculating LR, AP, SI and 3D positions of the tumor centroid for
different time indices and comparing it with the location obtained from ground
truth test images.

Centroid tumor positions in generated 3D fluoroscopic images are determined by
deformation inversion. DVFs to generate 3D fluoroscopic images in eq. 2 are
defined on the coordinates of new image f. To determine how each voxel (and
centroid) in the reference image f0 has moved push-forward DVFs on the
coordinates of reference image need to be calculated. Push-forward DVFs tell how
to warp the reference image to the generated 3D fluoroscopic image. “Pull-
backward” DVFs tell how to warp the generated 3D fluoroscopic image back to the
reference image. Since the DVFs are sampled discretely (due to finite voxel size),
some approximation is required when inverting from one type of DVF to another.
Our algorithm calculates pull-backward DVFs, but we need push-forward DVFs to
determine the motion of voxels in the reference image’s coordinate system. To
calculate DVFs on reference image coordinates, we used an efficient fixed-point
algorithm for deformation inversion as described in (Chen et al., 2008). These
push-forward DVFs with tri-linear interpolation are used to determine movement of
individual voxels and thus define the centroid positions in the generated 3D
fluoroscopic images.

3. Results
3.1 Controlled evaluation of varying sinusoidal breathing

3.1.1 Varying chest wall and diaphragm motion—In this section changes in 3D
fluoroscopic image generation accuracy as a function of varying chest wall and diaphragm
(and thus AP and SI tumor) motion amplitudes was evaluated. This experiment represents
situations where a patient’s breathing amplitude changes between 4DCT acquisition (used to
build the PCA lung motion model) and treatment. Changes in 3D fluoroscopic image
generation accuracy are shown by NRMSE lines in Figure 3. It can be observed that the
algorithm always improves upon the initial error but as the magnitudes of the two motions
are increased the gain in final accuracy decreases. One of the reasons for differences
between generated 3D fluoroscopic image and ground truth 3D test images is heart motion,
which is not explicitly modeled by the PCA lung motion model.

The effect of varying amplitude on tumor localization accuracy is shown in Figure 4. The
plots in these figures show the localization accuracy in the LR, AP and SI directions. Blue
lines show tumor locations in ground truth test images while the broken red lines show
tumor locations in the generated 3D fluoroscopic images. Two adjacent broken red and solid
blue lines represent the tumor locations for same amplitudes. It can be observed that the
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tumor locations in the generated 3D fluoroscopic images closely follow the ground truth
locations in all the three directions. As mentioned in section 3.1, to evaluate the localization
accuracy with changing magnitudes the model is trained for 1 cm diaphragm motion and 0.6
cm chest wall motion. This is represented by the second line (bold blue line) in all the three
cases. The corresponding red line is also in bold. There is small increase in localization error
when magnitudes are varied in the either directions. The exact localization accuracy is
shown in Table 1.

3.1.2 Varying respiratory period—Next, the impact of changing respiratory period on
the 3D fluoroscopic image generation and tumor localization was evaluated. Breathing cycle
periods were varied from 3 to 8 s at an increment of 1 s. Magnitudes of AP and SI motion in
all these cases were kept at 1.2 cm and 2 cm, respectively. The 3D fluoroscopic image
generation accuracy (NRMSE) is shown in Figure 5 and the tumor localization accuracy is
shown in Figure 6. 3D fluoroscopic image generation and tumor localization accuracies
remain constant and are independent of respiratory period. This is expected as the PCA lung
motion model decouples (eq. 1) the spatial and temporal component of the lung motion
captured by the DVFs. As long as the DVFs accurately capture the underlying motion state,
the approximation to any time instance t can be accurately calculated.

3.1.3 Varying Baseline Shift—This section simulates the errors induced if the baseline
position of a tumor’s motion changes between 4DCT acquisition (used to generate the PCA
model) and treatment. In this experiment, the baseline tumor position is shifted from 0 to 3
cm in increments of 5 mm. 3D fluoroscopic image generation accuracy with the changing
baseline is shown in Figure 7. In this figure solid blue lines represent initial NRMSE and
broken red lines represent final NRMSE. Plots in figure 7 correspond to different baseline
shifts introduced in the SI direction. The numbers in the top right corner show the magnitude
of baseline shift in mm. The default SI motion is 2 cm. Hence the first plot corresponds to
2cm plus the baseline shift shown in the plot. From the gap between these two lines in this
figure, it can be observed that the model is able to improve upon the generation accuracy
(NRMSE) for different baseline shifts.

