
Sundvall et al. BMC Medical Informatics and Decision Making 2013, 13:57
http://www.biomedcentral.com/1472-6947/13/57
SOFTWARE Open Access
Applying representational state transfer (REST)
architecture to archetype-based electronic health
record systems
Erik Sundvall1*, Mikael Nyström1, Daniel Karlsson1, Martin Eneling1, Rong Chen1,2 and Håkan Örman1
Abstract

Background: The openEHR project and the closely related ISO 13606 standard have defined structures supporting
the content of Electronic Health Records (EHRs). However, there is not yet any finalized openEHR specification of a
service interface to aid application developers in creating, accessing, and storing the EHR content.
The aim of this paper is to explore how the Representational State Transfer (REST) architectural style can be used as
a basis for a platform-independent, HTTP-based openEHR service interface. Associated benefits and tradeoffs of
such a design are also explored.

Results: The main contribution is the formalization of the openEHR storage, retrieval, and version-handling
semantics and related services into an implementable HTTP-based service interface. The modular design makes it
possible to prototype, test, replicate, distribute, cache, and load-balance the system using ordinary web technology.
Other contributions are approaches to query and retrieval of the EHR content that takes caching, logging, and
distribution into account. Triggering on EHR change events is also explored.
A final contribution is an open source openEHR implementation using the above-mentioned approaches to create
LiU EEE, an educational EHR environment intended to help newcomers and developers experiment with and learn
about the archetype-based EHR approach and enable rapid prototyping.

Conclusions: Using REST addressed many architectural concerns in a successful way, but an additional messaging
component was needed to address some architectural aspects. Many of our approaches are likely of value to other
archetype-based EHR implementations and may contribute to associated service model specifications.
Introduction
There are several intertwined motivations behind this
work that together form the requirement context and
resulting design philosophy. They stem from years of
using, teaching [1], researching, and implementing sys-
tems [2-4] based on openEHR and archetypes. Student
project participants, clinicians, and software developers
approaching parts of openEHR often need a lot of time
and effort to get started (Figure 1).
The above-mentioned motivations lead to require-

ments for an architecture intended to clearly separate
concerns, and that should be open, modifiable, scalable,
and at the same time suitable for rapid prototyping.
* Correspondence: erik.sundvall@liu.se
1Department of Biomedical Engineering, Linköping University,
Linköping 581 85, Sweden
Full list of author information is available at the end of the article

© 2013 Sundvall et al.; licensee BioMed Centra
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
One barrier to understanding openEHR is its size; the
complete openEHR specification documents are com-
prehensive, see Figure 1. The size is justified by the fact
that the approach tries to cover the semantic underpin-
ning for systems ranging up to and beyond nation-wide
EHR networks for lifelong records [5]. A functional,
transparent, and manageable EHR system on which to
perform teaching and research in projects related to
openEHR and ISO 13606 was needed when the design
and implementation of this architecture started. The
result had to be straightforward enough to allow new
people to get started with relevant parts of the system in
short time, for example in Master’s thesis projects or
studies aiming for a single scientific paper. A modular
design that considers ‘separation of concerns’ by using
‘pluggable’ components of limited functional scope, in
combination with examples with reasonable learning
l Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

mailto:erik.sundvall@liu.se
http://creativecommons.org/licenses/by/2.0


Figure 1 Prototype platform examples. The described
architecture aims to reduce the time needed to implement
prototypes based on openEHR and other archetype-based systems.
It has not been obvious for newcomers how to go from
comprehensive specifications (the binder) and archetypes to
working prototypes (as on the devices above).

Sundvall et al. BMC Medical Informatics and Decision Making 2013, 13:57 Page 2 of 25
http://www.biomedcentral.com/1472-6947/13/57
curves (using for example HTML and JavaScript) may
help newcomers become productive fast.
The approach of dividing the openEHR architecture

into functional subcomponents that ease learning and
enable decoupled implementation also has potential
deployment and scalability implications for full scale
EHR systems that require consideration of:

� Openly specified flexible deployment scenarios with
partial implementations and solutions from mixed,
diversified developers and suppliers backed by
different technologies (any HTTP-capable platform/
programming language, etc.) Thus facilitating ‘mix
and match’ of user interface, decision support,
storage, and query solutions, etc., between openEHR
implementations.

� How to apply scalability solutions, including the
ones built into Representational State Transfer
(REST) and HTTP, to openEHR in ‘scale-out’
scenarios, where partitioning the system cleverly and
adding more computers scales up the load capacity.

Another design goal was to create an architecture that
allows and encourages rapid prototyping and end user
innovation, regarding for example user interfaces (in-
cluding EHR navigation and graphical overviews) and
decision support, based on realistic patient data and
archetype-based data structures. A goal is to take de-
signs and design stakeholders beyond nice but untested
mockups that at implementation time may show to be
incapable of coping with real data, since the required
source data is not structured and well defined. Many
clinicians have well-justified wish lists regarding what an
optimal EHR system should do. Prototyping processes
based on archetype-based frameworks, should preferably
pose the necessary counter-questions regarding how
source data can be structured. Structuring has a price as
it requires effort both at design time and later at data
entry, and that price should be put in proportion to pos-
sible gains. A goal is to have these price versus perform-
ance discussions early, for example during cooperative
prototyping (described by Bødker et al. [6]) and thus
help in creating a more complete basis for design than
what is often produced in paper-only requirement speci-
fications. Ideally, the proposed architecture should make
it possible and efficient to perform many experiments in
order to support interaction design, prototyping, etc.,
processes that usually are iterative and agile.
Iterative experimental prototyping and development of

interfaces and services using the proposed REST-based
architecture can now (at publication time) be done using
LiU EEE (Linköping University Educational EHR Envir-
onment). Appendix A, “LiU EEE – Implementation
details”, describes implementation details of LiU EEE.
LiU EEE is currently used for research and educational

purposes. Server side features are mainly written in Java
and an XML database [7] is used for storage. Client side
features were created mainly in HTML5 and JavaScript.
The software is available as open source under an Apa-
che 2 license.

Background
This background section describes components and the
general architectural approaches reused in this work In-
cluding Representational State Transfer (REST), URIs,
and HTTP.
Appendix B, “Introduction to openEHR”, is provided

as recommended reading for readers unfamiliar with
details of archetype based systems such as openEHR and
ISO 13606. It describes openEHR features of importance
to the proposed REST-based architecture that need to
be understood before continued reading. This includes:

� Design layers: Reference Model (RM), Archetypes
and Templates [5].

� Versioning mechanisms and the central objects
CONTRIBUTION, VERSIONED_OBJECT and
VERSION [8].

� Paths, queries and the Archetype Query Language
(AQL) [5,9,10].

The design this paper describes treats EHR infrastruc-
ture as a distributed mission-critical system, but the
paper does not discuss to what degree EHR systems have
(yet) become indispensable, or how healthcare is affected
when EHR systems become unresponsive. Thus the
background section ends by describing approaches to
three desired properties of such systems: scalability,
performance, and high availability.



Sundvall et al. BMC Medical Informatics and Decision Making 2013, 13:57 Page 3 of 25
http://www.biomedcentral.com/1472-6947/13/57
Representational State Transfer (REST), URIs, and HTTP
Roy Fielding [11] described constraints and design decisions
behind the World Wide Web as an architectural style pat-
tern named Representational State Transfer, or REST for
short, that was applied to the design of the Hypertext Trans-
fer protocol (HTTP) [12] and Uniform Resource identifiers
(URI) [13].
The REST approach aims to support distributed hyper-

media systems that scale to Internet size, with general inter-
faces and intermediary components that reduce interaction
latency [11].
Some of the fundamental parts of REST when applied

to HTTP and URIs are:

� Resources are targets of references and are identified
by resource identifiers in the form of URIs

� Resources can have different representations
(formats), e.g. HTML, XML, JSON (JavaScript
Object Notation), plain text, serialized Java objects.
The representations are sent in the body of the
message. In the HTTP protocol representation
metadata sent in the HTTP header contains things
like media (MIME) type. HTTP header fields can
also contain cache directives, as exemplified in the
‘performance’ section below.

� A predefined set of methods (corresponding to
verbs) that act on resources. The method is supplied
in the client’s request. Methods like OPTIONS and
GET should not lead to changes at the server side,
so results from those methods can usually be
cached. The GET method is used to retrieve a
representation of the resource that the URI
identifies, which is how most normal web pages are
fetched. The PUT method replaces content at the
target URI (or creates it if missing), and DELETE
deletes resources. The POST method is often used
to modify or add information, or to perform other
operations determined by the server.

� A response contains headers, a HTTP Status Code and
possibly a body. Status codes indicate things like
success (including ‘200 OK’, ‘201 Created’, etc.),
redirection (including ‘301 Moved Permanently’, ‘303 See
Other’, ‘304 Not Modified’), errors in the client request
(including the familiar ‘404 Not found’ and the ‘412
Precondition Failed’ that can be returned when conflicts
block conditional updates), and server errors (including
‘500 Internal Server Error’). Responses indicating
redirection or creation of new resources should contain
a ‘Location’ header field with the target URI.

A Uniform Resource Identifier [13] identifies an
abstract or physical resource. The scheme (for example
http, ftp, mailto, urn) indicates how the rest of the URI
is to be interpreted (Figure 2).
After the optional user info part, the http scheme,
illustrated in Figure 2, specifies which server and port to
connect to. The rest of the http scheme URI could be
pointing to a specific file in a directory specified by the
path, but it could also just serve as an identifier sent to
the server that it can process in other ways, for example
map to database entries.
The fragment part (after ‘#’) is intended for the client,

not the server and if just the fragment is changed, no
new call needs to be made to the server. Client-side code
(e.g. JavaScript) sometimes uses the fragment to keep
track of internal state and to make bookmarking and the
browser back button act as expected (by reversing to
previous views even when the previous view was locally
generated and not fetched from the server).
URI templates [14] can be used to specify URI

structures with variable parts enclosed within curly
brackets, as in http://ehr.imt.liu.se/ehr:{ehr_id}/{object_id}
@{versionLookup}

Solutions and design patterns complementing REST
The REST design pattern over HTTP is not optimized
for server-initiated interaction or frequent update notifi-
cations [15], which may also be needed in an EHR sys-
tem. Thus additional design patterns and solutions are
helpful, but the difference in scalability properties needs
to be considered when selecting where and how to apply
them.

