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Abstract
Objective—Motor Neural Interface Systems (NIS) aim to convert neural signals into motor
prosthetic or assistive device control, allowing people with paralysis to regain movement or
control over their immediate environment. Effector or prosthetic control can degrade if the
relationship between recorded neural signals and intended motor behavior changes. Therefore,
characterizing both biological and technological sources of signal variability is important for a
reliable NIS.

Approach—To address the frequency and causes of neural signal variability in a spike-based
NIS, we analyzed within-day fluctuations in spiking activity and action potential amplitude
recorded with silicon microelectrode arrays implanted in the motor cortex of three people with
tetraplegia (BrainGate pilot clinical trial, IDE).

Main results—Eighty-four percent of the recorded units showed a statistically significant change
in apparent firing rate (3.8±8.71Hz or 49% of the mean rate) across several-minute epochs of tasks
performed on a single session, and seventy-four percent of the units showed a significant change
in spike amplitude (3.7±6.5μV or 5.5% of mean spike amplitude). Forty percent of the recording
sessions showed a significant correlation in the occurrence of amplitude changes across electrodes,
suggesting array micro-movement. Despite the relatively frequent amplitude changes, only 15% of
the observed within-day rate changes originated from recording artifacts such as spike amplitude
change or electrical noise, while 85% of the rate changes most likely emerged from physiological
mechanisms. Computer simulations confirmed that systematic rate changes of individual neurons
could produce a directional “bias” in the decoded neural cursor movements. Instability in apparent
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neuronal spike rates indeed yielded a directional bias in fifty-six percent of all performance
assessments in participant cursor control (n=2 participants, 108 and 20 assessments over two
years), resulting in suboptimal performance in these sessions.

Significance—We anticipate that signal acquisition and decoding methods that can adapt to the
reported instabilities will further improve the performance of intracortically-based NISs.

1. Introduction
Intracortically-based Neural Interface Systems (NISs) may offer a powerful approach to
restore mobility and independence to people with paralysis. Prior studies have demonstrated
that information about movement intention can be detected in human motor cortex even
after years of paralysis due to stroke, spinal cord injury or ALS (Hochberg et al., 2006, Kim
et al., 2008, Chadwick et al., 2011, Simeral et al., 2011a). In turn, extracted movement
intention can provide a command signal sufficiently reliable to control a computer cursor on
a screen in intact macaques (Ganguly and Carmena, 2009, Carmena et al., 2003, Taylor et
al., 2002, Lebedev et al., 2005, Serruya et al., 2002), in people with tetraplegia (Chadwick et
al., 2011, Kim et al., 2008, Simeral et al., 2011a, Hochberg et al., 2006), or to perform
actions with a robotic limb in macaques (Velliste et al., 2008) or humans (Hochberg et al.,
2012, Collinger et al., 2012). Longer term goals include the development of useful, stable,
and reliable neurally-controlled assistive devices, such as dexterous robotic assistive
devices, communication interfaces, or the restoration of movement of paralyzed limbs by
functional electrical stimulation of paralyzed muscles (Donoghue et al., 2007, Pohlmeyer et
al., 2009, Cornwell and Kirsch, 2010, Chadwick et al., 2011). To become clinically viable,
especially if they require surgical implantation of sensors, these applications must perform
reliably over an extended period of time - preferably for a decade or longer.

Technical stability of the recorded neural signals is a desirable design parameter for
neuroprosthetic performance. Encouragingly, intracortical recordings using silicon
microelectrode platforms demonstrated spiking signals and maintained signal quality over
500 days in monkeys (Suner et al., 2005), point and click cursor control over 1000 days in a
person using the same type of sensor (Simeral et al., 2011a), and useful signals for multi-
dimensional device control more than five years after implantation in one person (Hochberg
et al., 2012). Nevertheless, commonly observed signal instabilities could have arisen from
array movement, tissue reaction, array material degradation inside the body, or connector
issues externally. Consistent with the contribution of these physical factors, electrode
impedance and the number of recorded action potentials have been observed to decrease
over months (Parker et al., 2011, Prasad and Sanchez, 2012), and spike amplitudes and root-
mean-squared noise show day-to-day and within day changes and an overall signal
amplitude decrease on average by ∼2-4%/month (Chestek et al., 2011, Linderman et al.,
2006, Santhanam et al., 2007). Whatever the cause, and whether amplitudes increase or
decrease, signal changes can be substantial, as 60% of the waveforms recorded with silicon
platform arrays in monkey have been reported to change across a 15 day interval (Dickey et
al., 2009).

An additional concern for NIS performance is biological stability, i.e. the coding function
that relates neuronal activity to behavior. Preferred direction (Stevenson et al., 2011) and its
contribution to the decoding model appears to be relatively stable in area M1 (Chestek et al.,
2007), as well as decoding performance (Serruya et al., 2003), while somewhat
inconsistently, tuning curves (mean rate, preferred direction and modulation depth) in
different studies report that coding functions may be unstable, between familiar and novel
motor tasks (Rokni et al., 2007, Taylor et al., 2002). Although demonstrations of adaptive
filters attempting to mitigate these instabilities exist (Wu and Hatsopoulos, 2008, Eden et al.,
2004), the efficacy of these approaches in neuroprosthesis applications has not been
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established. When designing such an adaptive filter, a principled first step is to understand
the source and magnitude of signal variance.

To evaluate the nature and extent of instability in spiking populations recorded in the
context of an ongoing pilot clinical trial of people with tetraplegia, we analyzed within-day
changes in spike rates, spike amplitudes and their impact upon decoded output, i.e., neural
cursor control. We found that systematic rate changes occur commonly; these can cause
estimation errors in the decoded kinematic parameters leading to degraded performance that
presents itself as a directional bias. These rate changes originated from a combination of
recording instabilities (amplitude and noise change) and what appear to be physiological
changes. In addition, the majority of the spike amplitude changes we observed were
consistent with localized changes at individual electrodes (or recording channels) rather than
global motion of the recording array. The present study investigates sources of variance in
the recorded neural activity which, if accounted for in real-time neural decoding, would
further improve long term neuroprosthetic reliability and performance.

