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SUMMARY
Previous studies have shown that neurons in area V4 are involved in the processing of shapes of
intermediate complexity and are sensitive to curvature. These studies also suggest that curvature
tuned neurons are position-invariant. We sought to examine the mechanisms that endow V4
neurons with these properties. Consistent with previous studies, we found that response rank•order
to the most• and least•preferred stimuli were preserved throughout the RF. However, a fine-
grained analysis of shape tuning revealed a surprising result: V4 neurons tuned to highly curved
shapes exhibit very limited translation invariance. At a fine spatial scale, these neurons exhibit
local variation in orientation. In contrast, neurons that prefer straight contours exhibit spatially-
invariant orientation tuning, and homogenous fine-scale orientation maps. Both these patterns are
consistent with a simple orientation-pooling model, with tuning for straight or curved shapes
resulting, respectively, from pooling of homogenous or heterogeneous orientation maps inherited
from early visual areas.

INTRODUCTION
Visual shape information is processed in the ventral cortical pathway which progresses from
the primary visual cortex (V1), the secondary cortex (V2), intermediate areas (V3/V4) and
finally onto the inferotemporal (IT) cortex (Felleman & Essen, 1991). In the earlier stages,
shape is encoded primarily through local orientation in V1 (Hubel & Wiesel, 1959; Hubel &
Wiesel, 1965; Hubel & Wiesel, 1968) and combinations of orientations in V2 (Anzai et al.,
2007; Tao et al., 2012). At the final stages in IT, cells have been shown to be selective for
complex objects like faces (Desimone et al., 1984; Tanaka et al., 1991; Tsao et al., 2006).
How this transformation is achieved remains largely unknown. In addition, the selectivity to
complex features becomes more invariant to simple stimulus transformations such as size or
spatial position, as one traverses the ventral cortical hierarchy (Rust & DiCarlo, 2010). To
understand how contours of objects are integrated into coherent percepts in the later stages, a
detailed understanding of shape processing in intermediate stages like V4 is critical.

Previous studies (Pasupathy & Connor, 1999; Pasupathy & Connor, 2001) suggest that
neurons in monkey visual area V4 are involved in the processing of shapes of intermediate
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complexity and are sensitive to curvature. These studies showed that V4 neurons tend to
respond more strongly to a preferred stimulus, as compared to a null stimulus, throughout
the receptive field – a form of translation invariance. However, little is known about the
mechanisms that underlie shape tuning of neurons in area V4 nor about the degree to which
translation invariance depends on stimulus complexity. Using a dense mapping procedure,
we sought to understand the detailed structure of shape selectivity within V4 receptive
fields.

RESULTS
We analyzed responses from 93 isolated neurons in area V4 of two awake behaving male
macaques (see Methods). The stimuli consisted of oriented bars presented alone, or linked
end to end to form curves or in the most tightly curved conditions, “C” shapes (Fig 1a). Bars
were presented at 8 orientations. Composite shapes were composed of 3 bars, linked
together to yield 5 categories of shapes: straight, low curvature, medium curvature, high
curvature and “C” shape. Stimuli were presented in fast reverse correlation sequences (16
ms duration, exponential distributed delay between stimuli with a mean delay of 16 ms) at
various locations within the receptive field (RF) of peripheral V4 neurons (2°-12°
eccentricity), while the monkeys maintained fixation for 3s. The composite shapes were
presented on a 5×5 location grid centered on the RF, while the oriented bars were presented
on a finer 15×15 location grid. The grid of locations and the size of visual stimuli were
scaled with RF eccentricity to maintain the same proportions as shown in Fig 1a. A pseudo-
random sequence from the combined stimulus sets was presented in each trial.

We found that the majority of neurons in our population were significantly selective to the
composite contours. Example neurons with significant tuning for composite contours are
illustrated in Fig 2 (neurons I, II, and III). The middle panels (labeled b) show the mean
firing rate response to each of the composite forms tested (5×16 array) at the most
responsive spatial location. The adjacent panels to the right show the z-scores of the
responses after subtracting the mean spatial response (see Methods and Supp Fig 1a for
details of assessing significance). Example neuron I is preferentially tuned to straight
shapes, neuron II to medium curvature shapes, and neuron III to high curvature/”C” shapes.
Neuron IV had a significant spatial response, but no significant shape selectivity. The
distribution of spatial and shape selective tuning is shown in Fig 1b. Across the population,
80 of 93 neurons showed significant shape selectivity while a smaller subset (n=13, labeled
in blue) had spatial tuning without significant shape tuning. We did not analyze this subset
further. Furthermore, among neurons with significant shape selectivity, those preferring
either straight or more curved stimuli exhibited similar degrees of selectivity (Fig 1c). There
was no correlation between the degree of selectivity and shape preference.

Straight and low-curvature tuned neurons exhibit spatial invariance
We find that neurons that are tuned for straight (zero curvature) or low-curvature contours
are spatially invariant in their tuning. That is, they respond preferentially to the same shape
in different parts of the receptive field. The response characteristics of an example neuron
are shown in Fig 3 (example neuron I). Earlier studies (Pasupathy & Connor, 1999)
performed a more restricted examination of spatial invariance, comparing the neuronal
responses to the most (black bar) and least (white bar) preferred stimulus across different
spatial locations, as seen in the lower right panel of Fig 3a. Our fast mapping procedure
allowed us to estimate the selectivity for the full set of composite shapes at different spatial
locations. Examination of the location-specific response maps taken from four significant
response locations (Fig 3b) reveals the neuron’s full spatial invariance. The local maps show
clear tuning for straight shapes, with an orientation preference that is shared across
locations. This point is further clarified by plotting the shape (or set of shapes) to which the
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neuron preferentially responds at different locations of the stimulus grid. This is shown in
Fig 3a (bottom-left panel), in which the set of shapes to which the neuron responded (greater
than 90% of local peak rate) at each location are spatially superimposed (color indicates
firing rate). This spatial invariance to orientation tuning is also reflected in the homogeneity
of the fine-scale orientation tuning map obtained from the bar stimuli on the 15×15 grid (Fig
3c). Several other examples of straight and low-curvature tuned neurons exhibiting spatial
invariance are shown in Supp Fig 2.