Event-driven messaging systems
The implementation section about trigger handlers de-
scribes how message-processing systems (message bro-
kers) are used in the architecture to report EHR events
(e.g. content updates) to interested subsystems like deci-
sion support systems and systems copying or sending
the newly added data. Message brokers typically have
queues or topics that can be published and subscribed to
using paths. Our approach aims to keep messaging
simple and trigger-oriented; if needed, subscribers can
interact and fetch further details via HTTP after being
notified of events. Many message brokers include
wildcards and regular expressions for selection of topic
path and queue path so that subscribers only get notified
of things they are interested in. Many brokers also offer
filtering based on header content in addition to topic
path. Brokers can also handle conversion between mes-
saging protocols and take care of authentication and
authorization. In addition to programming language
APIs, some brokers can also interact via RSS, instant
messaging protocols, and partly via HTTP.

Sockets
For small, frequent notifications between components,
or between client and server, the POST and GET



Figure 2 URI Components. The components of a URI using the http identifier scheme.

Sundvall et al. BMC Medical Informatics and Decision Making 2013, 13:57 Page 4 of 25
http://www.biomedcentral.com/1472-6947/13/57
requests have unneeded features that instead become
overhead. A more efficient approach is WebSockets [15]
that uses the upgrade mechanism of HTTP to open a
bidirectional communication channel over a single TCP
socket.

Scalability - the ability to scale
Two commonly used scalability approaches are often
referred to as vertical and horizontal [16] (chapter 9):

� Vertical, scale ‘up’ or ‘get bigger’ means getting
bigger (often expensive) computers with more
processing power and storage when demand
increases. For example, this approach can be
justified by a lack of time to rewrite existing code to
work for horizontal scaling.

� Horizontal, scale ‘out’ or ‘get more’ means getting
more fairly ordinary servers that are not necessarily
top of the line, but rather selected for good price/
performance ratio. Horizontal scaling is often
needed to keep costs down, but requires that the
application is designed to run in a distributed
environment. Horizontal scaling can involve
sharding or MapReduce approaches and needs to
consider the CAP-theorem, see below.

Sharding
Sharding databases means splitting a database into dif-
ferent partitions that are usually put onto different
servers. The effect is that one big database becomes sev-
eral smaller ones; thus, performance can be increased
since the index used for lookups gets smaller and the
number of requests to each server is reduced [17,18].
Efficient sharding requires a fast way for processes to

figure out which shard (and thus server) to send the
request to (see discussion section for details).

The CAP theorem
Brewer’s CAP theorem, detailed by Gilbert and Lynch
[19] and further illustrated by Browne [20], states the
following three desirable properties can not be achieved
at the same time in a distributed system:
� Consistency, or rather having ‘atomic’ transactions
across all involved nodes so that a series of actions
are either performed logically as one single
operation or not at all

� Availability, meaning that the system is responsive
so that every request gets a response indicating
failure or success

� Partition tolerance, meaning that the system keeps
working even if some network messages disappear,
for example due to nodes crashing or being
temporarily cut off from the network

According to Gilbert et al. [19], you can only guaran-
tee two of the above at the same time.

Distributed database systems and MapReduce
An alternative to handling distribution at the application
level via sharding is to let some storage infrastructure,
for example a distributed database, automate the distri-
bution so that the complexities of distributed transac-
tions, replication, etc. are hidden to the calling
application. The limitations of the CAP theorem are still
valid, but automated solutions often offer tuning alterna-
tives to prioritize between C, A, and P. Since some
databases use ‘snapshot isolation’ and ‘multiversion con-
currency control’ (MVCC) [21] to reduce the number of
potentially performance-degrading locks, it is worth
noting that the openEHR time-stamped ‘append only’
versioning system provides a snapshot functionality via
the VERSION objects.
Many distributed database systems are capable of run-

ning MapReduce [22] tasks that are suitable for batch
processing of massive amounts of data in distributed en-
vironments by splitting up big tasks into smaller chunks
that can be processed in parallel by many computers.
For EHRs this is likely useful for example in epidemi-
ology research.

Performance, caching, and reducing number of requests
Fielding states: ‘An interesting observation about
network-based applications is that the best application
performance is obtained by not using the network’ [11]



Sundvall et al. BMC Medical Informatics and Decision Making 2013, 13:57 Page 5 of 25
http://www.biomedcentral.com/1472-6947/13/57
(section 2.3.1.3). Designs can strive to minimize the
number of calls for example by making a few larger
requests rather than many small. Also, by caching (tem-
porarily storing) already fetched data many calls can be
avoided. The cached resources could be stored in mem-
ory (fast) and on disk (more space available). The local
cache of a web browser is familiar to many users, and
there can also be proxy servers in the network caching
the request on the way to the client. On the server side,
repeatedly requested data can be cached in order to
reduce calls to disk storage (e.g. databases) and to reuse
already performed server-side data processing and
compilation.
The headers of the HTTP/1.1 protocol [12] provide

many ways to communicate cache-related information
that HTTP servers and clients should obey. Some exam-
ples are:

� The ‘expires’ header (using an absolute date) and
‘cache-control’ headers like ‘max-age’ (using ranges
in seconds) can be used to indicate when a cached
response should be refreshed.

� The headers ‘ETag’ and ‘last-modified’ indicate if or
when the content of a resource has actually been
changed. They can be used to compare already
fetched data to what is currently on the server, and
depending on that information, direct how a request
should be handled. The ‘ETag’ header contains a
string that should be produced by the server in a
way that it is changed whenever the content of the
resource at that URI changes. The ETag string needs
only to be unique related to different versions of the
same resource, but there is no problem if several
resources use the same ETag. The ‘last-modified’
header has a resolution of whole seconds and may
thus not show differences if a resource has been
updated more than once during a second.

� The header ‘If-None-Match’, sent from the client
combined with the ETag value of a previously
cached response, can be used to make conditional
GET requests. The server will only serve the page if
the fields don’t match. If they match the server
sends the HTTP status code ‘304 not modified’.

� In a similar way, a conditional PUT can be
performed if the client sends the header ‘If-Match’
for example to check that a target resource it wants
to update has not already been updated by
somebody else.

In a distributed system, also fast in-memory cache data
can be shared among networked servers. One approach
is to use caching systems compatible with the
Memcached protocol [23]. To the programs calling the
cache, it looks like a big key-value store (hashtable) that
is shared among computers, with the size equal to the
sum of available cache memory in all the attached com-
puters. Typically, such a cache is used to store small, fre-
quently used data elements cleverly so that they do not
have to be fetched from disk or database as often.

High availability
Striving for high availability means keeping the system
up and running constantly by avoiding single points of
failure. Distributed databases and storage systems often
have built in replication options to prevent data loss in
case of server breakdowns. If sharding is done at appli-
cation level, similar approaches could be considered.

Implementation
This section details a suggested way to componentize
openEHR-based systems – mainly HTTP-based and
programming-language-independent. The technical
interface design suggestions can be used as input to
future openEHR service specifications. This can be done
in the form of an openEHR REST Implementation Tech-
nology Specification (ITS).

Componentization and separation of concerns
The division of components was partly guided by the
VERSIONED_OBJECT and CONTRIBUTION lifecycles
detailed in the openEHR specification [8]. It was also
guided by what was considered to be suitable subsystems
with separation of concerns for developers with different
interests. In a real production system, these components
are possibly sourced from different groups or vendors
specialized in for example:

� User interfaces and interaction
� Decision support and other services triggered by

added EHR content
� Data validation and conversion based on archetypes,

etc.
� Storage and querying (achieving distribution and

performance)

Some components obviously overlap categories. In the
proposed REST approach, many foundational openEHR
RM objects are available as separate resources identified
by URIs (e.g. objects of type CONTRIBUTION and
VERSIONED_OBJECT). Figure 3 shows components
and component relationships.
The component communication interfaces are mostly

based on HTTP, with the addition of some event-driven
messaging via service brokers and caching via the
Memcached protocol. Thus even components using a
mix of environments and programming languages
should be straightforward to integrate. If there is



Contribution Builder (CB

Contribution

Versioned Object

Validators and Converters
Contribution Trigger Handler

CB Trigger Handler

"Off the shelf "
Message Brokers

Query

Query Storage

CB Temporary Storage

EHR Database

Router

Query Executors

Query Translators

Bookmarks

EHR Metadata Cache

Log

<<utility>>

Bulk Loader

CB Trigger listener examples:
Interactive decision support
during data entry

Contribution Trigger listener examples:
- Decision support at commit or signing.
- Replication to other databases

Client Instance Builder

Archetype and Template Repository

Directory and Demographics

R/W interfaces

If new storage representation
formats are added, then the
components neighbouring
this note (plus "Validators
and Converters") will need
to be adapted.

HTTP(S)

Any Memcached
compatible
key-value store

Figure 3 REST-based componentization of openEHR. The main components of the suggested REST-based approach and the LiU EEE
implementation. The design is flexible regarding component deployment. In a small or experimental setting, all server components can run in
the same Java virtual machine on a single computer, and in a full deployment components (and several instances of the same component)
could run on separate servers and be provided by different vendors using different technologies.