Tumor localization accuracies with changing baseline shifts are shown in Figure 8. Tumor
centroid positions in generated 3D fluoroscopic images follow tumor trajectories in ground
truth test images closely, but some accuracy is lost in the AP direction. This is due to the
fact that for ground truth 3D images baseline shifts are introduced only in SI directions. This
disrupts the correspondence between SI and AP motion on which the model is trained. The
localization accuracy in all three LR, AP and SI directions and 3D are shown in Table 2.

3.1.4 Setup error—To simulate patient positioning/setup error, the projection images for
ground truth test images were generated by shifting the isocenter superiorly by 5 mm. The
setup error for regular breathing test data for 10 different phases in LR, AP and SI directions
are shown in Table 3. Tumor localization errors in all three directions confirm that setup
error is a potentially major source of error. Possible ways to remedy setup error are
considered in the discussion.

3.1.5 Imaging noise—In this section we analyze the effects of increased imaging noise
(Evans et al., 2011) characterized the incident photon fluence and thus account for imaging
noises in 2D projection treatment images. In this work, we used low dose (high noise) of 25,
000 photons per detector and high dose (low noise) 200,000 photons per detector to mimic
noisy 2D projection images. 2D projection images containing low and high Poisson noise is
shown in figure 9.
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Figure 10 shows the reconstruction accuracy of the algorithm for low and high imaging
noise. In this figure blue lines shows initial NRMSE and broken red lines show the final
NRMSE. In both the cases algorithm improves 3D fluoroscopic image generation accuracy.
The tumor centroid positions of ground truth 3D images (solid blue line) and generated 3D
fluoroscopic (broken red lines) images for LR, AP, SI directions are shown in figure 11. The
two tumor trajectories follow each other closely. The tumor trajectories for low and high
noise case are almost same, confirming the robustness of the algorithm in the presence of
varying imaging noise.

3.1.6 Varying tumor size—Tumors of diameters from 10 to 30 mm (at an increment of 5
mm) were used to test the tumor localization accuracy capability of the algorithm for
varying tumor sizes. The tumor localization results are shown in figure 12. Tumor
trajectories in the reconstructed 3D fluoroscopic images (broken red lines) closely follow the
tumor trajectories in the ground truth 3D images (solid blue line). It can be noted that there
is virtually no difference in localization accuracy in LR, AP, and SI directions with changing
tumor diameter.

3.2 Evaluation on patient data
In this section, the 3D fluoroscopic image generation algorithm is evaluated with XCAT
phantom data generated from measured 3D patient tumor trajectories (described in section
2.2). For each patient first breathing cycle was used for building PCA lung motion model
and then 100 2D treatment projection images spanning over approximately 30 s were used
for testing the algorithm. In total, 8 patients were used to test the accuracy of 3D
fluoroscopic image generation model and its tumor localization accuracy. Thus 800 3D
images were generated and were tested for NRMSE and tumor localization accuracy.

The 3D fluoroscopic image generation errors for two patients are shown in the figure 13. 3D
fluoroscopic image generation accuracies for all 8 patients are shown in table 4. Tumor
localization for a total of 8 patients is shown in figure 14. The localization accuracy is
shown for all the three directions: LR, AP and SI. The centroid positions are plotted in mm.
The tumor motion in the generated 3D fluoroscopic images follows the ground truth test
images closely in all three directions.

The localization error mean and standard deviation for all of the patients are shown in table
5. The last row in this table reports the overall localization error in all three dimensions and
also the overall value for 3D accuracy. All the errors are in the order of 1-2 pixels.

4 Discussion
We presented a detailed evaluation of a 3D fluoroscopic image generation algorithm. The
evaluation was done in two stages. First a systematic set of experiments were carried out on
varying sinusoidal breathing patterns and second, the model was tested using recorded
patient tumor motions. In the first stage the effects of changes in amplitude, period, baseline
shift, setup error, imaging noise, and tumor size were analyzed. This set of experiments
provides insight into the behavior of the image generation model under isolated and well-
defined settings. In the second set of experiments, measured patient 3D tumor trajectories
are used to test the model. For each of the 8 patients, 100 3D images, spanning over
approximately 30 s, were used. The overall accuracy of tumor localization is on the order of
1 pixel (1.0 ± 0.9 mm). For patient data, all of the underlying variables are tested
simultaneously and the overall error is a cumulative result of these parameters. Our result is
comparable to the markerless tumor tracking results of 1-2 mm accuracy reported in (Cui et
al., 2007; Rottmann et al., 2010; Xu et al., 2008).
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Patient 4 in figure 14 is a good example for highlighting the robustness of the 3D
fluoroscopic image generation algorithm. The SI motion for patient 4 (row 4, column 3)
shows a baseline shift (first breath vs. second breath) as well as varying breathing periods
(fourth breath vs. fifth breath). In both cases the tumor position is accurately represented in
the 3D fluoroscopic image, corroborating the results from the set of experiments conducted
on the sinusoidal breathing cases (section 3.1).