2. Methods
2.1. Participants

We analyzed data from three participants (S3, A1 and T1) in an ongoing pilot clinical trial.
S3 (female, age: 56 years) was diagnosed with extensive pontine infraction due to
thrombosis of the basilar artery 9 years prior to trial recruitment. A1 and T1 (male and
female, ages 37 and 54, respectively) had advanced amyotrophic lateral sclerosis. All
participants had tetraplegia and anarthria, A1 and T1 were dependent upon mechanical
ventilation. The usual form of communication was through eye movements. This research
was conducted with Institutional Review Board (IRB) approval and an FDA IDE. The pilot
clinical trial is registered at clinicaltrials.gov/NCT00912041. A detailed description of the
BrainGate NIS is presented elsewhere (Simeral et al., 2011a).

2.3. Signal acquisition
Motor cortical activity was recorded with a 10×10 array of 100 platinum-tipped silicon
microelectrodes (1.5 mm length in S3, 1.0 mm in A1 and T1, 400 μm spacing, Blackrock
Microsystems) chronically implanted into the motor cortex (M1) arm area (Hochberg et al.,
2006, Kim et al., 2008). Recorded electrical signals were passed externally through a
titanium percutaneous connector that was secured to the skull. Cabling (94 cm long)
attached to the connector and equipped with a unity-gain isolation stage routed signals to an
amplifier clamped to the back of the wheelchair, where signals were analog filtered
(0.3-7500 Hz), digitized at 30kHz sampling rate and optically transferred to a series of
computers for further processing. Sorted spikes were aggregated into 100ms time bins and
decoded into cursor positions (Kim et al., 2008) thus controlling the motion of a computer
cursor (‘neural cursor’) that the participant viewed on a computer monitor.

2.4. Online spike sorting
Units (single or multi) were manually discriminated by a trained technician at the beginning
of each recording session by placing a manually adjusted detection threshold for recorded
signals for each of 96 possible recordings channels. Events when the analog voltage signal
crossed this threshold triggered the storage of a 1.6-ms long spike waveform. Then one or
more manually set time-amplitude windows (window discriminators) were used to detect
and sort neural spiking; these events were recorded as a time series of spike counts. Units
below 1.5Hz average firing rate were discarded from further analysis. In addition to these
manually, on-line, rapidly discriminated units, the broadband recordings of the signal
(0.3-7500Hz) were also saved for subsequent offline analysis.
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2.5. Offline spike sorting
During offline data processing, we obtained each recorded unit's isolation quality - i.e., its
spike waveform signal-to-noise ratio, (SNR) (Suner et al., 2005). Well isolated units above
SNR value of 4.5 (n=297 in all sessions and participants) were manually resorted using
Offline Sorter (Plexon, Dallas) by manually selecting clusters of the waveforms projected
onto a display of their first two principal components (PC). Specifically, the unit's spike
waveforms in 2D PC space formed a separate cluster from noise waveforms, the interspike
interval distribution exhibited the presence of a clear refractory period (2 ms), and the
waveform shapes and peak-to-peak amplitudes showed a characteristic difference when
compared with other neuronal waveforms and multiunit activity on the same electrode. The
selected units' mean isolation distance (ID) (Harris et al., 2001) was 64. We did not attempt
to verify if the same neurons were present each day, thus part of the total unit count likely
corresponded to repeated measurement of the same neurons.

2.6. Significance criterion for spike rate change and amplitude change
The neural activity during a daily research session was commonly recorded in a series of
short epochs lasting 2-6 minutes during which the subjects performed one or the other of a
variety of behavioral tasks (see section 2.9), interleaved by resting periods when no activity
was recorded. We used a two-sample Kolmogorov-Smirnov goodness-of-fit hypothesis test
(p<0.05) to evaluate whether the firing rates of a unit in a given epoch using one-second bins
were significantly different from the rest of the overall mean firing rate (i.e. the rest of the
epochs). Correction for multiple testing was employed to control the number of falsely
rejected null hypotheses. We used the Benjamini-Hochberg procedure (Benjamini and
Hochberg, 1995) with a correction for dependent statistics (Benjamini and Yekutieli, 2001)
to set the false discovery rate within a session at the level of 5% for all tests. A neuronal
response from a single channel was deemed significant if there was at least one epoch for
which the mean firing rate (or amplitude) was significantly different from the rest of the
epochs after the correction for multiple testing was made. The same procedure was applied
in establishing significance for changes in mean spike amplitude across epochs.

2.7. Significance criterion for synchronous amplitude change across electrodes
As an indication of potential array movement, we addressed whether spike amplitudes on
different electrodes change simultaneously. First we calculated mean spike amplitudes
within single epochs of 23 sessions (arrays A1, T1 and S3 within the first two months). We
included only manually resorted units above 1.5Hz spike rate and SNR >= 4.5 (Suner et al.,
2005). Manual resorting was necessary to ensure that the amplitude change was real, and not
due to nonstationary electrical noise, change in firing rate of two adjacent units with slightly
different spike amplitudes, or other recording artifacts. For each unit, the epoch-to-epoch
mean amplitudes were z-scored (i.e. the mean amplitude across all epochs was subtracted
from each epoch's mean and normalized to the epoch-to-epoch variance), then the absolute
values of these z-scored amplitude fluctuations were averaged across electrodes. Extreme
values (see next paragraph) in this overall epoch-to-epoch amplitude change indicated that a
substantial fraction of the units had changed synchronously.