Sundvall et al. BMC Medical Informatics and Decision Making 2013, 13:57 Page 6 of 25
http://www.biomedcentral.com/1472-6947/13/57
capacity on a single computer to run several compo-
nents, some external network calls can be avoided by
using:

� in-process or inter-process communication if
supported by the components or

� using HTTP and other protocols via localhost
loopback networking at operating system level or

� using network hardware loopback support (for
example when using virtualization on the same
machine for components requiring different
operating systems)

Storage considerations and grouping of use cases
In the backend storage, resources (VERSIONED_OBJECTs,
etc.) are stored in some representation format and poten-
tially decomposed and indexed at some granularity level
depending on foreseen major use cases.

Conversions and storage format changes
Converters enable HTTP responses in different repre-
sentations (e.g. XML, JSON or serialized Java objects) to
be served from the same stored resource, after media
type negotiation based on client capabilities and prefer-
ences. This allows a change of backend representation
format at later date without changing client interface.
However, to avoid excessive conversions, a likely ap-
proach is to store representations in the format most
often requested by clients in the deployed system.

Individual focus versus population focus
Occasionally, discussions about the design of a data stor-
age that balances the need for rapid EHR access in
clinical work focused on individual patients with per-
formance for population-wide queries appear on the
openEHR wiki [24] and the openEHR technical mailing
lists [25].
In clinical work focused on individual patients, the

EHR system often either accesses data as big chunks –
documents – in a certain serialization format (for
example openEHR COMPOSITIONs in XML format) or
as result lists from queries. In this case, it can be reason-
able to store data in chunks (e.g. documents) and if pos-
sible even in the most frequently requested serialization
format and also to index on fields relevant to frequent
retrieval needs. Here, this single EHR access usage is
called the single record use case.



Sundvall et al. BMC Medical Informatics and Decision Making 2013, 13:57 Page 7 of 25
http://www.biomedcentral.com/1472-6947/13/57
On the other hand, research activities require
population-wide queries that access and aggregate
particular data fields from large amounts of EHRs. Then
it is reasonable to store these as such small pieces in for
example a normalized relational database management
system or to use some data warehouse approach. Here,
this aggregate EHR access usage is called the multi record
use case and the path component of the corresponding
URI is prefixed with /multi/.
Database solutions that have acceptable retrieval speed

for the single record use case are not necessarily appro-
priate for the multi record use case [7].
The proposed REST design allows keeping these two use

case families separate in order to provide maximal freedom
for implementers to explore diversified approaches. The
openEHR append-only (or ‘never physically delete’)
principle, combined with its clearly time-stamped opera-
tions, simplifies replication from ‘single’ to ‘multi’ databases.
If the multi record use case database is not used for entering
data, and if a bit of lag-time behind live single record use
case EHRs can be accepted, then implementation is rather
straightforward.
Neither the suggested REST approach nor the single

versus multi division dictates the use of sharding or double
databases. Some storage solutions, for example distributed
database frameworks and map-reduce-based approaches
[22], may prove to be able to handle both the single and
multi use cases with good performance and thus may not
need the use case separation for performance optimization
reasons. However, even with a unified database for the single
and multi use cases, there may still be reasons to have the
use cases separated at URI level:

� It makes it easier to prioritize computing resources
for direct patient care queries higher than statistics
and research queries

� Implementation of security can be simplified and
optimized if you know beforehand that the query
is only allowed to access a particular patient
record. Then checking of access control lists for
that particular record combined with pre- or
post-processing of queries can be done without
the need for more advanced query or result
evaluation mechanisms.

� Permission to formulate database queries in the
multi use case only needs to be granted to users
with ethical approval for research, etc. Also
anonymization of results may be more applicable
to multi than single use cases.

� Patient-specific access logging is given by simply
reading the HTTP log in the single use case. For
the multi use case query- or result-analysis is
required to see if a specific record has been
queried.
URIs to central resources representing EHR RM objects
When accessing a patient’s EHR, a common first view
is a list of patient encounters, a problem list, or other
summaries; then the clinician fetches details for items
of interest. Patient summaries and graphical over-
views can for example be based on AQL queries that
are used to populate HTML pages with data and hy-
perlinks pointing to more detailed information. Ac-
cess to details can be achieved by pointing directly to
specific versions in versioned objects using the URI tem-
plate path /ehr:{ehr_id}/{object_id}::{creating_system_id}::
{version_tree_id}.
As exemplified above, central object classes and associated

methods from the openEHR specification have been
assigned URI patterns for direct access instead of via AQL
queries. They are exemplified in Table 1.
Since the provided LiU EEE implementation is

hypertext-driven, these detailed URIs are embedded in
the interface pages (like the views in Figure 1) and do
not need to be known by end users such as clinicians.

User interface
The suggested REST architecture does not prescribe
clients based on web browsers or any other specific user
interface technology as long as it can handle the HTTP
protocol and at least the one of the possibly available
representations (e.g. XML, JSON, or serialized Java ob-
jects) properly; thus Adobe Flash, .NET, or Java (includ-
ing thick clients) are possible examples.

Querying
The approach for new queries is to first translate the
clinically targeted AQL-queries to other native storage
targeted query languages (such as SQL, SPARQL, or
XQuery [26]) and then run the query natively in the
database. In the process, a unique SHA-1 checksum of
the query, any static query parameters, and the query in
its original form are also stored.
AQL is targeted specifically towards archetype-

constrained systems based on domain-specific reference
models [10]. Thus it targets the application domain and
structure rather than the underlying technical storage
format, and the AQL queries should be unaffected by
differences and changes in underlying solutions that may
vary depending on preferences and use case (like the
single and multi use cases described above).

Query storage, execution, and HTTP redirection flow
The query storage provides permanent facilities for auditing
queries sent via HTTP POST, that otherwise would not be
stored and logged. This has positive side effects that are
described in the results section of this paper.
For the ‘single’ use case queries are POSTed to a URI

matching the template: /ehr:{ehr_id}/q/{query-language}/



Table 1 URI patterns for central resources

URI path template

Example path(s)

Description

/ehr:{ehr_id}/{object_id}::{creating_system_id}::{version_tree_id}

/ehr:12344321/56d03821-8e89-cca769b7d39e::test2.eee.mi.imt.liu.se::1

Fetches a VERSION, identified by creating_system_id combined
with version_tree_id, from the VERSIONED_OBJECT identified by
object_id. URIs containing fragments (after a # sign) will have the
same effect. Thus /ehr:12344321/56d03821-8e89-cca769b7d39e::
test2.eee.mi.imt.liu.se::1#path will also fetch the entire VERSION
from the server and let the client deal with the fragment.

/ehr:{ehr_id}/{object_id}::{creating_system_id}::{version_tree_id}/…

/ehr:12344321/56d03821-8e89-cca769b7d39e::test2.eee.mi.imt.liu.se::1/
content[openEHR-EHR-SECTION.vital_signs.v1]/items[openEHR-EHR-
OBSERVATION.blood_pressure.v1]/data/

Fetches only the part of a VERSION specified by the path after
the id. This can be used by applications that for example due to
privacy reasons only want to retrieve part of a version.

/ehr:{ehr_id}/{object_id}/{command}

/ehr:12344321/56d03821-8e89-cca769b7d3/all_version_ids

Fetches object lists or metadata of different kinds depending on
command, see openEHR specifications [8] for details.

/ehr:{ehr_id}/{object_id}@{versionLookup}

/ehr:12344321/56d03821-8e89-cca769b7d39@latest_version

/ehr:12344321/56d03821-8e89-cca769b7d39@2005-08-02T04:30:00

Fetches version based on lookup command, for example the
version that was current at a specific time.

/multi/ehr:{ehr_id}/{object_id}…

Ad-hoc queries in the ‘multi’ use case can also produce lists or
reports, sometimes containing detail hyperlinks pointing to
versioned objects. By prepending multi to the path such objects
can optionally be fetched from, and thus logged by, the multi
database instead of the single database, if desired.

/ehr:{ehr_id}/contributions/

/ehr:12344321/contributions/?start = 1&end = 5&descending = true

HTTP GET returns all contributions for the EHR identified by
ehr_id, paged by variables start (default 1) and end (default 20)
the default ordering is descending (most recent contribution
listed first).

HTTP POST is used to commit a contribution; all new and
changed VERSIONs should be included in the body of the POST.
The current LiU EEE implementation accepts either XML or
serialized Java objects. Some web-based applications will instead
of POSTing to this URI prefer to use the /cb/{committer_id}/
{ehr_id}/{cb- id}/commit/ command (described in Table 2) that
calls the same verification and storage mechanisms internally.

/ehr:{ehr_id}/contributions/{contribution_id}/

/ehr:12344321/contributions/7a11c126-e1af-4022-9c36-f046693bb237/

Fetches the contribution identified by contribution_id

Table 1 shows a subset of URI template patterns identifying central openEHR
objects. A background to versioning and commands can be found in the
openEHR Common Information Model specification [8]. The prefix ‘ehr:’ uses
the colon sign so that interface designers more easily can make calls to EHR
URIs as described in Section 11.3 of the openEHR Architecture Overview [5]. By
prepending a slash (/) to an EHR URI found within data, it will become a fully
functional HTTP link to the desired EHR object.