This work can be extended in a few directions. The PCA lung motion model uses
eigenvectors as basis function and assumes Gaussian probability distribution. The model
could be extended to include a more generalized basis function decomposition e.g.,
independent component analysis (ICA) (Comon, 1994; Hyvarinen and Oja, 2000). Another
direction to investigate will be image generation based on MV projections.

Incorporating 4D-CBCT into the image generation algorithm is an important next step.
Setup error can cause significant errors in tumor localization (Section 4.1.4). These errors
could be eliminated or greatly reduced by using 4D-CBCT acquired from the patient
immediately before treatment (in treatment position) to generate the motion model. This
approach would also allow for the image generation algorithm to adapt to any significant
anatomical changes between the time of 4DCT acquisition and the treatment session. A
downside is the time it would take to generate the motion model while the patient is in
treatment position. With the current GPU implementation (NVIDIA GeForce GTS 450), this
takes approximately 3-4 minutes for a 10 phase 4D image set.

5. Conclusion
In this work we presented a systematic evaluation of a 3D fluoroscopic image generation
algorithm from a single planar treatment image. Using the modified XCAT phantom, first a
set of experiments were conducted to independently study uncertainties induced by setup
errors, breathing amplitude changes, breathing period changes, imaging noise, baseline
tumor position shifts, and tumor size variations. Next, the algorithm was tested on measured
patient 3D tumor trajectories from 8 patients. Overall, results suggested that the algorithm
was robust to nearly all of the variables, with the most problematic uncertainty sources being
setup error and baseline shifts. Resolving these issues will be a subject of future research.
Based on our simulation results 8 patients, the overall tumor localization accuracy of the
model in left-right (LR), anterior-posterior (AP) and superior-inferior (SI) directions are 0.1
± 0.1 mm, 0.5 ± 0.5 mm and 0.8 ± 0.8 mm respectively. 3D tumor centroid localization
accuracy is 1.0 ± 0.9 mm.

Acknowledgments
The authors would like to express their gratitude to Drs. Seiko Nishioka of the Department of Radiology, NTT
Hospital, Sapporo, Japan and Hiroki Shirato of the Department of Radiation Medicine, Hokkaido University School
of Medicine, Sapporo, Japan for sharing the Hokkaido dataset. The project described was supported by Award
Numbers RSCH1206 (JHL) from the Radiological Society of North America and NIH/NCI 1K99CA166186 (RL).

References
Berbeco RI, Mostafavi H, Sharp GC, Jiang SB. Towards fluoroscopic respiratory gating for lung

tumours without radiopaque markers. Phys Med Biol. 2005; 50:4481–90. [PubMed: 16177484]

Brock KK. Results of a multi-institution deformable registration accuracy study (MIDRAS). Int J
Radiat Oncol Biol Phys. 2009; 76:583–96. [PubMed: 19910137]

Chen M, Lu W, Chen Q, Ruchala KJ, Olivera GH. A simple fixed-point approach to invert a
deformation field. Med Phys. 2008; 35:81–8. [PubMed: 18293565]

Mishra et al. Page 9

Phys Med Biol. Author manuscript; available in PMC 2014 February 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Comon P. Independent component analysis, a new concept? Journal of Signal Processing. 1994;
36:287–314.

