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Abstract
Douglas Theobald recently developed an interesting test putatively capable of quantifying the
evidence for a Universal Common Ancestry uniting the three domains of life (Eukarya, Archaea
and Bacteria) against hypotheses of Independent Origins for some of these domains.

We review here his model, in particular in relation to the treatment of Horizontal Gene Transfer
(HGT) and to the quality of sequence alignment.
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Introduction
Recently Douglas Theobald developed an interesting test putatively capable of quantifying
the evidence for a Universal Common Ancestry (UCA) uniting the three domains of life
(Eukarya, Archaea and Bacteria) against hypotheses of Independent Origins (IO) for some
of these domains.1 He imagined the UCA hypothesis as modeled by a single phylogeny
connecting all three domains, while each competing IO hypothesis being represented by a
partitioning of domains into independent phylogenetic trees. Thus for instance if we want to
describe the hypothesis that Eukarya share a common ancestor with Bacteria but neither
shares an ancestor with Archaea, we can think of one single phylogeny connecting all
Eukarya and Bacteria, and another non-overlapping phylogeny describing the evolution only
of the Archaea (Figure 1). This model is represented by A+BE to highlight the fact that
Bacteria and Eukarya are together while Archaea is alone. Here, each extant species will
coalesce into the past until the root, called the Most Recent Common Ancestor (MRCA) and
which represents an individual from a population of interbreeding individuals. However, we
will see that the hypotheses generalize to the ancestral populations, not just the individuals.
By population here we mean groups of individuals with shared genetic material. The
question being posed is actually if the ancestral/primeval populations that gave rise to the
diversity of life we see today did or did not exchange genetic material between themselves --
if there were barriers to the exchange then the apparent homology we observe is in fact
product of ancestral convergence.

DNA or protein sequences can be used to gather data sets that are naturally amenable to test
these ideas. With these type of data we can build biologically reasonable statistical models
based on the phylogenetic likelihood, the probability of the data (the sequence alignment)
given the hypothesis (the tree and the model of substitution). Importantly, all models used in
the study are oblivious to the root position, i.e., the likelihood of the competing hypotheses
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are identical for any rooting and in practice we can assume unrooted trees.2 Theobald
devised in this way a model selection approach based on the Likelihood Ratio Test (LRT),
Akaike Information Criterion (AIC) and Bayes Factors (BF)3,4 to compare the UCA and IO
hypotheses. He assumed that the ancestry of organisms can be properly represented by a set
of protein-coding genes, and without modeling convergence explicitly. After analyzing 23
alignments of universally conserved proteins spanning the three domains of life (4 species
for each domain), he concluded that the UCA hypothesis was strongly favored over any IO
hypothesis, either after concatenating all alignments into one supermatrix or studying each
alignment separately.1 Since we don’t need to know the location of the phylogenetic roots
(representing the MRCAs), the test assumes that each gene has an MRCA potentially
distinct from other genes - representing different individuals from the population.

Indeed, this test is not a validation of the evolutionary theory but a comparison between
evolutionary models well-defined within the theory - the evidence for common ancestry in
general includes astounding congruence between phylogenetic, morphological,
paleontological and phylogeographic studies,5 the existence of a nearly universal genetic
code6 and the ubiquitous presence of many orthologous genes.7 His test also cannot solve
how many times life originated on Earth, since it already assumes one or several basal
populations and even then it only looks at the successful ones (the ones still represented
today). This way it is possible that several populations of independent origins were present
in the past, and nonetheless all present life coalesces to a single one of these populations - in
which case all life shares a UCA since all information from IO was lost. His test is restricted
to gene alignments, and does not address the evolution of the genetic code, genomic content
or morphological characters, for instance. In the following sections we will describe the
phylogenetic theory behind his test together with his implementation, some published
criticism and some further caveats.