Second, a nonparametric bootstrap procedure established the significance criterion by
estimating the sampling distribution of the overall amplitude change. In particular,
normalized absolute amplitude changes were randomly reshuffled along the session and
averaged across electrodes and the most extreme value was stored. This process was
repeated 1000 times to generate a bootstrap distribution, to which values of the overall
epoch-to-epoch amplitude change was compared. Synchronous change from epoch to epoch
was concluded statistically significant if the most extreme value of the overall amplitude
change was larger than 99% of the values in the bootstrap distribution (p<0.01).
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2.8. Decoder calibration and closed loop control
The first task of each research session was designed to find a linear mapping between
volitional neural activity and cursor movements. Specifically, the participant watched a
computer-generated sequence of cursor movements (training cursor) while attempting arm
motions that would produce such a cursor motion. In this calibration stage the participant
received no feedback of how effective his/her movement imagery would have been in
controlling the cursor. Neural firing rates recorded during this intended arm/hand movement
together with the cursor kinematics (position and velocity) were used to calibrate the
Kalman filter's decoding model (Wu et al., 2006, Malik et al., 2011). Once established, this
mapping converted subsequently observed neural firing patterns to cursor motion in two
dimensions. A second mapping between imagined hand squeeze and the overall firing rate
of the same neural cluster was used to create a “click” signal (Kim et al., 2008, Simeral et
al., 2011a, Kim et al., 2011).

2.9. Cursor control assessment
Voluntary control over the neural cursor was regularly tested by a radial-4 or radial-8 center-
out-back target acquisition task. The goal of this task was to move the neural cursor to one
of four (or eight) circularly arranged peripheral targets that were discs on a screen. The
cursor was centered on the screen to begin a trial (i.e. cursor movement to a new target), and
the participant was asked to direct the cursor to the target (indicated by color change), click
on it, then direct the cursor back to the center and click on it to initiate a new trial. Cursor
control was assessed by the percent of successfully acquired targets (both peripheral and
central) and by testing cursor trajectories for a directional bias, i.e. a systematic tendency to
move in a direction other than toward the target.

To measure the direction of a bias during cursor control, for each trial we calculated the
cursor's average orthogonal deviation from the straight path between center and target. Note
that a jittery cursor with no systematic bias tends to deviate on either side of the straight
path, therefore the deviations tend to cancel out. Bias direction was obtained from the vector
average of the orthogonal mean deviations over all trials to all targets. Target directions
across all epochs were roughly evenly distributed with 12±9 trials/epochs. Occasionally,
some of the trials were not executed due to limited cursor control. However, our bias
measurement did not require balanced number of target presentations.

Bias significance was estimated by a bootstrap procedure. The sign and length of the
orthogonal deviations were randomly reassigned among the trials, i.e. the orthogonal
deviation vectors were rotated to be orthogonal to a randomly selected other trial direction,
averaged, and the resulting bias vector length was stored. Five thousand repetitions of this
shuffling generated a smooth distribution of vector lengths to which the original bias vector
length was compared. The assessment was considered significantly biased if the original
bias vector length was larger than 99% of the shuffled vector lengths (p<0.01).

In addition to the target acquisition task above, a variety of other tasks were also performed
during each clinical trial session and presented elsewhere. These tasks included ‘mFitts’ a
sequential tracking paradigm (Simeral et al., 2011a), multi-dimensional control of a robotic
or prosthetic arm (Hochberg et al., 2012), the effect of movement imageries on neural
responses, or comparisons of decoder types on cursor control. The behavioral results of
these tasks fall outside of the scope of this paper.

2.10. Closed- loop simulation
To explore how directional bias could arise from an underlying neuronal spike rate change,
we simulated closed-loop cursor control with a virtual subject whose intention was to always
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move in the direction of the target (Fig. 1). The subject's intention drove direction specific
responses of a population of N = 8 neurons with tuning curves f(φ) = (f1(φ), f2(φ), … fN(φ))
describing the mean spike count of each neuron as a function of the movement direction φ.
Furthermore, these neurons tiled the space of all directionsuniformly and had unimodal
tuning curves following a cosine function. The response for neuron i for movement direction
φ was defined as

(1)

where A is the baseline firing rate, m (or modulation depth) controls the amplitude of the
tuning function, φi is the neuron's preferred direction and ν is Gaussian noise.

Decoding the simulated firing rates and generating the cursor trajectories was similar to a
typical closed-loop session. First, we generated firing rates based on a training cursor
moving toward four cardinal targets, used these rates to calibrate the parameters of the
Kalman filter (Malik et al., 2011), and then performed a center out assessment in closed-
loop. We simulated closed-loop visual feedback by using the current cursor and target
positions to recalculate the intended movement direction (i.e. toward the target) in each
successive time step. Firing rates and the subsequent cursor positions were generated
iteratively every 100ms. Realistic cursor trajectories were obtained using A=20Hz, m=10Hz
and ν =10Hz. Cursor trajectories were stored and are reported in the Results.

3. Results
We analyzed motor cortical neuronal spiking activity recorded from three trial participants
during the first two months after electrode implantation (4, 7 and 11 experimental sessions,
8-22 epochs/session, with 352, 668 and 718 manually sorted units for A1, S3 and T1
respectively). We also monitored neural cursor control and the underlying neural activity in
center-out-back target acquisition assessments (108 and 20 assessments over 65 and 8
sessions with 32±15 and 88±9 sorted units/assessment for S3 and A1 respectively; see
Methods and Table 2). Since cursor control assessments with S3were recorded in a later part
of the trial (days 785-1576), her performance data with the corresponding neural data is
labeled as ‘S3b’. Participant T1 with advanced ALS did not achieve sufficient 2D cursor
control with our decoding and signal selection approach at that time, thus her intra-session
performance was not presentable. Below, we describe the signal instabilities, followed by
the simulated effect that these could have on actual decoding performance, followed by the
cursor control results observed in participant S3b and A1.