Cui Y, Dy JG, Sharp GC, Alexander B, Jiang SB. Multiple template-based fluoroscopic tracking of
lung tumor mass without implanted fiducial markers. Phys Med Biol. 2007; 52:6229–42. [PubMed:
17921582]

Evans JD, Politte DG, Whiting BR, O’Sullivan JA, Williamson JF. Noise-resolution tradeoffs in x-ray
CT imaging: a comparison of penalized alternating minimization and filtered backprojection
algorithms. Med Phys. 2011; 38:1444–58. [PubMed: 21520856]

Hertanto A, Zhang Q, Hu YC, Dzyubak O, Rimner A, Mageras GS. Reduction of irregular breathing
artifacts in respiration-correlated CT images using a respiratory motion model. Med Phys. 2012;
39:3070–9. [PubMed: 22755692]

Hyvarinen A, Oja E. Independent component analysis: algorithms and applications. Neural Netw.
2000; 13:411–30. [PubMed: 10946390]

Jiang SB. Radiotherapy of mobile tumors. Semin Radiat Oncol. 2006; 16:239–48. [PubMed:
17010907]

Kashani R, Hub M, Balter JM, Kessler ML, Dong L, Zhang L, Xing L, Xie Y, Hawkes D, Schnabel
JA, McClelland J, Joshi S, Chen Q, Lu W. Objective assessment of deformable image registration
in radiotherapy: a multi-institution study. Med Phys. 2008; 35:5944–53. [PubMed: 19175149]

Keall PJ, Mageras GS, Balter JM, Emery RS, Forster KM, Jiang SB, Kapatoes JM, Low DA, Murphy
MJ, Murray BR, Ramsey CR, Van Herk MB, Vedam SS, Wong JW, Yorke E. The management of
respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys. 2006;
33:3874–900. [PubMed: 17089851]

Li R, Jia X, Lewis JH, Gu X, Folkerts M, Men C, Jiang SB. Real-time volumetric image reconstruction
and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy.
Med Phys. 2010; 37:2822–6. [PubMed: 20632593]

Low DA, Parikh PJ, Lu W, Dempsey JF, Wahab SH, Hubenschmidt JP, Nystrom MM, Handoko M,
Bradley JD. Novel breathing motion model for radiotherapy. Int J Radiat Oncol Biol Phys. 2005;
63:921–9. [PubMed: 16140468]

Mishra P, St James S, Segars WP, Berbeco RI, Lewis JH. Adaptation and applications of a realistic
digital phantom based on patient lung tumor trajectories. Phys Med Biol. 2012; 57:3597–608.
[PubMed: 22595980]

Rottmann J, Aristophanous M, Chen A, Court L, Berbeco R. A multi-region algorithm for markerless
beam’s-eye view lung tumor tracking. Phys Med Biol. 2010; 55:5585–98. [PubMed: 20808029]

Segars WP, Lalush DS, Tsui BM. Modeling respiratory mechanics in the mcat and spline-based mcat
phantoms. IEEE Trans Nucl Sci. 2001; 48:89–97.

Segars WP, Sturgeon G, Mendonca S, Grimes J, Tsui BM. 4D XCAT phantom for multimodality
imaging research. Med Phys. 2010; 37:4902–15. [PubMed: 20964209]

Seppenwoolde Y, Shirato H, Kitamura K, Shimizu S, van Herk M, Lebesque JV, Miyasaka K. Precise
and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured
during radiotherapy. Int J Radiat Oncol Biol Phys. 2002; 53:822–34. [PubMed: 12095547]

Siddon RL. Calculation of the radiological depth. Med Phys. 1985; 12:84–7. [PubMed: 3974530]

Sohn M, Birkner M, Yan D, Alber M. Modelling individual geometric variation based on dominant
eigenmodes of organ deformation: implementation and evaluation. Phys Med Biol. 2005;
50:5893–908. [PubMed: 16333162]

Vedam SS, Keall PJ, Kini VR, Mostafavi H, Shukla HP, Mohan R. Acquiring a four-dimensional
computed tomography dataset using an external respiratory signal. Phys Med Biol. 2003; 48:45–
62. [PubMed: 12564500]

Whiting BR, Massoumzadeh P, Earl OA, O’Sullivan JA, Snyder DL, Williamson JF. Properties of
preprocessed sinogram data in x-ray computed tomography. Med Phys. 2006; 33:3290–303.
[PubMed: 17022224]

Xu Q, Hamilton RJ, Schowengerdt RA, Alexander B, Jiang SB. Lung tumor tracking in fluoroscopic
video based on optical flow. Med Phys. 2008; 35:5351–9. [PubMed: 19175094]

Mishra et al. Page 10

Phys Med Biol. Author manuscript; available in PMC 2014 February 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Zhang Q, Hu YC, Liu F, Goodman K, Rosenzweig KE, Mageras GS. Correction of motion artifacts in
cone-beam CT using a patient-specific respiratory motion model. Med Phys. 2010; 37:2901–9.
[PubMed: 20632601]