Higher curvature and “C”-shape-tuned neurons are not spatially invariant
In contrast, we found that neurons tuned for curved (medium to high) and “C”-shaped
stimuli exhibited a high degree of spatial variation in their shape preference. Two such
example neurons are shown in Fig 3 (neurons II and III). In both cases, comparing the
relative responses evoked by the most- and least-preferred stimuli across locations (Fig 3a,
lower right panels) suggests a degree of spatial invariance, consistent with earlier studies
(Pasupathy & Connor, 1999). However, the pattern of selectivity to the full set of stimuli
across locations reveals that the preferred stimulus varies considerably across locations.
Example neuron II exhibits selectivity for distinct clusters of medium curvature shapes in
different parts of its receptive field (Fig 3b). The fine-scale orientation-tuning map for this
neuron (Fig 3c) shows that although there is relatively sharp tuning for orientation at each
location, there is a systematic variation in tuning across locations, and this variation appears
to be correlated with the neuron’s spatially varying curvature preference. Note that the
average fine-scale orientation response (Fig 3c, left inset) for this neuron is not tuned, and
therefore does not reflect the diversity of orientation tuning at the fine scale. Such a neuron
would be mischaracterized as non-orientation selective if mapped at a coarse level.

Example neuron III shows similar spatially varying preference for the “C” stimuli and a
heterogeneous fine-scale orientation map. We see evidence for tuning along both
dimensions of our stimulus space – orientation (e.g. neuron III, location 4) and shape
category (e.g. neuron II, locations 2 and 4). We considered if neurons selective to highly
curved shapes might be less tuned to the orientation of the shape. However at the population
level we find that orientation tuning, as indexed by circular variance (see Supp Methods), is
not correlated with shape preference (Supp Fig 1c). We also considered if these neurons
might be less tuned in the shape dimension (Supp Fig 1b). Again we find that at the
population level, an index of shape-tuning (see Supp Methods) is not correlated with shape
preference (Supp Fig 1d). Other examples of neurons exhibiting spatial variation in shape
preference are shown in Supp Fig 3.

Heterogeneity of feature selectivity across RF locations of neurons tuned for higher
curvature or “C”-shaped stimuli

To quantify the relationship between curvature preference and spatial invariance at the
population level, we examined two complementary aspects of the neuronal data. First, we
computed the shape preference and the preferred orientation at each location in the stimulus
presentation grid where the neuron responded significantly (see Methods). As one measure
of translation invariance, we determined the preferred shape and orientation at the
maximally responsive location, and measured how shape and orientation preferences
changed relative to those values, at other spatial locations (Fig 4). We find a clear difference
in spatial invariance between the population of cells that prefer straight/low curvature (local
shape preference values between 0 and 1, n=32, Fig 4a) versus those that either prefer
medium curvature (local shape preference values between 1.5 and 2.5, n=16, Fig 4b) or high
curvature/“C”-shaped stimuli (local shape preference values between 3 and 4, n=20, Fig 4c).
We find that those neurons that preferred straight or low curvature at the most responsive
location tend to be tuned for similar orientations at other RF locations, and preserve their
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shape preference across locations (Fig 4a). In contrast, although neurons that prefer high
curvature at their maximally responsive location continue to prefer high curvature at other
locations within the RF, the preferred shapes do not generally share the same orientation
(Fig 4c). Similarly, neurons with preference for medium curvature at their maximally
responsive location tend to prefer medium curvature at other locations, but the preferred
shapes are not as sharply aligned with the reference orientation (Fig 4b). The marginal
distribution of orientation preference for the straight/low curvature neurons (Figs 4a, right
histogram) was significantly different from those of the other two sub-populations (Figs 4b-
c, right histograms; p=0.03 and p=0.006 respectively, see Methods).

Second, we compared neuronal response patterns across the entire set of curved shapes
between pairs of locations within the RF. For any pair of location specific response maps
where the neuron responded significantly, we estimated the empirical distribution of
correlation coefficients between the response patterns (see Methods, Supp Fig 4). The mean
pattern correlation (ρ, expected value of the empirical distribution) provides a measure of
tuning similarity or invariance between pairs of locations in the RF, with values closer to 1
corresponding to spatially invariant tuning. The average pattern correlation for each neuron
(averaged across all pair-wise ρ values) when plotted against the average shape preference
(Fig 5a) shows a power-law decay relationship. This suggests that neurons with preference
for medium curvature and higher tend to have little spatial invariance. In contrast, neurons
with very low curvature preference tend to have substantial spatial invariance, with few
units exhibiting low invariance.

For each location pair in our population, we also calculated the reliability of the estimated
pattern correlation from the standard deviation of the empirical distribution (see Methods).
This controls for the possibility that noisier data gave rise both to greater response
heterogeneity and lower pattern correlations. A scatter-plot of pattern correlation (ρ) versus
pattern reliability (r) is shown in Fig 5b for all possible location pairs across all neurons in
our population. We see no difference in the reliability of our estimates for three sub-
populations of location pairs: those that come from neurons with average shape preference
for straight/low curvature (shape preference values between 0 and 1), those from neurons
with average shape preference for medium curvature (shape preference values between 1.5
and 2.5) and those from neurons with average shape preference for high curvature/“C”-
shaped stimuli (shape preference values 3 and 4) (Fig 5b, lower histograms). If those
neurons that showed variation in their response pattern across locations did so due to noise
in their estimates (i.e. due to low firing rates or fewer trial repeats), then we would expect
them to have low reliability values. Thus differences in spatial invariance cannot be
attributed to differences in the statistical reliability of estimates. One last point that is worth
highlighting is that pairs with lower pattern correlation values come from neurons with
preference for higher curvature/“C” shapes, whereas those with higher pattern correlation
come from neurons with preference for straight/low curvature shapes. The distribution of
pattern correlation of the straight/low curvature sub-population is significantly different
from those of the other two sub-populations (Fig 5b, right histograms; p=0.001 and
p=0.0001 respectively, see Methods).

We thus find evidence for a tradeoff between shape selectivity and position invariance. This
phenomenon is evident in terms of both the peak shape selectivity and the overall firing rate
patterns to the entire set of composite shapes.

Spatial layout of fine-scale orientation tuning maps determine shape selectivity
We questioned whether or not we could explain the diversity of shape tuning from the
diversity in the fine-scale orientation tuning maps of V4 neurons (Fig 6). Some neurons
show high degrees of translation invariance for orientation at this finer scale (Fig 6, bottom
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row) while others show heterogeneous tuning (Fig 6, top row). As noted above, the spatial
layout of the fine-scale orientation tuning maps in our example cells (Fig 3c), seem to reflect
the cell’s shape selective properties. It has been proposed, both from experimental
observations (Chapman et al., 1991; Jin et al., 2011) and theoretical simulations (Paik &
Ringach, 2011), that simple pooling of the spatially segregated afferent connections from the
lateral geniculate nucleus (LGN) to the primary visual cortex (V1), might determine both the
orientation tuning characteristics of V1 neurons as well as the pin-wheel structure of
orientation maps in V1. We hypothesized that this pooling architecture might carry forward
to downstream retinotopic extra-striate areas like V4. This hypothesis is also consistent with
earlier proposals, in which neuronal responses in V4 to combinations of line elements are
weighted averages of the responses evoked by individual elements (Ghose & Maunsell,
2008; Lee & Maunsell, 2010; Reynolds et al., 1999; Reynolds & Heeger, 2009), and related
proposals in MT (Heuer & Britten, 2002; Rust et al., 2006) and IT (Zoccolan et al., 2005).