3.1. Within-day firing rate changes at the group level
To survey the frequency and magnitude of apparent firing rate changes at the group level,
we analyzed data from three participants (A1, T1, S3) during the first two months post-
implantation and during a two-year assessment period in S3 (‘S3b’). For each unit in each
session, we defined rate change as the largest deviation of an epoch's mean rate from the
mean rate over all epochs. The average daily firing rate change was 3.8±8.71Hz or 49% of
the mean rate, with a similar magnitude across the three arrays (3.7±4.5, 2.8±5.2, 5.3±6.2
and 3.7±11 Hz for A1, T1, S3 and S3b respectively; see Fig. 2A). Eighty four percent of
these changes across epochs within a session were statistically significant (p<0.05 with
correction for false discovery rate, see Methods), 5% of the unit recordings showed changes
larger than 8.4 Hz (or 113% of the overall mean), and 50% of the significant rate changes
were below 1.2 Hz (27% of mean rate).
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The generally low apparent firing rates and the relatively small rate changes were both
statistically significant and meaningful. The reported mean rates result in part from the
inclusion of portions of trials where no intended movement is expected (i.e., rest), and from
the largely balanced task where instructed movements in a unit's preferred direction were as
common as instructed movements in the opposite (or anti-preferred) direction. The effect (or
lack of such effect) that statistically significant group-level mean rate changes might have on
closed-loop decoding is not obvious a priori; the actual effect is described below.

One source of apparent rate change would occur if units were not well isolated and hence
more or less contaminated with mixtures of spikes. To examine how isolation level
influenced rate change, we used the signal-to-noise ratio of the spike waveforms (SNR)
(Suner et al., 2005) as an established measure of isolation quality, where low SNR values
(0-3) appear to correspond to multi units, and values above ∼4.5 roughly correspond to
single units with increased waveform similarity and decreased background noise (Fig. 2C,
insets). Units along the SNR spectrum showed comparable rate change (3.2-3.8Hz), except
multi unit channels with the lowest level of isolation (SNR: 0-2) which had average rate
changes nearly two-fold higher (6.1Hz, Fig. 2C) than cells with >2 SNR. This striking
difference likely originated from the fact that amplitude detection thresholds in this lowest
SNR group were inevitably close to the background noise, making spike detection more
sensitive to subtle changes in recording conditions. In these units, recording instability
(discussed below) could play an important role in spike rate instability and ultimately to
impaired NIS performance, although these units represented only 8.6% of the significantly
changing units (n=257) and 12% of the total rate changes.

3.2. Spike amplitude changes and their possible causes
To survey the extent of within-day spike amplitude changes in the population, we averaged
spike valley amplitudes (largest negative excursion of the recorded potential from zero)
within each epoch, and then monitored the relative change of the mean amplitudes between
subsequent epochs. 74% of the amplitude changes were statistically significant (p<0.01,
bootstrapping, see methods). Significant amplitude changes had a slow, meandering time
course (1.0±3.4 μV/min), with similar frequency and magnitude across all three electrode
arrays (Fig. 2B). The average maximal daily amplitude change was 3.7±6.5μV or
5.5±6.25% of the mean valley amplitude (4.6±6.7, 4.4±6.8, 6±9.4 and 2.3±4.7 μV for A1,
T1, S3 and S3b respectively); 5% of the units exhibited a change larger than 8.8 μV, or 13%
of the mean amplitude, and in 50% of the units amplitude change was below 1 μV (3%).
These instabilities were comparable to within-day amplitude changes observed in monkey
motor cortex (Chestek et al., 2011).

Spike amplitude fluctuations on a time scale of minutes to hours might arise if system
parameters (such as electrode impedance, cross-talk between electrodes, or other unknown
recording conditions) change. Such instabilities would affect each recorded spike on a given
electrode even if the spikes originate from two or more adjacent neurons. An example is
useful in highlighting amplitude instabilities in two well-discriminated units recorded
simultaneously on the same electrode (Fig. 3). In the first half of the research session (from
0-35 min), the two units' amplitudes changed in opposite directions, while in the second half
(from 45-75 min) the amplitudes changed in a similar fashion. These different temporal
dynamics argue against more global changes in recording system parameters such as
impedance changes or cross-talk (device effects), although micro motion affecting the
recording distance between neurons and electrode tip (motion effects) could still explain the
different dynamics depending on the geometric arrangement of the units surrounding the
electrode tip (Gold et al., 2006, Csicsvari et al., 2003).
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Global array movement, because it is a rigid monolithic structure, would be expected to
influence spike amplitudes on multiple electrodes at the same time. Depending on the units'
location relative to the electrode tip, array movement could cause a simultaneous amplitude
increase and decrease on different electrodes. In support of this explanation, we found
significant synchrony of spike amplitude changes across electrodes and between epochs in 9
out of 23 sessions (39%, p<0.01, see Methods). Following these events firing rate changes
doubled; (3.42±4.47Hz) compared to rate changes during randomly selected non-
synchronous epoch transitions (1.7±2.5Hz), or between filter calibration and cursor control
assessment epochs (1.85±3Hz). Hence, whenever present, micro movements of the array,
inferred from synchronous changes in firing rate across the array, could account for up to
50% of the overall rate change in the population. Array movement might cause rate change
by physical irritation, although the exact mechanism remains unclear.

However, in the remaining 61% of the sessions (n=23), simultaneous recordings showed
uncorrelated changes in temporal dynamics (Fig 3. gray lines), or the amplitude changes
were localized to an individual or a few electrodes without any spatial pattern across
electrodes. Local changes in tissue geometry (e.g. microvasculature dilatation), hydrostatic
changes, relative changes in the regional extracellular milieu or other local change in
recording conditions or physiology could account for this observation. In summary, both
array movement and local changes in tissue geometry could play a role in amplitude
instabilities, although the exact causes remain unexplained.