Phylogenetic models
By assuming that a character - e.g. a nucleotide, a codon or an amino acid – evolves
according to a continuous-time Markov chain along a phylogenetic tree, we can promptly
calculate the probability of a set of homologous characters given the tree with branch
lengths (in any arbitrary unit) and other parameters of the substitution process (the Markov
chain).8 Many phylogenetic reconstruction methods will thus assume that each column of an
alignment (a site) represents a distinct homologous character while each row represents a
single taxon, and together with other assumptions will try to estimate the phylogenetic tree
that maximizes the likelihood or the posterior distribution of trees that are compatible with
the alignment and prior distributions.9 These assumptions might for instance impose equal,
proportional or independent substitution processes for sites and/or branches, and usually are
a simplification of the underlying unknown processes.10 We must remember that even
though each site evolves independently from each other, all share the same tree topology11

and parameters like the alpha shape of the Gamma distribution for among-site rate
variation12 or the stationary state frequencies. There are however exceptions (like mixture
and recombination models), that we won’t discuss here.

Programs implementing these methods usually allow the user to fix the parameters at a
single value or estimate them otherwise, as long as the model is fully defined. A fully
defined model, as is relevant for our discussion,13,14 is one where we decide: i) if the
instantaneous substitution matrix is fixed or variable; ii) if it’s fixed, which one we should
use (for protein sequence there are several alternatives estimated from large data sets); iii) if
the equilibrium frequencies should be estimated by Maximum Likelihood (ML) or observed
proportions, or fixed at their model-derived values; iv) if all sites evolve at same rate or at
distinct rates described by a discretized Gamma distribution (whose parameter should be

Martins and Posada Page 2

. Author manuscript; available in PMC 2013 June 27.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



estimated); and v) if we assume that a proportion of sites is invariable (and then estimate this
proportion).

Can’t we have other, more parameter-rich models? We can indeed, like for instance a
general time-reversible substitution matrix, where all instantaneous transition probabilities
are estimated from the data. Or assume that each site has its own substitution rate, or
substitution matrix. The problem is that as we increase the number of parameters to be
estimated from the data we increase the uncertainty about the estimates in a way that might
not be justified by the increase in the likelihood. And some models might lead to
inconsistent estimates - like the example of one rate per site - therefore needing further
constraints. We usually assume that the existing models are a good compromise, and if we
want to decide objectively among the available options we must subject our data to a model
selection approach.3,4

Model selection approaches aim at finding the best model that explains the data, where best
is some optimum between bias and variance, or between parsimony and realism.3 The
simplest case is when the models are nested (one is a particular case of the other), in which
case we can approximate the difference between the log likelihoods by a chi-squared
distribution - the standard LRT method. But there are many other methods like the AIC, the
Bayesian nformation criterion or the BF, that don’t need the models to be nested. The AIC
value of a model is simply twice the ML value under this model, substracted by twice the
number of variables. The BIC is similar but takes into account also sample size, something
never defined in molecular phylogenetics but usually assumed to be the number of sites in
the alignment. If we do Bayesian analyses under each competing model, the BF can be
calculated as the ratio between the marginal likelihoods for each model. These marginal
likelihoods are usually calculated by the harmonic mean over all MCMC samples, despite
more stable algorithms exist.15

We note that since model selection procedures try to find the model that best explains a set
of observations, it is essential that the same data set be used when comparing different
hypotheses. Indeed, when comparing the likelihood, L ~ P(D|Hi), of the different hypotheses
(H1, H2, … corresponding to hypothesis 1, hypothesis 2, …), the data D should be fixed.16

Importantly, here the data observations are the columns of the alignment, as the alignment is
given.

Theobald’s implementation
Having succeeded in writing the UCA and IO hypotheses in phylogenetic terms, Theobald
could then extend existing model selection methodologies to compare one phylogeny (UCA)
against more than one (IO).1 Under the UCA hypothesis it suffices to find the model and its
corresponding parameters that best fit the alignment, while for each IO hypothesis he
splitted the alignment into taxa belonging to each independent group and then found the best
model for each group independently. This way it could be found that e.g. under the
hypothesis AB+E (that is, Archaea and Bacteria having ancestry independent from Eukarya)
the model that best explains AB is not the same as the optimal one for Eukarya. Under IO,
one can simply multiply the likelihoods of each ML model since they describe independent
events.