To examine the degree to which the pooling of orientation signals could account for the
observed complexity of shape tuning in V4 neurons, we generated location specific response
predictions to the composite shapes, derived from a simple weighted average of the
component responses obtained from the fine-scale orientation tuning maps (see Methods).
We then calculated the correlation coefficient between the observed response pattern and the
predicted response pattern. Note that the fine-scale orientation maps contain both a spatial
response component and an orientation-tuning component. To investigate the contribution of
these components, we also considered two reduced versions of the pooling model (see
Methods, Supp Fig 5c). A space-only version was obtained by averaging across orientation
at each fine-grid location. This model did not have any local orientation tuning. An
orientation-only version was obtained by subtracting the space-only response from the
measured data at each fine-grid location, leaving only orientation tuning. Thus this model
did not contain any local spatial information.

The predicted response maps for two example neurons (neurons II and III in Figs 2-3) are
shown in Fig 7a (panels labeled “prediction”). Maps are shown for three different receptive
field locations for each neuron. For the RF location marked ‘1’, the left panel shows the
empirical data, while the other three panels show the predicted responses from the full
model and the two reduced models. Shown below the predicted response maps are the
corresponding sections of the fine-scale orientation map which were used to generate the
predictions. To take the example for RF location ‘1’ in neuron II, we can see clearly that the
selectivity for medium curvature shapes pointing upwards arises from the layout of the fine-
scale map: the middle location is tuned to horizontal elements, the upper-left location is
tuned to elements tilted 45 degrees counter-clockwise, the upper-right location is tuned to
elements tilted 45 degrees clockwise (and also to vertical). There is a close correspondence
between the data and the predicted patterns both for the full model and the orientation-only
model. The space-only model performed less well, but still explained significant parts of the
response (ρ = 0.43 for space-only versus ρ = 0.58 for the orientation-only model). Thus,
both spatial and orientation components contribute giving the best correlation (ρ = 0.67) for
the full model. Only the predictions of the full model are shown for RF locations ‘2’ and ‘3’.
The model correlations (full model only) at each spatially significant location are shown in
the lower left panel of Fig 7a.

In the case of example neuron III, the local orientation tuning was highly heterogeneous and
most of its curvature selectivity could be explained by local spatial tuning alone. As seen for
RF location 1, the largest responses occur for composite shapes whose ends fall in the upper
part of the fine-scale grid where the spatial response is higher (i.e., on the RF boundary).
The orientation of the end elements is not critical, but only that they fall inside the RF. The
space-only model provided a better fit (ρ = 0.66) as compared to the local orientation
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information (ρ = 0.22), and in fact, the combined orientation and spatial information in the
full model slightly worsens the prediction (ρ = 0.60). This neuron may thus be largely non-
selective to orientation, but nevertheless exhibits curvature selectivity at the boundaries of
the RF due to spatial inhomogeneity. This highlights to what extent texture or non-
orientation selective units can exhibit curvature selective responses at their spatial
boundaries. Other cells tuned for high curvature shapes exhibited similar orientation
heterogeneity (Fig 6, top row), and had selectivity for curved shapes typically at the RF
boundary (see examples in Supp Fig 3).

To test the predictive power of the model, we computed a null distribution of the correlation
coefficients by repeatedly shuffling the fine-scale orientation maps and then generating
response patterns from these shuffled maps (Supp Fig 5a, see Methods). This shuffling
procedure perturbed the relative spatial structure of the fine-scale map within a coarse grid
location. It thus serves as a comparison against which to test whether contour preferences at
a given location depend on the spatial arrangement of the local orientation map. Using this
procedure, we calculated whether any of the model correlations (across all spatially
significant locations) were significantly different from chance (p=0.05), after correcting for
multiple comparisons. The spatial locations where the model correlations are significant are
demarcated with ‘x’ for our example neurons (Fig 7a, lower left panels). Across the
population, 80% of neurons showed a significant prediction (i.e. at least one RF location
with significant p-value; on average 40% of the RF locations had significant p-values).

The linear pooling model accounts for a substantial fraction of the response variance (see
Methods) across neurons with varied shape preferences. Fig 7b shows a scatter-plot of the
mean explained variance (averaged across RF locations) for the full model versus average
shape preference. The marginal distribution of the mean explained variance has a median
value of 0.25. Examining the histogram of explained variance for the full and reduced
models (Fig 7c), we see that the orientation-only model plays a dominant role for the
straight/low-curvature categories (linear Pearson correlation, r=-0.4, p<0.001). We should
note that the local orientation significantly improved fits for medium curvature neurons
(p<0.001), though not for high curvature neurons. Thus for medium curvature, local
orientation plays a significant role. Meanwhile, the space-only model plays a key role across
all shape categories (r=0.09, p=0.02). In general, the full model is the best predictor across
the population.

We should note that the pooling model explored in our study does not in any way
deemphasize the importance of non-linearities in the neuronal response. Previous studies
have found that non-linear operations such as divisive normalization help explain the
responses of extra-striate neurons to multiple oriented stimuli in their receptive fields (Heuer
& Britten, 2002; Lee & Maunsell, 2010; Reynolds et al., 1999). Here we show that the
simplest model, linear pooling of local oriented responses, can in fact explain much of the
variation in V4 shape tuning across space, but we anticipate that more complete models
incorporating non-linearities would perform still better.

Control conditions
To investigate whether some of our results were influenced by the spatial and temporal
characteristics of our stimuli, we conducted several control experiments on subsets of cells
in our neural population (see Supp Methods). Neurons exhibit virtually identical tuning
when stimuli were presented for longer durations (200ms, Supp Fig 6) and when the
components of the curved shapes were changed to elongated Gabors (Supp Fig 7a). Neurons
did not exhibit tuning to spatially scrambled versions of the stimuli, indicating tuning for
spatial structure (Supp Fig 7b). This was consistent with the fact that spatial shuffling of the
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fine-scale orientation maps yields very poor prediction of shape selectivity, thus lending
further support to the importance of local structure.