Sundvall et al. BMC Medical Informatics and Decision Making 2013, 13:57 Page 8 of 25
http://www.biomedcentral.com/1472-6947/13/57
for example /ehr:12344321/q/AQL/ If the query syntax
is invalid, a HTTP error ‘400 Bad Request’ is returned
and no query is stored. If the query translation and stor-
age instead succeeds, a HTTP ’303 See Other’ response
redirects to a URI according to the pattern:
/ehr:{ehr_id}/q/{query-language}/{query-SHA}/HTTP-

compliant clients will then automatically send a GET re-
quest to that URI and the response of the query will be
returned. When web browsers automate this redirection,
the new URL may not be accessible to JavaScript-based
user interface code. Thus it is recommend that server
implementations also add the URL containing the
{query-SHA} pattern in the more script-accessible ‘Con-
tent-Location’ HTTP header field.
Most databases support stored queries called with

variable parameters, and AQL also supports variable pa-
rameters in queries. For performance reasons, any query
supposed to be reused should use parameters for vari-
able parts like ehr_id, date ranges, etc., so that optimiza-
tions can be performed.
Any parameters starting with ‘_’ (underscore) that are

POSTed with the original query are interpreted as being
dynamic and are – after removing the underscore –
converted to URI-encoded parameters and included in
the redirection URI (together with other possibly pre-
existing URI query parameters). If the ‘debug’ parameter
is present and set to ‘true’, the translated query will be
returned as text to the client instead of being executed.
Thus the redirected GET request logged in the standard
HTTP log contains the unique query-SHA and the dy-
namic parameter values used in the call. The ‘query’ field
containing the original query, additional POSTed static
parameters (and metadata about who created the query
when, etc.) can later be audited and inspected by calling
/ehr:{ehr_id}/q/{query-language}/{query-SHA}/info/.
Static parameters can be used for example to send extra
configuration parameters to query translators. Static
parameters are stored together with the query and
included (sorted in alphabetical order as a JSON text
string) in the calculated SHA-1 checksum. Example
usages of both dynamic and static parameters are illus-
trated in the LiU EEE implementation (Appendix A).
For the ‘multi’ use case new queries are POSTed to

URIs like /multi/ehr/q/{query-language}/ and redirected
to /multi/ehr/q/{query-language}/{query-SHA}/.

Response formats and hybrid queries
Neither the openEHR specifications nor the AQL descrip-
tion [9] specifies a return format. We have implemented,
and are thus suggesting one, for XML-formatted query
results. The corresponding XML Schema is available in the
LiU EEE implementation.
An interesting option for those queries that don’t need

to be standardized and reused between systems, is to



Sundvall et al. BMC Medical Informatics and Decision Making 2013, 13:57 Page 9 of 25
http://www.biomedcentral.com/1472-6947/13/57
formulate the clinical parts of the querying in AQL and
then translate and embed those parts inside a query for-
mulated in the (possibly more feature rich) native query
language of the underlying database used.
This can be useful for example in an implementation

storing both EHR data and ontologies as RDF and uses
SPARQL natively for queries. Then, EHR-oriented AQL
snippets could be embedded into ontology- or
reasoning-oriented SPARQL queries. After translation,
the combination has been transformed to a pure
SPARQL query that can be executed.
AQL wrapped in a native query language was useful in

the epidemiological query study [7], where xQuery
aggregation functions missing in AQL were used to wrap
some AQL queries.
For XQuery-enabled storage solutions, the flexible

XQuery ‘return’ clause can be used to return custom for-
mats marked with any desired MIME-type. Some starter
samples that use the AQL plus xQuery hybrid approach
and can inspire further experiments are described in
Appendix A.
If there are several AQL parts in a hybrid query, they

can be translated and combined with the rest of the na-
tive query before being executed as a single database
query. This can be useful if several AQL queries should
be executed and related to each other using features of
the native database query language (such as xQuery). If
the database has good query optimization routines this
could be more efficient than it would have been if
several separate AQL queries were executed and their
results were combined in application code.

Caching and reducing number of requests
Even though network traffic should be minimized for
performance reasons, having a networked EHR system is
necessary when many clinicians, patients, and locations
are involved. Sharing EHR data involves transfer and
synchronization, so networks and shared storage are
helpful.
Caching in shared server-side volatile RAM memory

can be implemented using Memcache-compatible
caches. The cache tracks when and by which contribu-
tion each EHR was last updated. When potentially modi-
fiable data is requested, the RAM cache is inspected to
see if there already exists any entry for the requested
EHR ID, and if not, the latest EHR modification time
and the ID of its associated CONTRIBUTION is fetched
from the database and stored in the RAM cache. When-
ever data for an EHR is contributed, the cache is actively
updated. This server-side caching aims to reduce data-
base requests by feeding the production of HTTP header
fields used for HTTP client caching as described below.
(In-memory caching needs will likely differ depending
on implementation and deployment; thus this exact
approach may not fit all.)
Caching at the HTTP level is a client + server co-

operative behavior. The outlined REST-based architec-
ture does not force clients to be based on web browsers,
and it certainly allows ’fat‘ clients, i.e. installed programs
or ’apps‘ that have most behavior and GUI locally and
only exchange EHR data over the network. There are
also automated applications like server-side decision
support systems and report generators where a browser-
based approach does not make sense. For performance
reasons, such non-browser-based programs should still
act according to HTTP and cache information from the
server just like a web browser does. To make implemen-
tation easier, it is suggested to base clients on existing
capable HTTP client frameworks that negotiate and
handle caching, etc., rather than using raw HTTP con-
nections without such support. The caching currently
used is simplistic but reduces unneeded database
requests:

� Resources that don’t change are returned with a
high (server-side configurable) ‘max-age’ cache
HTTP header value, but no ETag since update
checking is irrelevant. They can thus be cached by
the client and intermediate proxies.

� Static resources, like user interface components,
JavaScript files, etc., that do not contain sensitive
information may be cached in public proxies shared
by many users. They should be marked with the
‘Cache-Control: public’ HTTP header in addition to
high ‘max-age’. In a production system, such
resources may be served from separate optimized
http servers instead, in order to improve response
time and reduce load on application servers that
interact with databases.

� EHR content resources that don’t change, like
particular VERSIONs of VERSIONED objects with
URIs like {object_id}::{creating_system_id}::
{version_tree_id}, should also be returned with
(another separately configurable) high ‘max-age’.
Such EHR data should be served with the ‘Cache-
Control: private’ header, since requests from
separate users should not be intercepted by shared
proxies but instead be separately logged at
originating servers. In some use cases, such
resources could technically be privately cached for
infinite time. In practice, however, policies may
require that new requests are made each day, or
after an average user session length of time, in order
to log repeated access on the server side or to check
if access permissions have been changed lately.

� Patient-related resources that may change, like AQL
query responses or URIs on the form {object_id}



Sundvall et al. BMC Medical Informatics and Decision Making 2013, 13:57 Page 10 of 25
http://www.biomedcentral.com/1472-6947/13/57
@latest_version, should be returned with latest-
modification and ETag headers based on the latest
contribution for the patient’s entire EHR. Thus if the
ETag of client and server match, no database request
will be made and a ‘304 Not modified’ response will
be returned. Changes to access control rules may
also change what should be returned to a client, but
since changes in EHR_ACCESS objects are also
submitted as contributions they will also cause
server-side ETag changes and thus automatically
cause revalidation of results.

Contribution Builder
The Contribution Builder component provides a temporary
‘writing space’ to the users (detailed in Table 2). The space is
divided into separate compartments for each EHR the user
wants to edit (since they might have several ongoing edits at
the same time). It is even possible for a user to have several
separate writing spaces (contribution builds) for the same
patient at the same time, the first one for each patient will
be named ‘default’. The contribution builder URIs in Table 2
are targeted to developers and not intended to be seen by
end users.
A ‘fat’ client can have its own internal contribution

builder mechanisms and commit an entire contribution
to the database via the contribution resource in one step.
‘Fat’ clients can reuse the REST semantics and the com-
ponents to make client development and maintenance
easier. A client-side contribution builder can store data
temporarily if the network is unavailable, for example in
mobile applications.
A user’s contribution builder URI only needs to be ac-

cessible to that user, and when a particular contribution
build within the builder is finished, validated, and com-
mitted, it is deleted. The only sharing done between
clients is when the end user application is configured to
share the same active contribution build between differ-
ent devices that a user is simultaneously working on.
Thus the contribution builder does not have the same
distribution issues as shared EHR content; instead, the
main issue is to be fast and responsive to the end user.
The purposes of the contribution builder are peda-

gogical and technical:

� It aims to lower entry-barrier and simplify
development of data entry clients by allowing
incremental learning (also via examples) and
validation to help detecting misunderstandings and
errors early. In addition to assisting end user
interface development, the same approach can be
used to develop data entry mechanisms for medical
devices and external systems.

� It reduces the number of network calls and writes to
the shared core databases by collecting all changes
to a single contribution submission HTTP call. A
result of this is that the core servers do not need to
keep track of resources with user-modifiable state
between calls; instead, this is done by the non-
shared user-specific contribution builder resource.

� It allows shared and clearly specified ways to attach
interactive decision support to data entry
components, possibly from different developers.

Validating RM instances using archetypes and templates
Validator components can validate RM instances (EHR
data) on different levels. Firstly, RM instances can only
be instantiated according to the object model of the RM,
meaning conformance to the naming of classes and attri-
butes, correct types and optionality, and cardinalities of
attributes. Secondly, RM instances can be validated
according to the archetypes that were used to create
these instances (archetype constraints can be quite per-
missive though). Thirdly, when templates are used for
data entry and creation, specialized constraints on the
template level can be used to further validate RM
instances.
The ‘rm-validator’ component in the openEHR Java

reference implementation[2] is designed to perform
archetype- and template-based validation with a single
API. In fact, because of the latest development around
ADL and AOM 1.5, there are no longer any significant
technical differences between an archetype and a tem-
plate. This makes it possible to create a single compo-
nent for archetype- and template-based RM instance
validation API.