The difference in the number of parameters among hypotheses due solely to the number of
trees - that is, neglecting other model parameters like presence/absence of rate
heterogeneity, which nonetheless must be taken into account when comparing UCA and IO
models - is 3 per IO assumption, since every time we split a tree in 2 we lose 3 branches
with their corresponding lengths. It can be shown that both hypotheses can be
accommodated by the same general model, where each IO hypothesis is equivalent to an
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arbitrarily long branch (it is a consequence of the property that ergodic chains converge to
their equilibrium distributions). In frequentist terms, the IO would be the null hypothesis - of
a branch length fixed at infinity - nested in the alternative, more complex UCA hypothesis.
This general model could, in principle, incorporate a variable substitution process along the
tree such that each branch has not only a distinct length but also a potentially different
substitution matrix, proportion of invariant sites, equilibrium frequencies and rate
heterogeneity process. This way we could ideally isolate the effect of one branch length
while keeping all other parameters at the same values under both hypotheses, leading to the
previously described difference of 3 in the number of parameters. But as we mentioned
above it is hard to work with such overparameterized models, and most programs simply
assume that the substitution matrix is constant along the phylogeny. Therefore in practice
the substitution model can vary between independent trees while it is assumed constant
under UCA, because of a limitation of available software to consider only homogeneous
models. That is why the model representing the IO hypothesis has more parameters that the
model representing UCA even though IO is a particular case of UCA in general: the
software can infer the best, distinct models for each domain under IO, but cannot use all
these models (i.e., heterogeneous models changing in different parts of the tree) under the
single phylogeny of the UCA.

This may be a problem whenever the test favors the IO hypothesis, since we cannot know if
the improvement of IO over the UCA model stands from the independent trees assumption
(with fewer branches) or from better substitution models for each tree. The former indeed
provides evidence for IO, but the later suggests that the true evolutionary process cannot be
assumed to be homogeneous along the tree. As we will see in the analyses presented by
Theobald the IO hypotheses were always rejected, therefore he didn’t need to consider this
issue. A provisional solution would be to constrain all sequences under each IO hypothesis
to follow the same evolutionary model - estimated e.g. from the UCA model. A better
solution would be to employ a program that allows heterogeneous models along the
phylogeny, ideally under a Bayesian framework so that the marginal distribution of the
branch lengths of interest can be estimated.

Theobald used the crude LRT based on the ML values from Prottest,17 the AIC as given by
the same program, and also the Bayes factor between the marginal likelihoods given by
MrBayes13 - which as before can be simply multiplied under the IO hypothesis. Under
MrBayes he chose a broad, fixed parametrization and for the substitution matrices he used a
mixture model that samples from all the matrices. If we are then interested in inferring the
best ones we can simply look at their posterior distribution, but here to calculate the
marginal likelihood they are integrated out.

His data set comprised 23 proteins and his first analysis (called class I models) assumed that
all proteins shared the same phylogenetic tree and same parameters (under a given
hypothesis). In other words he concatenated all proteins into a single alignment with 6591
sites, and then compared the UCA model with models where one or all domains of life were
separated. Such scenarios are represented at the left panel of Figure 1. Under all model
selection criteria the UCA hypothesis was very strongly favored, and in general there was
strong agreement between them.

To take into account the possibility that some gene suffered horizontal gene transfer (HGT),
that is, genetic material was laterally exchanged between unrelated organisms in the past,18

Theobald devised the class II models. Under these models each one of the 23 genes can have
a phylogenetic history independent from the others, with its own model, tree and parameters.
This stands from the phylogenetic effect of HGT: possible existence of incongruent
phylogenies between genes, with some HGTs being undetectable.
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As before, the test is between models where all taxa are connected against models where the
taxa are partitioned into independent clusters (Figure 1). Because each gene will lead to an
independent unrooted phylogeny, class II models can effectively accommodate distinct
common ancestors for each gene - the exact position of the root is unknown for each tree -
that nonetheless belong to a single population. Under class II models, again, the UCA
hypothesis was strongly favored against any IO scenario, using any model selection
criterion. Furthermore, the UCA hypothesis using the class II model was preferred over its
class I equivalent. This means that indeed the evolutionary history of the analyzed data set
could be a reticulate one, and one should not force all genes to follow the same phylogenetic
tree.