DISCUSSION
One innovation of the current study is the use of fast reverse correlation procedures to map
V4 receptive fields. Such techniques are common in earlier visual areas (Ringach, 2004), but
previous studies in V4 have generally used longer duration stimuli, typically with durations
ranging from 200-500 ms and correspondingly long inter-stimulus intervals. The primary
advantage of the fast mapping technique was that it allowed us to perform a dense mapping
of shape selectivity across several locations in the RF, in addition to a fine-grained mapping
of the selectivity to individual oriented components of the composite shapes. This provides a
more comprehensive description of contour/shape selectivity across the RF than has been
possible in previous studies.

The present results reveal considerable heterogeneity in feature selectivity and the
translation invariance of neurons in macaque area V4, and force us to reconsider the
established notion that neuronal invariance increases as one traverses the ventral visual
hierarchy. Consistent with the conclusions of earlier reports, (Pasupathy & Connor, 1999),
we find a subpopulation of V4 neurons whose stimulus tuning is maintained throughout the
receptive field. Also consistent with earlier studies, the majority of neurons did exhibit a
higher firing rate to the most preferred stimulus tested versus the most non-preferred
stimulus, across spatial locations. However, a detailed mapping of stimulus tuning reveals
many neurons exhibiting considerable variability in tuning across space, and very limited
spatial invariance. This diversity can be captured by two underlying organizing principles.

The first is the dichotomy between the heterogeneity of feature selectivity across RF
locations in the case of neurons tuned to higher-curvature/”C” shapes and its homogeneity in
the case of neurons tuned to straight/low-curvature shapes. The denser sampling of the RF
afforded by our method reveals that true translation invariance is largely restricted to
neurons preferring straight contours. Neurons with preference for very low curvature tend to
exhibit spatial invariance, but curvature/”C” selective neurons often exhibit a high degree of
variation in shape preference across their receptive fields. Further, curvature tuned neurons
tend to prefer curved over straight elements at different locations in the RF, while varying in
the orientation of the preferred shape across locations (Fig 4b-c). These results are echoed
by our observations from a separate study where we have observed a trade-off between
curvature and invariance using naturalistic images. Thus, we expect that the conclusions of
the present study will generalize across different stimulus conditions. This is also supported
by the control analyses presented above in which virtually identical tuning was observed
when stimuli were presented for longer durations.

There is strong evidence that object recognition is quite rapid as has been demonstrated via
rapid serial visual presentation (Potter & Levy, 1969) and rapid object categorizing
(Bodelón et al., 2007; Thorpe et al., 1996) paradigms, suggesting a primary involvement of
the feed-forward pathway. Our study focused on neuronal selectivity to individual contour
fragments and the rapid reverse correlation procedure may have mainly isolated feed-
forward contributions to the neuronal response. When we compared the shape selectivity
among a sample of neurons with fast mapping procedures and longer duration stimuli we
found striking similarities in their selectivity to the individual elements (Supp Fig 6). It is
possible that recurrent or feed-back connections, mediated at longer latencies, could refine
the selectivity of the initial V4 visual responses, and could contribute to spatial invariance as
well as to other object-centered or attention-dependent effects (Connor et al., 1996;
Pasupathy & Connor, 2001; Yau et al., 2012). Further studies with dense spatio-temporal

Nandy et al. Page 7

Neuron. Author manuscript; available in PMC 2014 June 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



mapping are needed to fully understand neuronal selectivity to complex combinations of
shape fragments.

The second organizing principle alluded to above is that the diversity of shape tuning in V4
is well accounted for by a simple pooling of local orientation signals. Much of the
complexity of V4 tuning in our dataset could be explained by a linear pooling of the local
responses to smaller oriented elements used to form our composite stimuli. Both the spatial-
response and orientation-tuning components of the local orientation maps play a key role in
determining shape selectivity. We find that curvature selectivity could arise either due to
systematic variation in fine-scale orientation tuning across RF locations (Fig 6, middle row),
or due to purely spatial aspects as in the case of tuning heterogeneity (Fig 6, top row). This
latter category presents the interesting possibility that such neurons might respond to closed
areas of texture, congruent with the idiosyncratic shape of their receptive fields.

The primary visual cortex is organized into iso-orientation domains punctuated with
pinwheel regions that vary in orientation preference over short distances (Blasdel, 1992;
Bonhoeffer & Grinvald, 1991; Bosking et al., 1997). Neurons tuned for medium curvature
(Fig 6, middle row) may inherit their shape tuning from such domains of heterogeneous
orientation tuning. Consistent with this, we found that orientation-tuning maps measured
with smaller elements generally varied continuously in their preferred orientations, showing
transitions from one orientation to another as one might expect when pooling from neurons
near an orientation pinwheel in earlier areas. In contrast, straight-tuned neurons (Fig 6,
bottom row) exhibited fine scale orientation maps that were constant in their orientation
preference, as would be expected if these neurons inherited their tuning properties from
homogenous orientation domains. This hypothesis is also consistent with the conclusion that
the RFs of central V4 neurons correspond to a constant-sized sampling of the V1 cortical
surface (Motter, 2009). Our control experiments show that these findings are robust against
the spatial characteristics of the primitives that made up the curved stimuli.

Previous assessments of spatial invariance were made using the most and least preferred
stimuli, either with local curved stimuli (Pasupathy & Connor, 1999) or with larger pattern
stimuli (Pasupathy & Connor, 2001), and found consistent selectivity across shifts in
position half the receptive field size or more. Models inspired by these earlier findings
utilized linear pooling mechanisms to achieve feature selectivity followed by non-linearities
such as “soft-max” selection to gain spatial invariance (Cadieu et al., 2007). The “soft-max”
operation can be parametrically varied to yield a simple averaging operation at one end (no
spatial invariance) to taking the ”max” operation on the other (full spatial invariance).
Consistent with the earlier studies, we find that both straight- and curve-preferring neurons
do preserve a relative preference for the stimuli that are, on average, most and least preferred
(Fig 3a, bottom right panels). However, the more detailed examination in our study leads us
to conclude first that shift invariance is much more limited than previously appreciated, at
least for local curved elements, and further that much of the response across the receptive
field is well explained by linear pooling of local orientation responses.