Instance builder and RM-skeleton
The resource called ‘instance builder’ can provide valid
example RM-instance skeletons that can be used for
working with an archetype or template for user data
entry purposes. Such example structures can be modi-
fied and used as outlined in Table 2 under ‘from-
instance-template’ or ‘from-ehr-path’. However, not all
GUI generation and data entry approaches will have use
for this kind of ‘instance builder’ component.
In the openEHR Java reference implementation, a

component named ’RM-skeleton’ was designed to gener-
ate example RM structures directly based on constraints
in a user-provided set of archetypes or templates. The
component traverses a given archetype or template and
generates an example RM structure valid to the con-
straints. Different strategies can be used for RM-
skeleton generation. For instance, a minimum strategy
will result in the generation of valid RM instance that is
according to the minimum requirements of the given
archetype or template. If a maximum strategy is chosen,
all optional structures are populated on RM level. On
the leaf value level, default or assumed values are used



Table 2 URI patterns for the Contribution builder

URI path template

Example path(s)

Description

/cb/

Shows a page describing Contribution builder usage and links to
further pages

/cb/{committer_id}/

Lists EHR IDs for which the user has active uncommitted
contribution builds

/cb/{committer_id}/{ehr_id}/

/cb/dr_who/12344321/

Lists active builds for ehr_id by committer_id

/cb/{committer_id}/{ehr_id}/new-cb-id/

A POST request creates a new empty Contribuition Build and
redirects to it. A query parameter 'description' can be used to set a
customized name of the contribution build.

/cb/{committer_id}/{ehr_id}/{cb-id}/

Lists the VERSION objects contained in the selected build and
commands to view, modify, or delete those objects or the data
contained in the versions. A form that can be used to create new
VERSION objects is also provided. (Often the contribution_id will
have the value ‘default’)

/cb/{committer_id}/{ehr_id}/{cb-id}/{temp-id}/

GET shows a page that allows viewing and editing of metadata for
the VERSION object identified by temp_id

DELETE deletes the VERSION object

POST can be used to modify contents

/cb/{committer_id}/{ehr_id}/{cb-id}/{temp-id}/data/

GET views the data field of the version identified by temp_id. If the
application/xml media type is requested by the client an XML
serialization of the data is returned, but if a text/html media type is
requested, a html view of the data including a data editing
interface is returned.

PUT replaces the contents of the data field

POST can be used to modify data contents

Converters can be implemented and attached to this resource to
accept data entry in more formats.

/cb/{committer_id}/{ehr_id}/{cb-id}/new/{command}/

POST is used to create new VERSION objects with the data field
based on different sources determined by the command. Valid
commands are:

• update-version: creates a new version based on an object that
already exists in the EHR, it will be stored as an updated version of
the original when committed.

• copy-version: creates a new object based on a copy of an object
that already exists in the EHR, it will be stored in a new
VERSIONED_OBJECT and not be related to the original.

• from-form: bases data completely from the form variable named
‘data’

• from-url: the data field will be a copy of the content of a resource
identified by the ‘url’ field in the POSTed form with the request.
This command is useful for example in debugging and testing.

• from-instance-template: like ‘from-url’ but the file at the url will
be interpreted as a FreeMarker template and that will execute in a

Table 2 URI patterns for the Contribution builder
(Continued)

context populated with all variables sent in the POST request. This
command allows a simple way of combining data in ordinary html
forms with a skeleton structure provided by an instance example
where target values have been replaced by variable names. This
makes form field names flexible. (The FreeMarker template engine is
only available in Java; thus some other templating language or
mechanism for variable substitution should be investigated if this
approach is used in an openEHR service specification.)

• from-ehr-path: like ‘from-instance-template’ but the form fields
must be named as EHR paths corresponding to nodes that will be
replaced in the file identified by the ‘url’ field.

Note that the last three commands create outgoing GET requests
and thus can be exploited for denial-of-service attacks by
malicious (but logged in) users or pose an information disclosure
risk if URLs to external sites are allowed. Many HTTP clients include
a ‘Referer’ field in the header that in this case may include both
committer_id and ehr_id that could be transmitted to the external
system if implemented badly. In the LiU EEE implementation, the
‘Referer’ field is instead set to the hostname of the system followed
by the path ‘/static/restricted.txt’ where an explaining file is placed.

/cb/{committer_id}/{ehr_id}/{cb- id}/validate/

GET returns a validation report indicating validity or errors of all
VERSIONs in the contribution build

/cb/{committer_id}/{ehr_id}/{cb- id}/commit/

POST commits the entire contribution build as a CONTRIBUTION
and then deletes the build. If the commit is successful, a ‘201
Created’ response will be returned containing the contribution ID of
the newly created CONTRIBUTION.

Table 2 shows a subset of URI template patterns identifying the Contribution
builder parts.

Sundvall et al. BMC Medical Informatics and Decision Making 2013, 13:57 Page 11 of 25
http://www.biomedcentral.com/1472-6947/13/57
when populating instances of data types if they exist. For
numeric data types, valid values in the validation range
are used.
The RM-skeleton component can be used to create an

‘instance builder’ implementation in Java based systems,
as was done in the LiU EEE implementation (described
in Appendix A).

Bookmarks
In a collaborative setting, needs to share pointers (refer-
ences) into the EHR contents may arise, for example to
share a particular view of the EHR to participants of a
clinical conference, or for a patient with EHR access to
ask questions concerning a part of the EHR. Such point-
ers can also be useful for an individual clinician to share
links among different devices such as laptops, tablet
computers, smart phones, or projector-connected com-
puters (Figure 4).
All URLs defined by the architecture can be bookmarked

and shared via email, instant messaging, etc., just as any
other web link. Correctly used, such links can be beneficial
for providing pointers to EHR content, perspectives, and
focus points between different presentation devices and
users. Users familiar with web links will probably grasp the
concept of EHR links, their possibilities, and their



Figure 4 Bookmark sharing. Using QR barcodes is one way of
sharing EHR bookmark links to camera-equipped devices.

Sundvall et al. BMC Medical Informatics and Decision Making 2013, 13:57 Page 12 of 25
http://www.biomedcentral.com/1472-6947/13/57
implications. Recurring use of bookmarks and links may
also bring attention to the potential benefits of linking
within EHRs using the openEHR and ISO 13606 linking
constructs in order to create for example medical history
descriptions or discharge summaries without repeating too
many details.
Sharing and privacy
Examples of EHR focus points and perspectives can be
pointers to a specific progress note or a link to a per-
spective showing all events from certain months in a
maternity overview. In the proposed REST architecture,
URLs are used to represent pointers. The fragment part
of a URL (after ‘#’) shall be interpreted by the client
[13], so the URI http://ehr.lio.se/MaternityOverview?ehr=
123400&s=1999&e=2001#f=1999-12-20T15:30;w=P2M can
define both what to fetch from server and where the
client – for example via JavaScript in a browser – should
zoom in to and focus in the fetched data.
EHR content retrieved via any kind of URL is already

protected by access control by the router component
and thus requires authentication and the right permis-
sions to be read. However, full length URLs themselves
partly expose EHR structure, especially deep paths into
content details or usage of specialized summaries. In
some cases, the URL can be used to derive knowledge
about a patient even if the receiver of a shared or acci-
dentally leaked link does not have permissions to resolve
the URL and retrieve the document content. A service
that preserves privacy by producing shortened, opaque
replacement links that do not expose EHR structure is
thus justified for links intended to be shared outside a
controlled environment. By making creation of book-
marks with such opaque links easy and by avoiding
exposure of potentially privacy sensitive URIs in the
clinical end user interface, the risk of unwanted informa-
tion leakage can be reduced.
Short URLs are also more convenient with respect to

line-breaking email clients, spoken and handwritten
messages, limited-length media such as text messages,
and barcodes such as QR codes. A versioned object with
the URL http://ehr.lio.se/ehr:1234000/2d4b-4e3d-a3f3::
ehr.lio.se::2 could for example get the shortened URL
http://ehr.lio.se/bm/ep7TtN that could be shared as text
or encoded as a QR code and captured by cameras in
mobile phones and other devices.
When resolving the bookmark, a 303 ‘see other’ redir-

ect containing the bookmark target URI is sent to the
client by the bookmark server. Thus the client automat-
ically makes a new HTTP request to the actual target
resulting in execution of normal authentication and
logging at the target server.

Triggers
When updates to an EHR occurs, event listeners can be
triggered and perform tasks such as activating decision
support. One option is to integrate such triggering in
the code driving the user interface, but then it becomes
tightly coupled to that specific GUI implementation. A
less GUI-coupled option in the suggested REST
partitioning is to trigger when EHR updates are made
via the contribution and contribution builder resources.
Contribution updates activate triggers. In openEHR,

contributions can be flagged as complete or incomplete
(for example when having to commit unfinished work).
New contributions are also made when attesting previ-
ously committed data. After a contribution is made, the
submitted information becomes visible to all authorized
users and parts of the system. Interested contribution
trigger listeners can be components for decision support,
system internal replication, system external export, etc.
Another mechanism is needed if decision support rou-

tines are supposed to interact with users during data
entry (when decisions are being made) rather than at
commit or attestation (when many decisions have
already been made and can only be critiqued). This kind
of interaction can be compared with the support given
by interactive spell-checkers that underline misspelled
words.
If GUI code is designed to update the data representa-

tion in the contribution builder whenever fields of
interest are updated, then contribution builder trigger
listeners can interact with users during data entry.
The theoretically interesting parts of the trigger mech-

anism is the semantics of the messages sent via message
brokers; the messages from the ‘Contribution Trigger
Handler’ only identify the patient, the committing user,
the changed resources, and the archetypes and templates
that were involved. Trigger listeners can then fetch more



Sundvall et al. BMC Medical Informatics and Decision Making 2013, 13:57 Page 13 of 25
http://www.biomedcentral.com/1472-6947/13/57
detailed information by using normal HTTP calls to
Versioned Object resources, etc.
Technically, messages in the suggested architecture

can be sent via the Simple Text Orientated Messaging
Protocol (STOMP), see http://stomp.github.com/, and
can thus be processed by many different message bro-
kers and converted to messages via JMS, Websockets,
XMPP, RSS-feeds, etc. STOMP messages can also be
consumed directly by client frameworks available in
many languages for example Java, C, C++, C#, Ruby,
Perl, Python, PHP, ActionScript/Flash, Erlang and
Smalltalk.