There have been so far two relevant criticisms to Theobald’s work, and both are somehow
related to the fact that the homology of each site is assumed for phylogenetic inference
methods and therefore might not be easily refuted. The first criticism was based on the need
to explicitly model convergent and parallel evolution, such that even taking those into
account to explain sequence similarity, UCA would still be preferred over IO.19 To
emphasize their point the authors showed that UCA was preferred even for a data set of
unaligned DNA sequences known to not be homologous. Theobald replied that UCA was
properly rejected once codon or amino acid models were used, and that his data set with
over 55% average sequence identity could not be explained by convergent evolution
alone.20

The second criticism came from a simulation study where each alignment column was
simulated by sampling amino acids from a discrete distribution such that columns did not
follow any phylogenetic tree structure, and each column was generated by a distinct
distribution.21 Still, the UCA hypothesis was favored for all 100 such simulations due to the
similarity between sequences alone, according to the authors. Theobald contested that this
model is equivalent to a star tree, which indeed represents common ancestry, and showed
that a modification of his test to include such a model would in fact distinguish his data set
from these simulations.22 And he also showed that his test would favor IO for an engineered
data set composed of a phylogenetic mixture. Unfortunately he used the observed significant
pairwise similarity between the sequences to conclude that the sequences are highly similar,
while the average identity was only 0.33 for every column of the resulting multiple sequence
alignment.

Discussion
While indeed we believe (in a Bayesian sense) that the UCA hypothesis is correct, there are,
however, two caveats with Theobald’s analysis that are worth mentioning. The first relates
to the theoretical model and its treatment of HGT within Class II hypotheses. The Class II
models, despite being an elegant solution to within-domain lateral transfers, do not consider
transfers between domains of independent origins. This general scenario would be
equivalent to an IO model where any division of the taxa into independent phylogenies is
possible (while the UCA model does not need correction). A formal test that fully takes into
account HGT should allow for one gene favoring AE+B, another favoring AB+E, and even
another favoring a single origin ABE - if this particular gene is the product of an ancestral
sweeping HGT. This reminds us that a really informative test of the UCA hypothesis that
accounts for HGT should be actually one about the existence or not of at least one gene for
which it can be rejected in favor of an IO.

This is represented in Figure 2, where we have several possible HGT scenarios under the EB
+A hypothesis, but only scenarios represented by panels A and B maintain the topologies
EB and A - and therefore would be detected by Theobald’s test under EB+A hypothesis. The
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HGT scenario from panel C generates topologies that resemble an AB+E model, since the
ancestral bacterial gene was replaced by one of archaean origin. In panel D the archaean
gene from independent origin was replaced by the bacterial version, such that the signal
from independent ancestry is lost. For all effects, genes like these where their ancestral
version was completely replaced by a foreign one will support a UCA nonetheless. It then
becomes essential to consider as many genes as possible, since even if the organisms
conform to IO, some genes may have lost this information and support UCA.

Our second caveat is about the practical implementation of the test, that unintentionally
neglects the contribution of alignment properties.23 Theobald later clarified that his test can
only be applied without corrections for highly similar sequences, mentioning that the
alignment optimization can result in bias toward UCA for data sets with lower similarity or
alignment uncertainty.22 To have an idea of how the alignment properties are related to the
evolutionary scenarios, we simulated 8-sequence data sets under the UCA hypothesis and
under an IO scenario with two independent quartets. We evolved these sequences under
trees and parameters that resembled the original BE data set, but with the total sum of
branch lengths randomly assigned between 0.01 and 10. We then aligned the resulting
sequences using ProbCons,24 a program that can also provide a measure of alignment
quality - the expected percentage of correct pairwise matches per column. Furthermore we
calculated the average pairwise identity before and after optimizing the alignment. The
alignment optimization step (the process of aligning the sequences) is a standard procedure
in phylogenetics since the primary data are sequences likely to be homologous as a whole
but still with homology status unknown for each site.25 This optimization aims at finding the
scenario of indels (insertions and deletions) such that each column could be optimally
assigned as an homologous character, generally in practice trying to maximize the columns’
similarity while not increasing too much the length of the sequences.26

These results are summarized in Figure 3, where we can see that alignments of sequences
we simulated under UCA have very different properties from those simulated under IO - for
data simulated under a UCA the optimized alignment was essentially the same as the
unaligned. The quality values given by ProbCons, for instance, are a good predictor of
common ancestry since even large trees under UCA present an average expected accuracy
much higher than very short trees under an IO model. We can also see how the alignment
optimization improved the average pairwise identity (by definition, the average identity per
site) for the sequences we simulated under IO, values which are nonetheless much lower
than those under UCA with similar divergence levels.