We note that the variation in curvature tuning that we observe is consistent with previous
studies using closed form contour stimuli (Carlson et al., 2011; Pasupathy & Connor, 2001)
that show selectivity to different convex and concave curves positioned relative to the center
of a closed form. However, the limited spatial invariance that we observe and the success of
local orientation pooling in predicting responses, lead us to suggest that spatial invariance to
larger pattern stimuli will be much more restricted than previously suggested, falling within
one of our coarse grid locations (about 1/3 of the receptive field size). Recent studies at still
higher stages of processing such as IT also call into question the spatial extent of invariance
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in ventral stream representations, suggesting invariance is not intrinsic but a learned attribute
of those representations (Cox & DiCarlo, 2008).

It is possible that the 13 neurons excluded from our analyses due to their lack of shape
selectivity are purely color selective (see, e.g., Bushnell et al. (2011)). The relationship
between the present findings and the recent report of segregated orientation and color
domains (Tanigawa et al., 2010) remains to be explored. Since cells selective for higher
curvature are not strongly tuned for orientation (Fig 3, example neurons II and III), domain
segregation might be somewhat reduced if measured using composite shapes (as in our
study). We do not see evidence for the response bias toward acute contour curvature as
reported in a recent study (Carlson et al., 2011). This could be due to the fact that in our
study we explored the fine structure of the entire RF, whereas the stimuli used in the Carlson
et al study were presented at the center of the RF and typically spanned the extent of the RF.

The finding that spatial invariance falls off with preference for more curved contours
suggests a possible segregation of function. Spatially invariant neurons selective for
orientation may play a role in representing extended regions of uniform texture, where the
location of the individual texture elements need not be encoded with great spatial precision.
In contrast, neurons selective for curvature are likely activated when an appropriately curved
contour falls at a particular location within the receptive field. This form of spatially-
selective encoding of curved contours would be useful in localizing contours, particularly at
the points of high curvature that often play a critical role in defining shape (ATTNEAVE,
1954; Feldman & Singh, 2005). We note that such a code, although parsimonious, would be
ambiguous for downstream neurons, which would likely integrate multiple signals to derive
an unambiguous interpretation of a complex contour.

Although the tradeoff between invariance and contour complexity does suggests distinct
functions, we also find that V4 responses across this spectrum can be explained using a
simple model that pools fine-scale orientation signals. This suggests that differences in
invariance and contour complexity depend on differences in the orientation-selective inputs
that are pooled to give rise to selectivity in V4. We thus suggest that these different patterns
of shape tuning and invariance can be understood as arising from differences in the wiring
that links orientation selective inputs to V4, with a simple pooling model serving to integrate
these different inputs.

METHODS
Electrophysiology

Neurons were recorded in area V4 in two rhesus macaques. Experimental and surgical
procedures have been described previously (Reynolds et al., 1999). See Supp Methods for
further details.

Stimulus presentation and eye-movement monitoring
Stimuli were presented on a computer monitor (Sony Trinitron Multiscan, TC, 640×480
pixel resolution, 120 Hz) placed 57 cm from the eye. Eye position was continuously
monitored with an infrared eye tracking system (240 Hz, ETL-400; ISCAN, Inc.).
Experimental control was handled by NIMH Cortex software (http://www.cortex.salk.edu/).
Trials were aborted if eye position deviated more that 1-degree from fixation.

Preliminary RF mapping
At the beginning of each recording session, neuronal RFs were mapped to determine the
approximate spatial extent over which stimuli elicited a visual response. Monkeys fixated a
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central point during which each neuron’s RF was mapped using subspace reverse correlation
in which Gabor (eight orientations, 80% luminance contrast, spatial frequency 1.2 cpd,
Gaussian half-width 2°) or ring stimuli (80% luminance contrast) appeared at 60 Hz. Each
stimulus appeared at a random location selected from a 19 × 15 grid with 1° spacing in the
inferior right visua l field. The orientation of the Gabor stimuli and the color of all stimuli
(one of six colors or achromatic) were randomly selected. This resulted in an estimate of the
spatial RF, orientation, and color preference of each neuron. Recordings were often made
from multiple electrodes, and the preferences of units on separate channels did not always
match. The stimuli for the main experiment were centered on the estimated spatial RF of the
best-isolated units.

Task and stimuli
The monkey began each trial by fixating a central point for 200 ms and then maintained
fixation through the trial. Each trial lasted 3s during which neuronal responses to a fast-
reverse correlation sequence (16 ms stimulus duration, exponential distributed delay
between stimuli with mean delay of 16 ms, i.e. 0 ms delay p=1/2, 16 ms delay p=1/4, 32 ms
delay p = 1/8 and so on) were recorded. The stimuli were comprised of oriented bars (8
orientations) or bar-composites (16 orientations × 5 conjunction angles, total of 72 unique
stimuli, Fig 1a). These latter stimuli were constructed from the conjunction of 3 bars at
conjunction angles of 0°, 22.5 °, 45°, 67.5 ° and 90° between the end elements and the
center. The 5 conjunction levels created 5 categories of shapes. These were enumerated as 0
(zero curvature/straight), 1 (low curvature), 2 (medium curvature), 3 (high curvature) and 4
(“C”). A pseudo-random sequence from the combined stimulus sets was presented in each
trial. The composite stimuli were presented on a uniform 5×5 location grid (‘coarse grid’)
centered on the estimated spatial RF based on the preliminary mapping. The grid locations
were separated by one-fourth of the RF eccentricity (for e.g., for a RF centered at 6°, th e
grid-spacing was 1.5° and the grid covered a visual extent of 3°-9°). The oriented bar stimuli
were presented on a finer 15×15 location grid (‘fine grid’) that spanned the larger 5×5 grid
in equal spaced increments. Stimuli were scaled by RF eccentricity, such that each single bar
element spanned approximately the diagonal length of the fine grid. The receptive fields of
all neurons reported in the study were in the para-foveal region between 2° and 12° in the
inferior right visual field.