Results
The design decisions regarding how to split openEHR
into manageable pieces and also to use REST over
HTTP resulted in benefits but also involved tradeoffs,
and these results are presented in this section.

Familiar bookmarking support
By giving each interesting piece of the EHR a unique
URI, normal bookmarking and link sharing, familiar to
web users, automatically becomes possible. In browser-
based interfaces, bookmarking and link sharing became
so easy that care had to be taken when deciding what
URIs to expose to end users. This prompted the creation
of the bookmarking service.
A consequence of bookmark usage is that system

owners should insist that new user interfaces are also
able to identify their state using URIs, possibly including
URI-fragments.

Client caching included in HTTP
Since the HTTP protocol already included comprehen-
sive cache control and negotiation the only thing needed
to leverage this was to populate the correct headers. By
providing suitable ETag and max-age cache controlling
headers, the rest of the client–server caching behavior
was gained ‘for free’.

User action logging almost for free
The HTTP server logfile, combined with the storage and
GET-redirection of POSTed queries, reflects user ac-
tions; it includes who did what when and the referring
page. The web server log can probably be used unmodi-
fied for EHR read log analysis using ordinary tools for
web log analysis and statistics.
The REST part of the system uses HTTP for most

component interactions. With properly designed URIs
that reveal the semantics of the operations, logging and
monitoring of HTTP calls provides most of the informa-
tion needed for audit and system maintenance. The
CONTRIBUTION mechanism, which is mandatory for
write operations in openEHR, records what has been
changed, and the URIs reveal the ID of the committed
CONTRIBUTIONs. Thus all things needed to audit
EHR writes are implicitly given by existing mechanisms.
When it comes to logging read operations, things like

accessing single VERSIONS goes over HTTP and is
logged automatically, but information can also be read
via queries. For queries sent by HTTP POST, the act of
querying is automatically logged, but the POSTed query
itself would disappear if it was not separately stored.
However, in this system the queries are already stored
and redirected to a new URI that also gets logged, so
this is not a problem here. Other POSTs of importance,
like creation of new EHRs and bookmarks, also redirect
to the URIs of the newly created resources, and as long
as such created resources are version-controlled (append
only), full audit is possible.
To get a complete picture of the system, administra-

tors will – in addition to HTTP server monitoring –
have to monitor the actions and logs of cache systems,
message brokers (trigger handlers), and databases.

Representation format conversions and upgrades
Due to the separation of resources and representations
in REST, the basic ‘plumbing’ of the system (URIs, etc.)
remains intact if new media formats are added in the
future. The storage format in the backend can change
without changing clients, given that the following are
provided:

� media type conversion mechanisms
� AQL query translators targeting the new storage

backend (At the time of publication only AQL to
XQuery translation has been created.)

Fast prototyping
The fast prototyping aim of the architecture was recently
tested in a project that asked for a graphical patient
overview application compatible both with web browsers
on regular computers and with touch interfaces on mo-
bile devices. Using the LiU EEE implementation of the
architecture and AQL combined with HTML5 and regu-
lar JavaScript libraries, acceptable prototypes could be
created and modified faster and easier than we had
expected ourselves. For example, an interactive graphical
patient overview was created with a less than 500 lines
of sparse and well commented JavaScript and HTML
code, including the three AQL queries it was based on.
Admittedly subjective, we still think readers would find
this result of interest and encourage further modification
and creation of new visualizations.
GUI prototyping efficiency and speed is helped by the

fact that no application restart is required in order to see
the effect of changes in for example HTML, or
JavaScript files. By simply saving the edited file and

http://stomp.github.com/


Sundvall et al. BMC Medical Informatics and Decision Making 2013, 13:57 Page 14 of 25
http://www.biomedcentral.com/1472-6947/13/57
reload the page in the browser, the edited GUI is imme-
diately visible.

Benefits from storing and redirecting POSTed queries
The query storage and redirection mechanisms intro-
duced for both auditing and caching reasons have
additional benefits:

� The central shared database engine is protected
from reparsing equivalent queries re-posted by badly
designed GUI code since the comparison of SHA-1
checksums is done before calling the database.

� If a frequently accessed query is manually optimized
by database administrators, that particular query
URI can easily be redirected to specialized
processing or servers using regular URI-based
redirection.

� For implementations where there are reasons for
not fully optimizing every query, the query storage
can be designed to keep track of how often every
query is run, and when reaching a threshold a
frequent query can be optimized (for example by
being converted to a stored procedure or similar
approaches).

� A two-level GUI design process is encouraged: at
one level develop the query and parameters to get
the URI, at another level just include a URI as a
GET request in the GUI to fetch data.

� By saving query result files, preferably from artificial
test patients, using the same relative URI hierarchy
as on the server, many GUI artifacts can be designed
and implemented by external designers using a file
directory with relative URIs without needing access
to any servers. This reduces many potential
technical and privacy-related obstacles during
design.

Tradeoffs resulting from the separation of concerns
The componentization of openEHR was intended to
separate concerns between components so that different
developers or different vendors could focus on different
parts. However, functions from some components are
hard to separate clearly, leading to potentially confusing
dependencies among components:

� The Contribution resource should only be concerned
with Versioning semantics and storage, and not care
about clinical content semantics; thus it calls the
Validators and Converters to validate clinical
content before committing it, but the Contribution
Trigger Handler may need a list of archetypes used
in the commit in order to alert the correct
subscribing Decision support components. A
workaround forces the Validators and Converters to
make a list of archetypes used and send it along to the
Contribution resource that then sends it to the
Contribution Trigger Handler after commit.

� Another entangled component is the EHR
Metadata Cache that gets used by many resources.
If these resources are distributed to several servers,
then distribution of the cache may also need to be
carefully considered.

Benefits resulting from sharding on EHR-ID
In the case of distributed, writable openEHR storage,
consistency (C) is needed between each writable copy of
a specific patient’s EHR at the instant when new CON-
TRIBUTIONs are written, in order to assign the correct
id to new VERSIONs within the CONTRIBUTION.
Thus, if partitioning (P) of a certain EHR can temporar-
ily be avoided by directing all writes for that EHR to a
single computer (or a single consistent, non-partitioned
cluster of nodes), the system will be able to provide
availability (A) in the sense that the returning HTTP re-
sponse can tell the client if the write succeeded or failed.

Tradeoffs resulting from sharding on EHR-ID
Sharding – either manually at application level or auto-
mated by distributed storage frameworks – can allow
scaling out by adding more servers, but it also leads to
application complexity if queries and update transactions
span over several shards of data.

Merging records
It may be necessary to merge data belonging to different
EHR-IDs. One example is patients that have not been
identified initially and thus have gotten a new EHR-ID
assigned, but may later become identified. A second ex-
ample is data coming from different healthcare providers
that unaware of each other both have created EHRs for
a patient. A third example is when data for one patient
by mistake happens to be entered in some other patient’s
EHR.
The openEHR specification [8] covers mechanisms for

merging records, but the suggested sharding may have
caused the records to be in different shards on different
servers. Data from the source EHR should ideally be
logically deleted in the same transaction as they get writ-
ten in at the destination EHR. This can be solved by
two-phase commit approaches involving both servers,
but such solutions require extra thought and program
code to be maintained and can be considered a negative
tradeoff consequence.

Simultaneous retrieval or change of many EHRs
Atomic queries retrieving data simultaneously from several
patients can be desirable not only in multi use cases working
with slightly delayed data, but also in direct patient care that



Sundvall et al. BMC Medical Informatics and Decision Making 2013, 13:57 Page 15 of 25
http://www.biomedcentral.com/1472-6947/13/57
needs consistent up-to-date data. Examples include group
summaries of all patients in a ward or a listing of all patients
booked for a certain procedure. Getting a consistent read-
only view at a certain time-point can be achieved by sending
the current time as part of the query and then for example:

� wait the for ‘multi’ backend (if you have one) to
catch up to that time-point and then run the query,
or

� direct the query (including time-stamp, somewhat
analogous to MVCC) to all shards and then collect
and merge the results (a MapReduce-like behavior).