3.3. Spike amplitude instability can affect apparent firing rates
If spike amplitudes change, spikes may fail to fit the discriminator criteria, thus spike
detection would suffer. In the example unit presented in Fig. 4A, spike amplitudes decreased
by forty-four percent over 1.5 hours (from 235 to 130μV within 1.5 hours). As a result, by
the end of the session the majority of spikes for this unit failed to reach the requisite
amplitude range required by the time amplitude window discriminator (Fig. 4A, gray area),
and thus remained undetected. Comparing the average firing rates between the first and last
half of the session, this problem resulted in a 50% decrease in firing rate observed online,
even though the actual firing rate as determined by offline resorting showed a modest
increase (from 2.15 to 2.8Hz) probably due to the participant's compensatory behavior. In
this example, spike detection error occurred by losing/gaining spikes in the time amplitude
window discriminator, however similar spike detection error could occur in units with small
spike amplitudes by losing/gaining spikes whose amplitude crossed the spike detection
threshold.

To estimate the extent to which amplitude change (or recording instability) contributed to
apparent firing rate change at the group level we manually resorted a subset of the units
(>4.5 SNR, n=297 units, SNR=6.36±2.2, Methods). If spike amplitude or background noise
instabilities changed the detected spike count, this error would be corrected offline by
recovering undetected spikes (false negatives) or removing noisy waveforms (false
positives). Thus, a reduction in rate change after resorting indicated the amount of change
that originated from recording instability (resulting in part from the method of online spike
discrimination), while rate change unaffected by resorting was interpreted to reflect intrinsic
changes in spike rate due to physiological or unknown factors.

Manual offline resorting reduced firing rate fluctuations by 15% (from 4 to 3.4Hz; across
arrays: 30%, 5.6%, 16% and 10% reduction for A1, T1, S3, S3b respectively), suggesting
that the contribution of recording instabilities to apparent rate change was small compared to
physiological or unknown reasons. Firing rate changes within different groups of isolation
quality closely matched the rate change in the resorted neural group, indicating a similar
contribution of recording instability to apparent rate change (Fig. 2C). Rate change showed a
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weak but significant correlation with amplitude change in the lowest isolation group (SNR
0-2, cc=0.11, p=0.05) and in the highest isolation group (SNR 8-17, cc=0.18, p=0.049). We
found no significant correlation between rate change and change in baseline noise (i.e. the
standard deviation of the first four samples of each spike waveform). In summary,
generalizing the sorting results to the entire population, our estimated contribution of intra-
day recording instability to rate change at the group level was ∼15%, while the remaining
85% of the changes were likely originating from intrinsic changes in spike generation or
other unknown factors.

Spike detection error associated rate change was independent of the type of performed task.
To this point, we compared mean rates between epochs of different instructions (see
Methods), thus mean firing rates could be modulated in a context dependent manner.
However, we also compared rate changes between filter calibration and cursor control
assessment, which were expected to be more similar in terms of movement imagery.
Comparing similar imagery epochs showed a smaller average rate change (1.85±3Hz), yet
resorting a subset of units (n=128 from S3b, SNR=6.3±2) within these epochs also
eliminated 14% of the rate changes. Thus while neural activity changed, as expected, during
different tasks, the number of spikes lost due to recording instabilities was a constant
fraction of the total number of spikes.

3.4. Apparent spike rate changes introduce decoding errors in computer simulation
To investigate the effect of apparent firing rate changes on the decoded neural cursor
movements, we performed a computer simulation of a closed-loop cursor control epoch and
calculated cursor trajectories. In short, we generated firing rates of eight simulated neurons
with evenly distributed preferred directions, cosine-shaped tuning curves and Gaussian noise
(see Methods). Each neuron's response was modulated by the movement intention of a
‘virtual’ participant who always attempted to move toward the target in a radial-8 center-
out-back target acquisition task (Methods). Based on the generated firing rates we calculated
the velocity vector of the neural cursor with a Kalman filter identical to the one used in
actual participant experiments.

Cursor trajectories in closed-loop simulation closely resembled those in a balanced center-
out assessment performed by clinical trial participants when a good neural decoder had been
calibrated (Fig. 5A). However, departure of a single neuron's firing rate from its expected
range could disrupt Kalman-filter based neural control. For instance, increasing the mean
firing rate of one unit tuned to right movement from 20Hz to 30Hz (50% rate change, i.e. the
average proportional rate change in the population) resulted in mild but statistically
significant rightward directional bias (p<0.05, Methods). Larger rate changes resulted in
increasing magnitudes of rightward directional bias (45Hz: Fig. 5B) to the point where bias
magnitude overwhelmed the user's adaptive response, and cursor control failed (extreme
example: 60Hz, Fig5C). Changing rates of multiple units also resulted in a directional bias,
where the direction and magnitude of the bias was a weighted average of individual unit's
rate change, preferred direction and contribution to decoding. As we show below, these
simulations faithfully recreated directional bias similar to actual participant research
sessions.

Closed-loop simulation also enabled us to explore characteristic changes in the Kalman
filter-decoded cursor kinematics caused by three additional signal perturbations: preferred
direction change, noise change or change in modulation depth. Change in a unit's preferred
direction introduced a rotational bias, with a centrifugal distortion of cursor trajectories
resembling a pinwheel (Fig. 5D, see supplementary material for additional explanation). In
this case, despite of the constant angular error, the simulated visual feedback helped to direct
the cursor to the target. The remarkable similarity of this result to actual motor performance
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in the presence of a curl force field (Li et al., 2001) is consistent with the effect of constant
angular error on actual movement trajectories. Although we observed no indication of such a
global pinwheel pattern in cursor trajectories during closed-loop participant control, the
participant had the ongoing ability to adjust strategy and adapt to small tuning changes.
Unless the magnitude of rate change and the decoded velocity overwhelms the user's
adaptive response, this bias could be undetectable. Increasing the noise component (see
Methods, equation 1) in one or more simulated units resulted in jittery cursor trajectories in
all movement directions (Fig. 5E, also frequently observed in cursor control assessments),
while reducing modulation depth of two units to zero (i.e., setting firing rate to the mean
rate) introduced no systematic distortion, but a slight increase in jittery cursor movements
(Fig. 5F).