Inclusion criteria
Only well isolated units were considered as potential candidates (n=251) for the analysis.
Among these, only those neurons with robust visual responses were selected. The robustness
of the spatio-temporal response to the visual stimuli was determined as follows: a temporal
window between 60 and 120 ms after stimulus onset was used to identify a temporal interval
of significant visual response. The temporal window was divided into 8.33 ms bins for
determining the PSTH. Typical average temporal responses to the composite stimuli are
shown in Figure 2a. The temporal window for each neuron, Tsig, was taken as those PSTH
bins where the mean firing rate averaged across all stimulus conditions exceeded the
baseline rate by 4 standard deviations (significant time points labeled in Fig 2a, dotted gray
box). The baseline rate was determined from a temporal window between 0 and 20 ms after
stimulus onset. A neuron was considered a potential candidate for further analysis if it had a
clear transient response peak that was contained within the larger 60-120 ms interval. 23
single units were eliminated in this process. Of the remaining 228 units, we eliminated a
further 135 units since their fine-scale orientation maps (described below) were not fully
contained within the stimulus presentation grid i.e. the spatial extent of the receptive fields
of these neurons could not be fully characterized.
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With the remaining 93 units, we next determined the locations within the coarse 5×5
stimulus grid where the neuron had significant spatial responses. We first performed a
jackknife analysis on the data (Nj = 20 jackknifes, each using 95% of trials). For each
jackknife, j, we determined the neuronal response, r(x,y,s,j) to a particular composite
stimulus, s, at grid location (x,y), as the average firing rate (within Tsig) across stimulus
repeats. The mean,  and s.e.m., η(x,y,s), of the responses across the 20 jackknives
were then used to calculate a spatial z-score at each grid location (x,y):

where b was the baseline firing rate and the * operation indicates that the responses were
averaged across stimuli. The grid-location was marked as significant if the spatial z-score
exceeded the significance level of 0.05 (corrected for 25 multiple comparisons, see Supp Fig
1a). Spatially significant grid locations for example neurons are marked with ‘x’ or numerals
in Figs 2 and 3.

For each spatially significant grid location, we next determined whether the neuron was
significantly selective to the composite stimuli at that location. We calculated a z-score for
each stimulus:

We define a shape selectivity index, SSI(x,y), for that spatial location as the maximum of
the shape z-scores:

A grid location was considered significantly shape selective if the index exceeded the
significance level of 0.05 (corrected for 72 × M multiple comparisons, where M was the
number of significant spatial locations, see Supp Fig 1a). A neuron was considered
significantly shape selective if it had at least one spatially significant grid location that was
also significantly shape selective. 13 neurons failed this significance test. These neurons had
significant spatial RFs, but were not significantly shape selective (Fig 1b). An example of a
non-selective neuron is shown in Fig 2 (example neuron IV). We did not analyze these
neurons any further. All subsequent analyses were performed on the remaining 80 neurons.

Data analysis
We used the mean responses  to generate three basic response maps: (a) location-
specific response maps for the composite stimuli at each location in the 5×5 presentation
grid (Fig 2b, Fig 3b), (b) average response map, , for the composite stimuli by
averaging across spatially significant grid locations and (c) fine-scale orientation tuning
maps using the same procedure as in (a) for the bar stimuli on the 15×15 grid (Fig 3c).

For the population analysis, we determined several metrics from the response maps for each
neuron:
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Average shape preference: this was calculated by first determining the set of composite
shapes, si, whose firing rate in the average response map, , exceeded 90% of the
maximum firing rate. The shape category, ci (0: straight, 1: low-curvature, 2: medium-
curvature etc.), corresponding to these shapes were weighted and averaged by their firing
rates to determine the average shape preference:

Local shape preference: same as above but derived from the location-specific response
maps.

Local preferred shape orientation: The orientation (0°, 22.5°, 45° … 337.5°) of th e local
preferred shape defined above. We computed the conditional joint distribution of local shape
preference and the angular deviation of preferred shape orientation, Δθpref (Fig 4). The
computation was conditioned on the shape preference and shape orientation at the
maximally responsive location for each neuron. For all spatially significant locations other
than the maximally responsive location, Δθpref was computed as the absolute value of the
angular deviation of the local preferred shape orientation from that of the preferred shape
orientation at the maximally responsive location. We divided our neuronal population into
three sub-populations: those that preferred straight/low curvature (local shape preference
values between 0 and 1, Fig 4a, n=32), those that preferred medium curvature (local shape
preference values between 1.5 and 2.5, Fig 4b, n=16) and those that preferred high
curvature/“C” (local shape preference values between 3 and 4, Fig 4c, n=20) at the
maximally responsive location. To test whether the marginal distributions of the orientation
deviation, Δθpref, between the straight/low curvature preferring units and the high curvature/
“C” preferring units (Fig 4a and 4c, right histograms) were significantly different, we
calculated the Kullback-Leibler (KL) divergence between the distributions:

where P is the marginal distribution in Fig 4a and Q is the marginal distribution in Fig 4c.
This yielded a value of 0.5685. We then computed a bootstrapped set (Efron & Tibshirani,
1993) (1000 iterations) of divergences DKL(P ∥ Pnull) with respect to the null distribution,
Pnull, which was obtained from a random sample (with replacement) of the combined data
that underlay the two distributions P and Q. Comparing DKL(P ∥ Q) to this distribution
yielded a p-value of 0.006, indicating that the two marginal distributions were significantly
different. Similarly, the marginal distributions between the straight/low curvature preferring
units and the medium curvature preferring units (Fig 4a and 4b, right histograms) were also
significantly different (p=0.03).

Pair-wise pattern correlation (ρ) and pair-wise pattern reliability (r): for any pair of spatially
significant coarse grid locations, we estimated the empirical distribution of correlation
coefficients between the response patterns (location-specific response maps) at the two
locations using a bootstrap procedure (re-sampling with replacement, 1000 iterations) (Efron
& Tibshirani, 1993). The pair-wise pattern correlation (ρ) was taken as the expected value of
a Gaussian fit to this empirical distribution (Supp Fig 4). The Gaussian fits were in excellent
accord with the raw distributions across our data set. The pair-wise pattern reliability, r, was
defined as r=1–σ, where σ was the standard deviation of the Gaussian fit to the empirical
distribution (Supp Fig 4). The reliability served as a measure of data quality; values closer to
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1 indicating that the estimates of pattern correlation were more reliable. A scatter plot of
pattern correlation versus pattern reliability for all possible location pairs in our neuronal
population is shown in Fig 5b. The marginal distributions of pattern correlation (Fig 5b,
right histograms) and pattern reliability (Fig 5b, lower histograms) for three sub-populations
-- points that came from neurons with average shape preference for straight/low curvature
(average shape preference values between 0 and 1), those that came from neurons with
average shape preference for medium curvature (between 1.5 and 2.5) and those that came
from neurons with average shape preference for high curvature/“C” (between 3 and 4)) --
were tested for statistical difference (using the same procedure described above using the
KL divergence measure). The marginal distribution of pattern correlation for the low/
straight neurons was significantly different from those of the high curvature/“C” preferring
(p=0.0001) and the medium curvature preferring neurons (p=0.001). The distributions of
pattern reliability were not significantly different from each other, indicating that differences
in data quality were not an issue.