Group transactions that involve writing are trickier
and will need a two-phase commit involving the servers
of all patients in the group, as discussed in the merging
tradeoff above.
Due to the limitations described by the CAP theorem, it is

preferable if atomic cross-shard operations – especially
involving writes – in a distributed system are exceptions,
permitting waiting times that exceeds the time of temporary
network partitions, rather than if they are common in
normal, time critical usage.
Discussion
A REST architecture seems to fit many openEHR use
cases. Implementations automatically acquire many ben-
efits from the architecture of the World Wide Web as
described above (together with some tradeoffs).
By publishing this architecture and resulting findings

we hope to inspire discussion and invention regarding
design of archetype-based systems and hope to provide
input to an openEHR service specification using REST
supplemented with some messaging. This does not ex-
clude the possibility for also creating a parallel openEHR
service specification based on for example SOAP-
encapsulated remote procedure calls.
Applicability to other existing or future Archetype-based
models
Most parts of the described approach should be applic-
able also to future updated openEHR versions that may
come out of for example the Clinical Information
Modeling Initiative (CIMI), http://informatics.mayo.
edu/CIMI/. Also other archetype related formalisms
such as ISO 13606 and Multi-Level Healthcare Infor-
mation Modelling (MLHIM), http://www.mlhim.org/,
should be able to use our approach in implementations
that adopt a similar versioning mechanism. If a differ-
ent reference model is used, the modules that need
change are primarily the Validators, Converters, and
Query translators.
Need for sharding
The described REST slicing does not impose sharding
on EHR id; it only makes it easy to shard already at the
URI level if you would ever want to.
As long as it is technically and financially possible to

scale ‘up’ by getting capable hardware for running a sin-
gle, sufficiently large, database backend at the same pace
as the load increases, or distributed frameworks that
automate distribution can be used, sharding at the appli-
cation level is not necessary.
Sharding key mechanisms
The approach described in this paper suggests shards
that only contain some EHR IDs each, but the sharding
mechanism is left open to implementers. Some shard
allocation alternatives to explore are:

1. mathematic algorithm using EHR ID as input (for
example modulus operations or other hash
functions)

2. a directory lookup server, preferably cached,
associating each ID with a shard based on some
static or dynamic parameter like

a. geographical datacenter closeness to where the

patient lives or is treated most often
b. recent or frequent use
c. birth month or day of month (this is sometimes

used for paper health records since it gives a
fairly constant population division size allocation).
A benefit when using directory lookup sharding mech-
anisms is that EHRs can easily be moved between
shards, for example when maintenance or cluster re-
balancing is needed.
Terminology system binding and querying
Under the broad concept of binding of information
models to terminologies, several activities have pointed
to the necessity of principled approaches [3,27-30]. Most
of the work done so far has studied the problem of ter-
minology binding at design time, i.e. the study of the
problem of integrating information and terminology
models or the proposal of solutions or demarcations be-
tween these two representational alternatives. However,
systems working with structured representations in run
time have additional requirements. Given terminology-
bound information models, the system must support the
storing and querying of terminology-bound patient in-
formation instances, most probably allowing post-
coordinated terminology expressions and possibly even
allowing for the bridging of varying terminology binding
solutions [31]. Partial implementations addressing these
issues are described in Appendix A.

http://informatics.mayo.edu/CIMI/
http://informatics.mayo.edu/CIMI/
http://www.mlhim.org/


Sundvall et al. BMC Medical Informatics and Decision Making 2013, 13:57 Page 16 of 25
http://www.biomedcentral.com/1472-6947/13/57
Post-coordinated terminology expressions, as pioneered
by the GALEN project [32], will also have to be considered
in future implementations. Due to the combinatorial nature
of the biomedical domain, possibilities of post-coordinated
expressions, allowing for the uniform querying of post- and
pre-coordinated terminology expressions is necessary.

Is a REST architectural style appropriate for EHR
deployments?
The REST architectural style was intended for
Internet-scale, distributed hypermedia systems, and it
can be discussed whether it is appropriate to apply it
for an average EHR system, especially considering
that such systems might be deployed in a fairly regu-
lated and controlled environment perhaps even within
a single organization with limited geographical distri-
bution. Some scaling aspects of REST are likely not
necessary for such settings, and the REST constraints
might have side effects that could be avoided if some
of RESTs constraints were lifted. Web-scale ap-
proaches may still be of value in the future deploy-
ments if the following considerations are relevant:

� The amount of patient data is increasing due to
increased use of data-intensive clinical methods such
as monitoring systems, 4D imaging, and ‘omics’
applications. Combined with desires to keep lifelong
health records, this calls for thinking about massive
scalability early in design.

� The content of a particular patient’s EHR is not
served to millions of users, so some scaling
approaches of popular, non-personalized web sites
are likely of limited use but the change detection
capable caching of queries (for summaries, etc.)
that may be accessed repeatedly during a patient
session can reduce the total number of database
requests.

� Design experiences regarding multi-organizational
aspects of the web, including trust and security
issues across intermediaries, may be of value within
a healthcare organization having a system of
components from different vendors.

� Experiences from the gradual upgrade and
heterogeneous mix of clients and servers used on
the web may be applicable within health
organizations interacting with many other
organizations. Also being able to gradually
upgrade organization-internal systems may help in
detecting errors and making improvements before
launching new versions to the whole organization.
It is even possible to gradually upgrade media
formats used for serialization and communication
(for example going from XML to JSON or some
binary format) without having to re-learn
architecture or upgrade all parts of the system at
once. This is useful if many vendors changing at
different speeds are involved in the same
deployment.

Other drivers for using HTTP and web-based clients
The suggested REST approach does not enforce the use
of browser-based applications, but certainly fits them
well. Reasons to go towards web solutions are many:

� Technology improvements and standardization
effects of the web drives costs down, and capability
up, for web clients including mobile devices. This
contributes to making new devices attractive for
healthcare usage too.

� Web-based solutions reduce client maintenance and
automatically upgrade when the server does.

� Long-lived infrastructure is of value when aiming
for lifelong EHRs, and by using web technology
systems may have potential to evolve gracefully as
long as the web does.

Notification of bookmark changes
A bookmark targets a point in the live EHR and does
not constitute a static screenshot. EHR content and ac-
cess restrictions may thus change between the moment
of bookmark creation and retrieval. The bookmark can
only be resolved by authenticated users with permissions
to read at least parts of the original target content. At
bookmark resolve time, users should be alerted when
there is more or less information available as compared
to when the bookmark was created. Table 3 shows warn-
ing policy options.
Bookmark target change detection needs to be consid-

ered in implementations. It is easy to calculate that the
target of a bookmark may have changed by checking if
any EHR content or access rules have changed since the
bookmark was created, but this is likely of little value for
the end users who will want to know if it has changed
for real or not. Comparing the bookmark target versions
at creation and retrieval will give the real difference, but
since bookmark lookups are expected to be frequent,
efficient change detection routines are needed.
Security and confidentiality considerations
A proper security and confidentiality analysis (out of
scope in this paper) would be needed before deploying a
system based on this architecture with ‘real’ patient data.
It is fairly easy to track deep detailed URIs when

viewing HTML source or monitoring unencrypted
network calls. If, on the other hand, HTTPS is used
when crossing trust boundaries the only thing seen
on the network is that a certain server and client are



Table 3 Bookmark resolution options

Block resolution completely Warn user Resolve bookmark without warning

More info Irrelevant Good Potentially confusing

No change Irrelevant Irrelevant Good

Less info If required by law or policy Good Dangerous

Table 3 illustrates bookmark resolution options. The bottom right box says it can be dangerous to, without warning, show EHR content accessible by the user at
bookmark resolve time if there is less information available to this user than when the bookmark was created (possibly by another user and at another time).

Sundvall et al. BMC Medical Informatics and Decision Making 2013, 13:57 Page 17 of 25
http://www.biomedcentral.com/1472-6947/13/57
communicating (the URIs can not be seen). To a high
degree, security then involves the same issues facing
all networked systems.

Future work
The exploration of REST applicability to archetype-based
systems is in its infancy and interesting future work
remains. Some staring points for future work is listed in
the following paragraphs.
Bookmark usage in EHRs have only been scratched on

the surface, future studies in real settings are needed to
explore the implications and possibilities. Also, print-
specific bookmarks could be created for identifying each
EHR paper printout and included as QR (or other) code
on the paper. It would then be easy to register the code
with a camera and ask the system to retrieve later
versions of the corresponding information if available.
If the bookmark URIs are to be short, opaque, and

shared between users, it is not obvious how to shard
bookmarks in an optimal way that also allows a user to
efficiently list all their bookmarks, etc. Determining this
will need further work.
A rudimentary HTTP-based test suite for testing

implementations based on this design approach has been
started, but it could get expanded to cover all the parts
in a future openEHR Service specification for REST. It
would automatically be applicable to all HTTP- and
messaging-compliant implementations since those inter-
faces are not tied to any specific programming language.
Comparisons of log content and log granularity with

healthcare laws and regulations will have to be made to
see if it needs to be supplemented with more mecha-
nisms to function as a complete auditable read-log. The
audit-related RFC 3881, http://www.rfc3881.net/Resources/
RFC3881.pdf, could be useful to consider in this context.
Also, an investigation regarding if and how available HTTP
server log analysis tools could be used for EHR access log
analysis, should be done.
Shared contribution builds is another interesting po-

tential future work. The current contribution builder
design works best if a contribution build is personal
and the user uses one device at a time for editing it.
For more dynamic teamwork or multimodal or
multidevice data entry, using systems based on Oper-
ational Transformation (OT) would likely enhance
the user experience. OT is a lock-free resolution
mechanism [33] that is used for example in collabora-
tive systems like Google Docs and Apache Wave
(formerly Google Wave). Since OT involves many
small transactions a use of approaches like WebSockets
for accessing shared contribution builds is anticipated.
When explored properly, specific OT application rec-
ommendations should be added to the architecture.
The LiU EEE demonstrator implementation, detailed

in Appendix A, is not intended for routine clinical use,
but rather for prototyping and experimentation. At the
time of publication, there is not yet sufficient material
available to say that this architecture is useful for rapid
prototyping by relevant target groups like students, soft-
ware developers, and computer-savvy clinicians. The fact
that we found it very efficient for creating the supplied
demo pages does not constitute any unbiased proof, and
further studies involving collaborative prototyping and
desired target groups are needed.
Conclusions
Using REST over HTTP addressed many architectural
concerns regarding subdividing the implementation of the
openEHR specifications into manageable pieces. This also
gave additional benefits such as enabling rapid prototyp-
ing using regular web technologies and added a straight-
forward way of implementing bookmarking services to
help clinicians share pointers into the EHR. Also, the
HTTP server log can be used to monitor most user inter-
actions with the system. An additional messaging compo-
nent was needed to address event-based functionality, for
example to notify decision support systems of about
updates in an EHR. The proposed architecture is an
openEHR service interface that can be used to implement
and compose EHR systems using many different HTTP-
capable platforms and programming languages.
Further work is needed to allow storage and efficient

retrieval based on automated subsumption and post-
coordinated terminology expressions. Since terminology
binding adds complexity to the system, performance is-
sues related to the interface between the EHR system and
the terminology system will need further investigation.
Because of the ever increasing amount of patient data

available, scaling is a critical aspect of EHR systems.
REST was designed for large-scale, distributed systems,
and in addition to that the sharding possibilities

http://www.rfc3881.net/Resources/RFC3881.pdf
http://www.rfc3881.net/Resources/RFC3881.pdf


Sundvall et al. BMC Medical Informatics and Decision Making 2013, 13:57 Page 18 of 25
http://www.biomedcentral.com/1472-6947/13/57
described in the paper can allow scaling out by adding
more servers to share the work load.
The described architecture aims to address speed of

access for end users, and enable creation of maintain-
able user interfaces. This paper indicates paths to-
wards these goals, but does not by itself provide any
proof thereof. Thus further experimental follow-up
studies using the suggested approach are needed. This
‘software paper’ is not advocating the use of these
practices in real healthcare IT systems until they have
been further investigated and refined, instead the
intention is to present the framework to a broader re-
search community, welcoming further studies, critique
and improvements!