Zhang Q, Pevsner A, Hertanto A, Hu YC, Rosenzweig KE, Ling CC, Mageras GS. A patient-specific
respiratory model of anatomical motion for radiation treatment planning. Med Phys. 2007;
34:4772–81. [PubMed: 18196805]

Mishra et al. Page 11

Phys Med Biol. Author manuscript; available in PMC 2014 February 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Sagittal and Coronal slices from the modified XCAT phantom created using measured
patient tumor motion data.
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Figure 2.
A typical digitally reconstructed radiograph (DRR) based on Siddon’s algorithm at an
imager angle of 0° The DRR is created for a tumor in the right lung.
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Figure 3.
Change in NRMSE as the magnitude of chest wall and diaphragm (and thus tumor) motions
are varied. The numbers in the boxes represent magnitude of AP/SI motions in mm. Solid
blue lines represent the NRMSE between the reference image and the ground truth 3D
images (initial NRMSE). Broken red lines show NRMSE between generated 3D
fluoroscopic images and the ground truth image (final NRMSE). The gap between these two
curves represents that generated 3D fluoroscopic images are closer to the ground truth 3D
images than the initial 3D reference images (improved accuracy). In an ideal scenario the
broken red line will be flat representing zero error between generated 3D fluoroscopic
images and ground truth images.
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Figure 4.
Tumor centroid positions in ground truth 3D image (solid blue line) vs. tumor positions in
generated 3D fluoroscopic images (broken red line) with changing diaphragm and chest wall
motion amplitudes. The numbers in the middle and right plots represent magnitude of chest
wall (middle) and diaphragm (right) motions in mm for the adjacent solid blue lines. In all
three directions tumor centroid positions in the generated 3D fluoroscopic images match
tumor positions in the ground truth 3D images very closely. There is a small loss in tumor
localization accuracy as the amplitudes vary.
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Figure 5.
Comparison of NRMSE with changing breathing period. Solid blue lines represent initial
NRMSE error while broken red lines show final NRMSE. The number in the upper right
corner of each plot shows breathing period. NRMSE is independent of breathing period
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Figure 6.
Tumor centroid positions in ground truth test images (solid blue line) vs. tumor centroid
positions in generated 3D fluoroscopic images (broken red line) with changing breathing
period. Irrespective of changing breathing period broken red lines are closely followed by
solid blue lines in all three LR, AP, and SI directions. Tumor trajectories for different
breathing periods overlap each other as the magnitudes of AP and SI directions were kept
constant while the breathing period was changed (hence “thicker” solid blue and broken red
lines).
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Figure 7.
Comparison of NRMSE errors with shifting baseline. Solid blue lines represent initial
NRMSE and broken red lines represent final NRMSE. The number in the upper right corner
of each plot shows the baseline shift introduced in the SI direction.
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Figure 8.
Tumor centroid position in ground truth 3D images (solid blue line) vs. tumor centroid
positions in generated 3D fluoroscopic images (broken red line) with varying baseline shift.
Tumor localization accuracy in AP direction drops due to introduction of baseline shift in SI
direction only. This disrupts the relationship between SI and AP direction as explained in
section 3.1.3.
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Figure 9.
2D projection images with Low and High Poisson noise. Low Poisson noise was generated
for a incident photon fluence of 200, 000 photons per detector and high Poisson noise was
detected for 25, 000 photons per detector.

Mishra et al. Page 20

Phys Med Biol. Author manuscript; available in PMC 2014 February 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 10.
NRMSE for low and high Poisson noise 2D projection treatment images. Solid blue lines
represent the initial NRMSE while broken red lines show final NRMSE
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Figure 11.
Tumor centroid positions in ground truth 3D images (solid blue line) vs. tumor trajectories
in generated 3D fluoroscopic images (broken red line) for low and high imaging noise The
tumor trajectory in generated 3D fluoroscopic images closely follow the tumor trajectory in
test images in LR, AP, and SI directions. The tumor trajectories in reconstructed 3D
fluoroscopic images overlap each other which shows the robustness of model to different
imaging noises
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Figure 12.
Tumor centroid positions in ground truth 3D images (solid blue line) vs. tumor centroid
positions in generated 3D fluoroscopic images (broken red line) for varying tumor sizes.
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Figure 13.
NRMSE for two patients for approximately 30 s is shown. Solid blue lines represent the
initial NRMSE and broken red lines show final NRMSE
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Figure 14.
Tumor centroid positions for 8 patients are shown. Solid blue lines show tumor centroid
positions for ground truth 3D images while the broken red lines show tumor centroid
positions for generated 3D fluoroscopic images.
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Table 2

Tumor localization accuracy with varying baseline shift. The baseline shift was introduced in SI direction. The
default motion in SI direction is 2 cm. The first row (bold) corresponds to the default AP and SI motion as
baseline shift is 0 mm. The first column shows the baseline shift added to the default SI motion. The last
column shows the 3D localization error for the tumor centroid.