To examine the idea that local pooling of orientation signals within sub-regions of the RF
determine the patterns of selectivity to more complex features, we generated predictions of
location-specific response maps. This was done by spatially interpolating the fine-scale
orientation tuning map in a three step process: first, the pure spatial information in the fine-
scale map, obtained by averaging across orientation at each fine-grid location, was subject to
a 2D nearest neighbor interpolation (20 interpolation points) followed by a 2D Gaussian

smoothing operator (  the spacing between fine-grid locations); second, the pure
orientation information in the map, obtained by subtracting the average orientation response
from the measured data at each fine-grid location, was subject to a 2D nearest neighbor
interpolation (20 interpolation points) followed by a 2D Gaussian smoothing operator

(  the spacing between fine-grid locations); finally, the two components were
combined by addition. The composite stimuli (at each coarse grid location) were then
projected onto this interpolated space. The response to each component element was read off
as the value of the closest orientation match in the interpolated space at the location
corresponding to the center of the component element. The predicted response to each
composite stimulus was taken as the average of the three component responses. We then
calculated the correlation coefficient, ρmodel, between the response patterns in the predicted
map and the observed map. Since we were only concerned with pattern selectivity and not
with rate matching, the correlation measure was sufficient for our purpose.

To test for the predictive power of the model, we also calculated a null distribution of the
correlation coefficients. This was done by spatially shuffling the 9 tuning curves of the fine-
scale orientation map within a 3×3 fine grid that underlay a coarse grid location (see Supp
Fig 5a), generating the predicted responses from this shuffled map (same procedure as above
for the original unshuffled map) and hence the correlation coefficient between the predicted
map and the observed map. This shuffling procedure preserved the orientation tuning at the
fine scale while perturbing the relative spatial structure of the map within a coarse grid
location. This procedure was repeated 1000 times to give an estimate of the null distribution
(ρnull-model, see Supp Fig 5b). The model correlation, ρmodel, was tested against the null
distribution for significance (p=0.05, Bonferroni corrected for M multiple comparison,
where M is the number of significant spatial locations for each neuron). The model was
considered to have significant predictive power for a neuron is there was at least one spatial
location that was significant by the above criteria.

We also investigated two reduced versions of the pooling model (Supp Fig 5c). The space-
only version was obtained by averaging across orientation at each fine-grid location (Supp
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Fig 5c, right upper panel). This model did not have any local orientation tuning. The
orientation-only version was obtained by subtracting the average orientation response (as in
the space-only model) from the measured data at each fine-grid location (Supp Fig 5c, right
lower panel). Thus this model did not contain any local spatial information. The model
correlations and null distributions for these reduced models were calculated using the same
procedure described above for the full model.