These simulations were inspired by the Bacteria and Eukarya data set, and therefore we
wanted to compare the real data set with our simulations. Douglas Theobald kindly provided
to us the complete data set, and in Figure 4 we show some column-wise statistics for the
observed BE data set compared to simulations under UCA or IO hypotheses. This data set
has average pairwise identity of 0.47 (shown as well in Figure 3 – the gray horizontal line –
for comparison), and the ML tree under the best model had a total tree length of 3.3, which
was used in simulations as well. To be more conservative, under UCA all simulated trees
had total length larger than 6, while under the IO simulation scenario the sum of branch
lengths from both trees did not exceed 3. It is worth noticing that our simulation scenarios
under the IO hypothesis are similar to the doppelgänger sequences described in Pollock DD
et al.:27 these sequences were simulated under a tree and parameters of interest and then
analyzed together with the original sequences from which the tree was inferred. Their
objective was to increase the signal for rate heterogeneity without providing information
about internal branches. They also recognized that these resulting data sets are unlikely to
provide alignable sequences in nature.27
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Notice that we did not conduct the model selection test proposed by Theobald and
nonetheless we already have strong evidence that the BE data set resembles UCA much
more than IO: at overall and column-wise sequence identities, distribution of correct
pairwise matches per column, alignment size after optimization, and probably at many other
alignment quality estimates. As a side note, this kind of procedure is formally applied on
approximate Bayesian computation (ABC) analyses, where we cannot calculate the
likelihood of arbitrary models and instead look at the parameter sets that best approximate
the observed data.28

The simulations presented here constitute just a few idealized situations, and we recognize
that we didn’t explore here other alignment statistics that might serve as relevant indicators
(e.g. congruence of alignment optimization methods and other measures of robustness of the
alignment, as well as homology detection algorithms). But the few statistics we analyzed
here can already distinguish UCA from IO data sets, even before doing the formal test
proposed by Theobald. It is not only a mistake but a misdirection to neglect the correlation
between these alignment measures and the ancestrality of the sequences. In this sense if we
follow Theobald’s approach of restricting the analysis to robust alignments, the test might be
giving us the right answer (UCA hypothesis) for the wrong reason: we would have selected
beforehand sequences that would maximize our chances of favoring the UCA hypothesis.

We must also mention an even larger problem with such data selection: sequences simulated
under IO are unlikely to be detected by BLAST as potential homologs, given their low
similarity scores. In our simulations above, all sequences simulated under the same
phylogeny displayed a significant similarity according to the e-value from BLAST, while no
significant hits were found between sequences simulated under distinct trees (results not
shown). This suggests that a data set produced under the IO hypothesis not only is unlikely
to fit the requirements needed by Theobald’s test, but it wouldn’t even be considered to start
with. And even sequences with significant similarity based on pairwise comparisons
routinely produce uncertain alignments, with overall low sequence identities, as shown for
instance by the BaliBASE data sets.29 We must not forget that no matter how imperfect and
biased a database homology search might be, it is still an inference that we cannot ignore.
Far from replacing it, the test developed by Theobald actually relies on a set of candidate
homologs. The puzzle then is to develop a model that can systematically produce sequences
under the IO hypothesis that also conforms to the alignment properties needed for the test to
be valid without corrections, according to Theobald.22

Conclusions
Although we agree that high similarity does not imply homology, they are certainly not
independent. A formal test capable of distinguishing common ancestry from independent
origins should not be valid only on data sets where we already have strong evidence
favoring one of the outcomes - the data selection must be considered as part of the test.30

Theoretically such a test should consider arbitrary sequences for which we do not have prior
indication of homology - that is, it should not rely on blast-like database searches and should
rather supplant it.