3.5 Effect of rate change on neuroprosthetic control: participant S3 research sessions
The quality of intra-day neural cursor control with participant S3 was frequently affected by
a directional bias, revealed as an apparent drift of the neural cursor in a constant direction
(Fig 6B). During assessments of accurate control (Fig. 6A), neural cursor trajectories
appeared relatively straight, with any deviations from the axis of target direction remaining
small. For example, during the assessment presented in Fig. 6A, the cursor reached the
target in 7.14±3.44 seconds (n=47 trials) with high positional accuracy (within 2.7cm from
the center of the target) and acquired 100% of the targets within the allotted trial interval (25
sec). In contrast, 56% and 15% of the assessments (n=108 and n=20 for S3 and A1
respectively) showed a statistically significant directional bias in cursor movements (p<0.01,
bootstrap procedure, see Methods, Fig. 6B). This bias interfered with the ongoing motion of
the cursor towards the target with mild to major effects, occasionally resulting in complete
inability to control the cursor. The direction of the bias generally remained stable within a
day and appeared to change randomly from day to day, however in one data session we
observed a change in bias direction within a single day.

An example session with significant firing rate changes and the resulting directional bias is
presented in Fig. 7. This session started with accurate cursor control (i.e. relatively straight
trajectories with 100% success in reaching the instructed target, Fig. 7A, upper left inset).
About 30 minutes into this session the cursor repeatedly drifted towards the lower left corner
of the screen as the participant attempted to reach any target. Due to this strong directional
bias, target acquisition rate diminished to chance level (i.e. no control), but 80 minutes and
∼50 trials later the control gradually returned to near perfect performance without any
investigator initiated change in the experimental setup, filter parameters or task instruction
(Fig. 7A).

In parallel with this performance degradation, one of the units with significant firing rate
change (unit 3, p<0.01, n=26 units contributing to the decoder) showed a 75% reduction in
mean firing rate as its spike amplitudes gradually blended into background electrical noise.
The rate change of this unit correlated significantly with decaying cursor control (Pearson's
cc.: 0.87 p<<0.01) and consistent with its role in creating bias, the preferred direction of the
unit matched the axis of directional bias (see Methods for bias measurement). When the
firing rate of this unit returned to the original level, cursor control was also restored.
Although two other units also showed significant rate changes (unit 21 and 24), their
contribution to decoding were small, thus their changing firing rate appeared to have
negligible effect on bias direction.

To confirm that the directional bias observed during cursor control assessments indeed
originated from changes in firing rate, rather than from other possibilities such as a change
in the unit's preferred direction or a latent technical/programming error, we calculated bias
direction from the observed rate changes and compared this calculation to the actual bias
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direction observed in cursor trajectories. Specifically, instead of decoding cursor velocity
iteratively from firing rates within short time windows (typically 100ms) we decoded the net
cursor velocity (i.e. bias) from the mean firing rates over the entire assessment using the
same Kalman filter that we trained prior the analysis. Predicted and measured bias direction
correlated significantly (Pearson's cc=0.86; p=7.24*10−19, n = 61 assessments) in center-out
assessments with significant directional bias, and the angular error between predicted and
observed bias was within 90° in 70% of the assessments, confirming the role of firing rate
change in directional bias.

If firing rate changes cause directional bias, one might expect more frequent or larger rate
changes in biased assessments than in those assessments where cursor control was good,
however we did not observe such dichotomy. Significant rate changes were common (Fig.
2), with both biased and unbiased assessments showing significant rate changes. Only one
assessment (∼1%, n=108 assessments, S3b) showed no significant change in the mean rate
of any unit (unbiased assessment, Table 1). These indicate that the absolute amount of rate
change in the recorded units had little predictive power for forecasting directional bias.

Small amplitude units in the SNR group 0-2 showed larger apparent rate changes than well
isolated units (Fig. 2C). To address if they were also more likely contributing to directional
bias, we analyzed all center-out assessments with significant bias (n = 61 assessments, see
Methods) and from each assessment, we selected five units (∼10-20% of all units/
assessment) with the strongest contribution to directional bias. We defined a unit's
contribution to directional bias as the unit's rate change (between filter calibration and center
out assessment) multiplied by the weight of the unit in decoding (Wu et al., 2006). The SNR
of these units was slightly higher than the population mean (3.07±1.2 n=310 compared to
2.78±1.08, n=3240), thus units which adversely affected decoding performance were not
restricted to the low SNR cohort.

Finally, we investigated time-dependent changes in cursor control during a session. To do
so, we analyzed performance metrics of neural cursor control in sessions when cursor
control was assessed repeatedly between two to five times (n=28 and n=10 sessions for S3b
and A1 respectively) and ∼ 5-180min apart. In both participants, the average performance
metrics during the first assessment of the sessions were similar to the following assessments
(Table 2). In summary, despite of temporal variation in performance, none of the cursor
control metrics showed any systematic tendency to increase or decrease within a session.
Further analysis on cursor control assessment using data from A1 and S3 were presented
previously (Kim et al., 2008, Simeral et al., 2011a).

4. Discussion
Our study is the first extensive analysis of apparent firing rate instabilities in a human
intracortical neural interface system. As one of the advantages of intracortical recording
systems is the ability to harness the information transmitted via modulation in action
potential firing rates, characterizing the instabilities is a first step toward reducing them or
accounting for them through advances in neural engineering and/or computational
approaches.

We showed that firing rate instabilities, if unmodeled, can lead to a directional bias in the
decoded kinematic variables and thus to degraded performance. Recording instabilities and
subsequent spike detection errors accounted for 15% of the firing rate variability while the
majority of rate changes (85%) originated from intrinsic variations in spike generation
which may be attributed to actual physiological changes such as task related modulation,
attentional changes or plasticity. Whatever the cause, the prevalence of these effects
demonstrates that mitigating the contribution of both technical and intrinsic factors is
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important for optimal system performance and reliability - a key requirement for successful
and long-term neuronal ensemble control of assistive devices.