The explained variance of our model was estimated by first calculating the model
correlation, ρmodel, as above, but on different jackknifed proportions of the data.
Specifically, we calculated ρmodel between the predicted response map and the observed
response maps from: (i) the full data set, (ii) 95% of trials (iii-v) similarly from each of 90%,
85% and 80% of trials. We then performed a linear regression on the resulting ρmodel values
against the reciprocal of the corresponding jackknife fraction values (1, 1/0.95, 1/0.9, 1/0.85,
1/0.8). This procedure is designed to correct for the bias due to finite dataset size (Brenner et
al., 2000; Sahani & Linden, 2003; Machens et al., 2004). The square of the y-intercept of the
regression line was taken as the explainable variance for that RF location. The explained
variances of the reduced space-only and orientation-only models were calculated using the
same procedure.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig 1. Stimuli and selectivity
(a) V4 receptive fields were probed with fast reverse correlation sequences drawn randomly
from a set of bars or bar-composite shapes while the animal maintained fixation for 3s. Bars
were presented at 8 orientations on a fine 15×15 location grid centered on the neuron’s
receptive field (red dashed circle, drawn for illustrative purposes only). The composite
stimuli were composed of 3 bars. The end elements were symmetrically linked to the central
element at 5 different conjunction angles (0°,22.5°,45°,67.5° an d 90°). These 5 conjunction
levels (enumerated as 0=straight, 1=low curvature, 2=medium curvature, 3=high curvature
and 4=“C”), together with 16 orientations, yielding a total of 72 unique stimuli (although
shown for aesthetic completion, the lower half of the zero curvature shapes [dotted box] is
identical to the upper half and was not presented). The composite shapes were presented on
a coarser 5×5 location grid that spanned the finer grid. A pseudorandom sequence from the
combined stimulus set was shown in each trial. The stimulus duration was 16 ms with an
exponentially distributed mean delay of 16 ms between stimuli. (b) Scatter plot of mean
shape selectivity index (SSI, see Methods) versus mean spatial z-scores (both means taken
across all spatially significant locations) for all candidate neurons (n=93). 13 neurons that
were not shape selective are marked in blue. The remaining 80 neurons are color-coded by
their average shape preference. Example neurons in Figs 2 and 3 are highlighted. (c) Scatter-
plot of mean shape selectivity index (as in b) versus average shape preference for the set of
neurons that were significantly shape selective (n=80). There is a non-significant correlation
between the two quantities, indicating that shape-selectivity is not significantly different
across cells with preference for different shape categories. Also shows are the marginal
distributions.
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Fig 2. Diversity of shape tuning
For 4 example neurons: (a) Top panel, average time course to the composite stimuli +/−
s.t.d. The average was taken across all stimuli and across all locations on the 5×5 grid.
Dotted line is the baseline rate which was determined from a temporal window between 0
and 20 ms after stimulus onset. The dotted gray box marks the temporal window where the
average firing rate exceeded the baseline rate by 4 standard deviations. This temporal
window was used for all subsequent analysis. Bottom panel, spatial receptive fields obtained
by averaging responses across the composite shape stimuli. Significant spatial locations are
marked with ‘x’ (see Methods). Contour lines demarcate 90%, 80%, 70% and 60% of
maximum response. These were obtained by spatial interpolation of the RF. (b) Location-
specific response map at the most responsive spatial location (marked with black ‘x’ in the
spatial RF in a). The composite stimuli are overlaid on the maps for ease of reference. (c)
Shape z-score maps (see Methods) for the same spatial location in b. Neuron I is
significantly selective for straight shapes, neuron II for medium curvature, neuron III for
high curvature/square. Neuron IV is not significantly shape selective. Contour lines
demarcating z-scores at the 0.05 (outer contour) and the Bonferroni corrected (inner
contour) levels are superimposed on the response maps in b. For ease of visualization, all
color maps in b and c were smoothed with a Gaussian kernel.
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Fig 3. Location specificity of shape tuning
For example neurons I, II and III in Fig 2: (a) Top panel, spatial receptive fields with
significant spatial locations marked with either ‘x’ or numerals. Bottom left panel, location-
specific shape or set of shapes to which the neuron responded preferentially (greater than
90% of local peak), at all spatially significant locations. Shapes are spatially superimposed
at each grid location with color indicating firing rates. Bottom right panel, Responses to the
most- and least- preferred pair of stimuli (determined from each neuron’s most responsive
location) at all spatially significant locations. The rank-order is preserved for each neuron.
However, this fact does not necessarily imply translation invariance. (b) Location specific
response maps at 4 significant locations of the RF. The locations correspond to those marked
with numbers in the spatial RFs in a. Neuron I exhibits preferential tuning to straight shapes
in a position-invariant manner. In contrast, neurons II and III show spatially varying tuning
to medium curvature and high curvature/“C” shapes respectively. Contour lines demarcating
shape z-scores (see Methods) at the 0.05 (outer contour) and the Bonferroni corrected (inner
contour) levels are superimposed. For ease of visualization, all color maps were smoothed
with a Gaussian kernel. (c) Fine-scale orientation tuning maps obtained with the bar stimuli
on the 15×15 grid. The color-coded oriented lines represent the bar stimuli; the line lengths
are normalized to the maximum across all orientations and locations. Left inset: average
orientation response across all locations on the fine grid. Right-inset: smoothed fine-scale
orientation map with hue indicating preferred orientation, saturation indicating sharpness of
orientation tuning and value indicating average response (see Fig 6 for hue-saturation-value
color-coding description). Neuron I has a homogenous fine-scale map. In contrast, neurons
II and III have very heterogenous maps – there is local tuning, but the tuning changes across
space.
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Fig 4. Heterogeneity of shape tuning across RF locations
(a) The color map shows the conditional joint distribution of local shape preference and the
angular deviation of shape orientation, Δθpref, across all neurons (n=32) with local shape
preference for straight or low curvatures (shape preference values between 0 and 1) at the
maximally responsive location. The joint distribution was computed from all spatially
significant locations within the response grid other than the maximally responsive location
for each neuron. Δθpref was computed as the absolute value of the angular deviation of the
local preferred shape orientation from that of the preferred curvature orientation at the
maximally responsive location. The histograms at the top and right show the marginal
distributions of local shape preference and Δθpref respectively. These neurons tend to prefer
straight/low curvatures of the same orientation at other locations. (b) Same format as in
panel a, but for neurons with local shape preference for medium curvature (n=16, shape
preference values between 1.5 and 2.5) at the maximally responsive location. Such neurons
tend to prefer medium curvature at other locations, but the preferred shapes are not as
sharply tuned to the reference orientation at the maximally responsive location as in a. (c)
Same format as in panel a, but for neurons with local shape preference for high curvature/
“C” (n=20, shape preference values between 3 and 4) at the maximally responsive location.
Such neurons also prefer high curvature/“C” at other locations, but the preferred shapes do
not share the same orientation. The marginal distribution of Δθpref in a is significantly
different from those in b and c.
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Fig 5. Neurons with preference for curvature have limited spatial invariance
(a) Average correlation between pairs of response patterns (averaged across all possible
pairs of spatially significant response locations for each neuron, see Methods) plotted
against the average shape preference for all neurons in our population (n=80) shows an
inverse power law relationship (R2 = 0.4). Average pattern correlation is high for neurons
tuned for straight/low curvature, while the pattern correlation is low for neurons tuned for
high curvature/“C”, indicating a tradeoff between curvature and spatial invariance. The three
example neurons in Figs 2 and 3 are indicated. (b) Scatter plot of pair-wise pattern
correlation versus pair-wise pattern reliability for all possible pairs of significant response
locations in our entire neuronal population. The colors indicate the average shape preference
of the neuron to which the location pair belongs. Right histograms: Distribution of pattern
correlation for pairs that came from three sub-population of neurons: neurons with average
shape preference for straight/low curvature (shape preference values between 0 and 1), those
that came from neurons with average shape preference for medium curvature (shape
preference values between 1.5 and 2.5) and those that came from neurons with average
shape preference for high curvature/“C” (shape preference values between 3 and 4). The
correlation distribution of the straight/low curvature sub-population is significantly different
from those of the other two sub-populations. Bottom histograms: Distribution of pattern
reliability for the same three sub-populations as above. The reliability distributions are not
significantly different from each other.
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Fig 6. FIne-scale orientation tuning maps illustrate the diversity of tuning in V4 neurons
Smoothed fine-scale orientation maps are shown for 17 example cells. Smoothing was
achieved by linear interpolation of the respective fine-scale maps on the 15×15 grid and
color-coding as follows: hue indicates preferred orientation, saturation indicates sharpness of
orientation tuning and value indicates normalized average response. The hue-saturation-
value color-coding scheme is illustrated by the color cone on the bottom right. The maps are
arranged from heterogeneous (top left) to homogenous (bottom right). The three example
neurons of Figs 2 and 3 are indicated.
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Fig 7. A weighted average pooling model of local orientation predicts shape tuning
(a) The pooling model is illustrated for two example neurons (neurons II and III in Figs 2
and 3). For the RF location marked ‘1’, the left panel shows the empirical data, while the
other three panels shows the predicted responses for the full model and two reduced models
(space-only and orientation-only, see Methods and Supp Fig 5c). Also shown are the
corresponding sections of the fine-scale maps used to predict the responses. Indicated above
each predicted response map is the pattern correlation between the data and the prediction.
Only the predictions of the full model are shown for RF locations ‘2’ and ‘3’. Since our
attempt was not to match firing rates, but to quantify the match in the response patterns
between the data and prediction, all panels are shown in independently normalized firing
rate units. Shown below the RF in the lower left panel are the model correlations (full model
only) at each spatially significant location. The spatial locations where the model
correlations are significant (compared to spatially shuffled arrangements, see Methods and
Supp Fig 5a-b) are demarcated with ‘x’. (b) Scatter-plot of the mean explained variance
(averaged across all RF locations for each neuron) for the full model versus average shape
preference (n=80). The 3 example neurons in Figs 2 and 3 are highlighted. The marginal
distribution of the mean explained variance has a median value of 0.25. (c) Histogram of
explained variance for the full and reduce models. The data was aggregated across all
spatially significant RF locations for all neurons (n=80) and binned according to local shape
preference. The orientation-only model dominates for the straight/low-curvature categories,
while the space-only model plays a key role across all shape categories. Paired comparisons
between the full and reduced models were tested for statistical significance (t-test) and are
indicated with asterisks. Error bars indicate s.e.m.
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