And since with the presence of HGT we must consider all sequences potentially present in
the ancestral pool, we cannot conclude for the UCA hypothesis based only on the most
particularly similar sequences. The signal for IO will most likely be preserved only in the
more divergent genes, even if we find most other genes supporting UCA - in a manner
similar to an HGT sweep.31 In a nutshell, a test that is not biased towards UCA should be
capable of handling sequences with low similarity, from the database search to the
alignment optimization. Sequences with low similarity may not only contain the (lack of)
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signal characteristic of IO, but are also informative about deep branches and will be essential
in estimating realistic evolutionary rates and/or times.32 This test should also contemplate
the inclusion of paralogs: what we classify nowadays as different genes due to limitations of
homology detection algorithms might be in fact product of an ancient duplication and
therefore support a UCA of these gene families.

Notice that this criticism refers mostly to the implementation of the test and not to the
models, that we do believe are appropriate phylogenetic representations of UCA and IO
hypotheses, as developed in Sober E et al.33 Here we always assume that the UCA
hypothesis can be resolved by looking at the set of gene phylogenies, which may be
insufficient to describe the organismal evolution. There are further complications when we
consider the limitations of the tree of genes when compared to the tree of cells,34 to the
evolution of the genomes taking into account noncoding regions, or to the evolution of the
genetic code. For example, the history of the cells may point to a common ancestry while
some gene may have appeared more than once. Theobald did not explore all possible
scenarios, neither we tried to do it here. But Theobald was clear, from the beginning, that his
test was not the last word on the subject, but a first step in trying to solve it.
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Figure 1.
Representation of the Universal Common Ancestry (UCA) and Independent Origins (IO)
models, and how to compare them based on alignments. The left panel represents the class I
models where all genes are concatenated into one large alignment. On the right we have the
class II models where each gene is free to evolve under a distinct phylogenetic history. At
the top we have the UCA hypothesis, that claims that all sequences from each gene can be
traced back to a common ancestor, while at the bottom we have one example of the IO
hypothesis where Bacteria and Eukarya share a common ancestor, which is not shared with
Archaea. Other possible IO scenarios are not shown.
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Figure 2.
Effect of horizontal gene transfers (HGTs) on the observable gene phylogenies. Here we
show 4 examples where Eukarya and Bacteria do not share a common ancestor with
Archaea – each domain is represented by a color but individual species are not identified. In
the left column we have the transfers represented by red arrows defining donor and
recipient, while in the right we have the resulting phylogenetic trees. The first scenario (A)
is one with no apparent HGT (no change in topology), while B) represents a gene transfer
from a Bacteria to an Eukarya, such that for this gene the eukaryotic species will have an
homolog resembling a bacterial one (such homologs are called xenologs actually). C) shows
a transfer from an archaean ancestor to a bacterial one, and D) describes a transfer from
Bacteria to Archaea. Notice that under scenario D the archaean version of the gene is lost
and all species share the bacterial one. For scenarios B, C and D we assume that the
recipients of the gene transfer lose their original copies, which are replaced by the foreign
ones.
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Figure 3.
Alignment properties for data sets simulated under Universal Common Ancestry (UCA) and
Independent Origins (IO). The left panel shows the relation between quality values from
ProbCons (averaged over all sites) and tree length used in simulation. The middle panel
shows the average pairwise identity under UCA and IO as a function of tree length. For IO
simulations we have the identity values before and after optimizing the alignment, and the
gray horizontal line at 0.47 represents the observed value for the BE data set. The panel at
the right show the histogram of optimal alignment lengths divided by the unaligned values,
for simulations under UCA and IO. Here the distribution is pooled over several tree lengths.
For all panels we have the UCA simulations in black (after alignment optimization, which is
essentially the same as before optimization), the unaligned IO data sets in red and after
alignment optimization in blue.
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Figure 4.
Distribution of pairwise identities and percentage of correct matches (as given by ProbCons)
per alignment column for simulated and real data sets. On the left we have the distribution of
column-wise identities over all simulations - that is, under short Independent Origins (IO)
trees and under large Universal Common Ancestry (UCA) scenarios. The gray background
indicates the equivalent frequencies for Theobald’s BE data set. The middle panel shows the
same information as the left one, but here all trees were simulated under branch lengths
compatible to those for Theobald’s BE data set. The right panel is the histogram of quality
values per column as given by ProbCons for all simulations, together with the values for the
observed BE data set. The colors are the same as Figure 3 (blue for aligned IO and black for
UCA), with gray columns indicating Theobald’s BE data set.
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