The relatively small contribution of recording instability to neuroprosthetic performance on
a short duration (hours) confirms Chestek et al. (2011) who also found variability in
amplitude and spike rates on short time scales in monkeys, even though did not see
substantial changes in performance due to these fluctuations. However, this level of stability
presumably does not generalize over a longer time scale (from days to years), where
maintaining a consistent ensemble of neurons appears to remain a challenge. From day to
day, neural waveforms change (Dickey et al., 2009), over months electrode impedance can
decrease (Parker et al., 2011, Simeral et al., 2011b), amplitudes steadily decline (Chestek et
al., 2011) and the number of detected action potentials change, leading to real or apparent
spike rate decrease (Chestek et al., 2011, Parker et al., 2011, Suner et al., 2005). Although
we have recently demonstrated that an intracortical array can provide useful signals for more
than five years (Hochberg et al., 2012), both basic neuroscience and neuroprosthetics will
benefit from improvements in recording systems toward providing more consistent and high
quality recordings.

Spike amplitude instabilities might originate from a relative motion of the electrode to the
recorded neuron by distances < 50 μm (Gold et al., 2006) or due to larger movements and a
shifting population of neurons (Suner et al., 2005). Electrode/tissue movements caused by
vascular pulsations or changes in global intracerebral pressure linked to ventilation are
unlikely explanations of the observed amplitude changes due to the short (∼sec) time course
of these repeated physiologic events. Fast head movements or acceleration-induced shifts
(Santhanam et al., 2007) could also be excluded since, due to tetraplegia, the participants
had no or small and comparatively low angular velocity head movements. Coughing or
sneezing could change intracranial pressure and possibly induce array micromotion. While
we investigated examples of synchronous amplitude shifts as indicators of array movement,
more than half of the sessions showed no sign of coordinated spike amplitude changes, thus
the instabilities might reflect local changes in tissue geometry driven by changes in local
vessel diameter or by other unknown mechanisms.

Spike amplitude changes might partially originate from intrinsic cellular mechanisms.
Bursting related amplitude decrease due to prolonged Na+ channel inactivation (Harris et
al., 2001) operates on a short (∼20 seconds) timescale and therefore fails to explain our
observed amplitude changes on the time course of minutes to hours. However, changes of
afferent activity affecting intrinsic membrane properties might operate on a similar time
scale. Physiological states such as sleep/wake cycles (Jackson and Fetz, 2007) or activity
dependent attenuations driven by experience can also influence spike amplitude (Quirk et
al., 2001).

The majority of the observed rate changes (85%) lacked an immediately apparent
technology-related explanation, suggesting a possible biological origin. Part of these
changes could be related to changes in experimental task differentially modulating the
neural population. However, we observed significant changes in firing rate between epochs
of similar instructions, indicating mechanisms that are not directly related to the task.
Indeed, the functional connection between M1 neuronal activity and muscle activity, as
measured by spike-triggered averaging can show dramatic variability (Rokni et al., 2007,
Davidson et al., 2007), and the correlation between firing rate and decoded movement
parameters might change with context (Carmena et al., 2005, Jarosiewicz et al., 2008).
Cortical waves (Rubino et al, 2006), circadian rhythms (Barnes et al., 1977), and cognitive
(such as motivation or attention) or behavioral changes could also strongly influence

Perge et al. Page 12

J Neural Eng. Author manuscript; available in PMC 2014 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



population activity. Considering that the brain is a complex dynamic system, stationarity
would, in fact, be unexpected.

Neuroprosthetic feedback and decoding error might also induce a shift in population
activity. For instance, we occasionally observed in neural cursor control that directional bias
introduced a compensation strategy by the participant. The underlying shift in population
activity might thus be similar to network changes associated with adaptation to an external
force field (Li et al., 2001). Adaptation to the decoder could ‘confuse’ the user when using a
newly calibrated decoder, thus we might expect to see alternating or decaying session-to-
session performance. Instead, participant S3 demonstrated a consistently high performance
using a newly calibrated decoder on five consecutive days (Simeral et al., 2011a) – (Fig. 1).
Signal instability and the subsequent perturbation in the mapping between motor intention
and the executed movement might also introduce compensatory mechanisms that could lead
to escalating endpoint errors (Mazzoni and Krakauer, 2006, Taylor and Ivry, 2011). Such a
counter-productive error driven adaptive process would manifest in a systematic decay in
cursor control within a session, however we found no evidence for such decay (Table 2). In
summary, developing a new control strategy might require multi-day training (see Ganguly
2009) rather than a single session.

A possible strategy to improve robustness of neuroprosthetic control might be to minimize
signal changes. Improvements in electrode arrays and/or recording technologies (i.e.,
engineering modifications) may result in the recording of large amplitude spikes consistently
over extended periods of time (preferably measured in decades). Increasing the number of
electrodes and recorded units would reduce the relative impact of individual instabilities
(Carmena et al, 2005). For instance, doubling the number of units in our closed loop
simulation diminished bias magnitude and made cursor trajectories smoother by averaging
out stochastic neural responses. Furthermore, a different spike detection strategy, such as
adaptive spike sorting (Watkins et al., 2004, Linderman et al., 2006) or signal amplitude
thresholding alone (Chestek et al., 2011, Fraser et al., 2009, Hochberg et al., 2012) as
opposed to thresholding combined with window discriminators could make the decoder less
vulnerable to amplitude instabilities (Chestek et al., 2011, Gilja et al., 2011). The feature
extraction algorithm could also use complementary signals such as multiunit activity, local
field potentials, or surface field potentials that might be more stable over time (Andersen et
al., 2004, Bradberry et al., 2010, Stark and Abeles, 2007, Slutzky et al., 2011, Flint et al.,
2012a, Flint et al., 2012b).