SI baseline shift (mm) Localization error (mm)

LR AP SI 3D

0 0.2 ± 0.1 0.2 ± 0.1 0.4 ± 0.5 0.5 ± 0.5

5 0.2 ± 0.2 0.3 ± 0.2 0.6 ± 0.6 0.7 ± 0.7

10 0.3 ± 0.1 0.7 ± 0.3 0.7 ± 0.7 1.0 ± 0.7

15 0.2 ± 0.1 1.1 ± 0.3 1.0 ± 0.8 1.5 ± 0.8

20 0.2 ± 0.1 1.7 ± 0.4 0.9 ± 0.7 1.9 ± 0.8

25 0.3 ± 0.1 2.0 ± 0.3 0.8 ± 0.7 2.2 ± 0.7

30 0.3 ± 0.1 2.5 ± 0.3 1.0 ± 0.7 2.7 ± 0.8
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Table 3

Tumor localization errors (in mm) due to setup error. The setup error is introduced by shifting the isocenter
superiorly by 5 mm. Localization errors here are reported for 10 phases of one breathing cycle. The errors in
LR, AP and SI direction are reported in the 2nd, 3rd and 4th column. The last column shows the 3D localization
error.

Phase # LR (mm) AP (mm) SI (mm) 3D(mm)

1 0.0 1.7 2.7 3.2

2 0.3 2.2 3.2 3.9

3 0.3 1.2 0.3 1.3

4 1.1 0.9 3.8 4.0

5 0.5 0.6 1.3 1.5

6 0.9 0.7 2.9 3.1

7 0.6 1.0 0.2 1.2

8 0.5 1.2 0.6 1.4

9 0.0 1.9 2.0 2.8

10 0.1 2.1 3.0 3.7
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Table 4

Comparisons of NRMSE after 3D fluoroscopic image generation. The second columns show NRMSE between
the reference image and ground truth 3D images (initial NMRSE), while the 3rd column shows NRMSE
between the ground truth 3D images and generated 3D fluoroscopic images (final NMRSE).

Patient # Initial NRMSE Final NRMSE

1 0.10 ± 0.04 0.05 ± 0.02

2 0.08 ± 0.04 0.05 ± 0.02

3 0.06 ± 0.03 0.04 ± 0.01

4 0.07 ± 0.04 0.04 ± 0.02

5 0.09 ± 0.05 0.06 ± 0.02

6 0.10 ± 0.05 0.06 ± 0.03

7 0.12 ± 0.05 0.08 ± 0.04

8 0.09 ± 0.05 0.06 ± 0.03
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Table 5

Tumor localization accuracy for individual patients and their standard deviations are shown here. The last
column shows the root mean square error for the tumor 3D position. The overall tumor localization accuracy
across the population is shown in the last row of the table.

Patient # LR (mm) AP (mm) SI (mm) 3D (mm)

1 0.1 ± 0.1 0.4 ± 0.3 0.7 ± 0.5 0.7 ± 0.6

2 0.2 ± 0.1 0.6 ± 0.4 0.4 ± 0.3 0.7 ± 0.5

3 0.1 ± 0.1 0.4 ± 0.3 0.6 ± 0.5 0.7 ± 0.5

4 0.2 ± 0.2 0.4 ± 0.5 0.7 ± 0.1 0.9 ± 1.0

5 0.2 ± 0.1 0.5 ± 0.5 0.9 ± 0.6 1.1 ± 0.8

6 0.1 ± 0.1 0.6 ± 0.6 0.5 ± 0.4 0.8 ± 0.7

7 0.1 ± 0.1 0.9 ± 0.7 1.3 ± 0.8 1.6 ± 1.1

8 0.2 ± 0.1 0.5 ± 0.3 1.4 ± 1.1 1.5 ± 1.2

Overall 0.1 ± 0.1 0.5 ± 0.5 0.8 ± 0.8 1.0 ± 0.9
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