If neural recordings are relatively stable, the decoding parameters can be optimized by
repeated calibration or with an adaptive decoder, and then subsequently fixed using the same
units and decoding parameters. Thus signal variability may be compensated for by the user
when using a static decoder (Flint et al., 2012c, Gilja et al., 2012, Nuyujukian et al., 2012).
This way, learning can take part in consolidating cortical dynamics, leading to a potentially
more stable representation and neuroprosthetic performance (Ganguly and Carmena, 2009).

Even if signal variability cannot be fully eliminated, decoding approaches might be able to
compensate for its effect. First, the decoding algorithm could identify stable units and use
these exclusively for realtime control of the device (Dickey et al., 2009, Wahnoun et al.,
2004). Second, an adaptive decoder could monitor changes in the statistical properties of the
input signal or environmental noise and adjust the decoding parameters accordingly (Homer
et al., 2011, Wu and Hatsopoulos, 2008). Third, recalibration of the model parameters
during (Jarosiewicz et al., 2012) and between use could not only compensate for
nonstationarities, but further improve the mapping between neural activity and motor
parameters. Finally, as this mapping might be task specific, context dependent or inherently
variant over time, an improved decoder might operate by switching between several distinct
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mappings. Thus modeling the observed (Truccolo et al., 2005, Wu and Hatsopoulos, 2008)
or hidden sources of variability (Stevenson et al., 2010, Lawhern et al., 2010, Wood et al.,
2005, Kulkarni and Paninski, 2007) could provide further improvement in decoding
performance.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Computer simulation modeling the effect of neural signal changes on closed-loop neural
cursor control.
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Figure 2. Spike rate and amplitude instability at the group level
A. Rate changes show comparable magnitudes across 3 participants over the first two
months of implantation and over 5 years in one participant. Inset: cumulative rate change. B.
Corresponding magnitude of spike amplitude changes across data sets. C. All but the lowest
isolation quality units show similar magnitude of rate change. Only units with statistically
significant rate change are included. Insets show representative examples of spike
waveforms with different isolation qualities. The gray area indicates the contribution of
recording instability estimated by resorting a subset of the units (see text). SNR: signal-to-
noise-ratio following Suner et al., 2005.
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Figure 3. Independent spike amplitude dynamics in two units recorded by the same electrode
contradict explanations for simple instrumental artifacts
Small dots indicate the amplitude of individual spikes at the most negative deflection.
Clusters of spikes correspond to experimental epochs (with different tasks and instructions)
where larger circles and thick line indicate the mean spike amplitude within an epoch. Gaps
between spike clusters indicate breaks between epochs, when data collection was paused.
Inset: Due to their characteristic shapes and different amplitudes, spikes could be well
discriminated into two classes. Over the duration of the experiment, spike amplitudes
changed in both units, but with different dynamics. Alterations in electrode impedance,
cross-talk, or other system parameters cannot explain these changes, as they would impact
both units similarly. Thin gray lines: mean spike amplitude of units on other electrodes show
no systematic amplitude change across the array. For clarity, only ten randomly selected
amplitude traces are shown. Numbers indicate electrode and unit label.
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Figure 4. Spike amplitude instability causes spike detection error
A. A representative unit demonstrates large spike amplitude instability. The gray shaded
area covers the amplitude range between the upper and lower boundaries of the window
discriminator as determined manually by the experimenter. Spikes falling outside of these
boundaries remained undetected during the online experiment. Inset: average spike
waveforms during selected time periods indicated by elongated rectangles. B. Spike rates as
determined by online (within window, black) and retrospectively discriminated spikes
(resorted, gray). Apparent decline in the online firing rate results from failure of the smaller
waveforms to satisfy the discriminator parameters.
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Figure 5. Computer simulation demonstrates the impact of neural signal perturbations on
decoded cursor kinematics
A. Simulated closed-loop neural cursor trajectories in a radial-8 center out and back
assessment with no perturbation. B and C: Rate change leads to directional bias, i.e. cursor
drift in a constant direction, when using a decoder calibrated with neural data in A. D.
Change in preferred direction leads to centrifugal distortion of cursor movements. E.
Random insertion of spiking events results in jittery trajectories. F. Removing task related
modulation of one or more units increases jitter of cursor movements. See text for details.
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Figure 6. Examples of accurate neural cursor control (A) and cursor control with directional
bias (B) during two sessions of a radial-8 center out assessment
The participant was asked to direct the neural cursor (paths shown as black dots) from the
center of the screen (white or black dashed circle) to one of eight peripheral targets (gray
discs), click and then return to the center. Black discs: click locations of successfully
acquired targets. Cursor trajectories are relatively straight and mark out the eight principal
target directions with 100% successful target acquisition rate B. Poor control with 15%
correctly acquired targets. Cursor trajectories show frequent direction change and a strong
tendency to move towards the bottom right corner of the screen
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Figure 7. Mean firing rate change of a highly modulated unit correlates with control instability
A. In a series of radial-8 center-out-and-back assessments, performance decreased from
100% correctly acquired targets to zero percent, but after another forty minutes control
recovered spontaneously and reached full performance. This decrease in performance was
correlated with a change in one unit's mean firing rate (B). Top insets: cursor trajectories
over the session. Arrow indicates bias direction. B. Mean firing rates of twenty-six units
used in decoding. Unit 3 (thick black line) decreased its firing rate by 75% over the first
∼70min. The rate change of this unit correlated strongly with decreased performance
(Pearson's cc.: 0.87, p≪0.01), and its preferred direction aligned with the axis of directional
bias. The reason for these rate changes was unknown. Thicker lines: three units with
significant rate change (p<0.01). Insets: direction tuning curves of the three units.
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Table 1
Significant rate change and directional bias during performance assessments (S3b)

# of sessions Bias occurred Bias did not occur Total

Any unit with significant rate change 61 46 107

No unit with significant rate change 0 1 1

61 47 108
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