Availability and requirements

� Project name: LiU EEE
� Project home page and source code repository:

https://github.com/LiU-IMT/EEE it may later get
moved to a subproject somewhere under https://
github.com/openEHR/

� Operating system(s): Platform independent
� Programming language: Java and JavaScript
� Other requirements: Java J2SE 5.0 or higher (and for

some GUI examples an updated modern standards-
compliant web browser like a recent version of
Firefox, Safari, or Google Chrome)

� License: Apache 2 (permissive, commercially
friendly open source)

� Any restrictions to use by non-academics: No

Appendix A: LiU EEE – Implementation details
At Linköping University (LiU) we needed an Educational
EHR Environment (EEE) for teaching and research. To
facilitate cooperation with commercial and other actors,
the implementation needed to be accessible as open
source with a commercial-friendly, permissive license.
By the time the design and development of LiU EEE
started, we did not find alternatives that met our needs
and decided to design the architecture described in the
main manuscript and implement essential parts of it.
By the time of this publication the situation has

changed for the better and several open source alterna-
tives that explore different approaches to implement
archetype-based EHR systems are available. Examples
(programming language in parenthesis) are:

• EHRflex [34], http://ehrflex.sourceforge.net/ (Java)
• GastrOS [35], http://gastros.codeplex.com (.NET +

C#)
• Open EHR-Gen, http://code.google.com/p/open-

ehr-gen-framework/ (Groovy + Java)
• Opereffa, http://opereffa.com/ (Java)
Also, implementations in Ruby [36], http://openehr.jp/
projects/show/ref-impl-ruby, and Python [37] https://
launchpad.net/oshippy provide components for arche-
type-based EHR systems. The REST-based approach de-
scribed in the main manuscript paper could potentially
be used to compose EHR systems based on components
from a mix of the above-mentioned projects.

Storage and representations
LiU EEE stores EHR data as XML documents in an
indexed XML database. This may not be the best long-
time solution, especially not for population queries. An
initial study [7] suggested that the tested XML database
configurations without further optimizations were not
suitable as persistence mechanisms for openEHR-based
systems in production if population-wide ad hoc query-
ing was needed. However, for individual focused clinical
queries, corresponding to the ‘single record’ use case
where patient ID was specified, the response times in
the study were acceptable.
Using AQL [9,10] and an XML database provided a

quick start for a proof of concept because openEHR
XML schemas, serialization code, and example openEHR
XML instances already existed. The XML-focused query
language XQuery [26] was available as well. XQuery is
path-based (as is AQL) and powerful enough to execute
any query semantics AQL can express. An XML schema
with additions needed for objects not covered by the of-
ficial openEHR schema files is supplied in the LiU EEE
source code. The current LiU EEE storage media type is
XML, but clients can ask for other media types, and for
example receive HTML and for some resources also
JSON, YAML, or serialized Java objects. This is served
by calling conversion mechanisms.

Frameworks used in the current LiU EEE implementation
The LiU EEE implementation is mostly based on open
source Java (server side) and JavaScript (client side)
frameworks. Some significant currently used ones are
listed below:

• The Restlet Lightweight REST framework, http://
www.restlet.org/, that implements fundamental
REST concepts as Java classes. Among other things
it includes content and cache negotiation mecha-
nisms. Interaction between Restlet components can
run efficiently avoiding network calls by using ‘in
process’ communication when deployed on the same
computer, but can easily be configured to call com-
ponents on other computers using HTTP when
scaling out is needed.

• The openEHR Java Reference implementation [2]
provides essential building blocks for openEHR-
based EHR systems. It is used for managing

https://github.com/LiU-IMT/EEE
https://github.com/openEHR/
https://github.com/openEHR/


Sundvall et al. BMC Medical Informatics and Decision Making 2013, 13:57 Page 19 of 25
http://www.biomedcentral.com/1472-6947/13/57
archetypes and templates, as well as validation and
conversion of EHR data.

• JavaCC, a Java Compiler Compiler, http://javacc.java.
net/, was used for AQL parser generation

• Some XML databases tested [7] in conjunction with
LiU EEE are: BaseX, http://basex.org/ and eXist-db,
http://exist.sourceforge.net/

• FreeMarker, http://freemarker.sourceforge.net/, is
used for generating (mostly HTML) pages by com-
bining dynamic variable values with FreeMarker
template files.

• JavaScript libraries used in the example user interface
are primarily jQuery, http://jquery.com/, for data-
and event-processing, and D3, http://d3js.org/, for
information visualization.
User interfaces
The version of LiU EEE published with this paper con-
tains two kinds of user interfaces, one with example
parts aimed for end-users such as clinicians and another
one intended for developers.
Figure 5 Developer interface. The top half of the image shows the inter
footer with debug information that aids in understanding the implementa
built into most WebKit-based browsers (here activated by right-clicking the
EEE are encouraged to use these feature combinations.
Some of the provided example interfaces for end users
of LiU EEE are partly shown in Figure 1 and Figure 4 in
the main manuscript. They serve as suggestions and ex-
ample GUI screens for client-side functionality exempli-
fying how to use the REST-based architecture. They do
not expose the internals of the application to clinical
end users; the Bookmarking section of the main manu-
script explains some reasons why. The implemented LiU
EEE summaries and graphical overview examples are
based on AQL queries that are used to populate HTML
pages with data and hyperlinks pointing to more detailed
information.
The interfaces for developers, system technicians, and

others wanting to learn what is ‘under the hood’, consist
of simple web pages that expose the URIs and methods
used to access data, often including forms, etc. Dynamic-
ally generated pages include a footer (similar to the one
in Figure 5 with information about what Java classes and
FreeMarker templates that were used in their creation.
There are explaining pages available at most levels in the
URI path hierarchy, so a call to /ehr/12344321/ (if there
is such a patient) will return a page for developers. In
face for developers, here viewing a VERSION of a COMPOSITION and a
tion. The bottom half shows the network view in the debugging tool
page and selecting ‘Inspect Element’). Readers wanting to explore LiU



Sundvall et al. BMC Medical Informatics and Decision Making 2013, 13:57 Page 20 of 25
http://www.biomedcentral.com/1472-6947/13/57
most system deployments with real patient data, this
developer interface should not be available or exposed to
end users.
In addition to the interfaces there are also ‘Web Appli-

cation Description Language’ (WADL) files that contain
XML-formatted descriptions of the application. The for-
mal WADL-formatted descriptions of URIs, methods,
and representations are available to developers by calling
URIs using the HTTP OPTIONS verb; these are also
linked from the developer interface start page. The
current WADL is automatically generated by the Restlet
framework that introspects the Java code of LiU EEE. If
a formal openEHR service specification targeted for
REST is formulated, then the reverse process is likely:
generating code stubs from openEHR specification-
provided WADL in order to configure compatible
systems (Figure 5).

AQL, query parsing, translation and hybrid queries
The AQL grammar [38] was analyzed, transformed, and
then converted and modified it to a file that could be
consumed by JavaCC. The grammar file was then aug-
mented with production rules generating XQuery corre-
sponding to the specific storage format used in LiU EEE.
(If other XML storage structures are used, these produc-
tion rules need to be modified.)
Most of the graphical timeline examples provided in

the LiU EEE implementation fetches ‘pure’ XML format-
ted responses and processes them in client side
JavaScript code when generating views.
Another option available in LiU EEE are hybrid quer-

ies (as described in the “Implementation” section of the
main manuscript) that combine AQL and XQuery. Some
example hybrid queries supplied are:

• AQL embedded inside XQuery inside HTML,
resulting in a HTML page being rendered as output
directly from the database engine response.

• One example generates KML (a geography oriented
XML dialect) projecting a graphical EHR overview
in Google Earth using the principles outlined in a
previous paper [39].

• Another query example produces RDF for the
SMART platform, http://www.smartplatforms.org/,
listing patient encounters [40]. Since all queries
get stored and are assigned a SHA1-based URI in
LiU EEE, these URIs can be used for routing,
redirects etc. This means that a URI pattern like
GET /records/{record_id}/encounters/ described
in the SMART REST call specification [41] can,
with very little coding effort, be routed to the
encounter-fetching query. Similar translation-
queries and URI mappings could be set up for
other SMART API calls.
Event driven messaging
The messaging semantics of messaging protocols like
Simple Text Orientated Messaging Protocol (STOMP),
http://stomp.github.com/, covers what is presently
needed for event-based communication between LiU
EEE components. A STOMP message contains plain
text headers and may include a body in arbitrary for-
mat. STOMP clients are available for many program-
ming languages. Components interacting with (or
replacing) LiU EEE components can thus be written in
any language environment that supports HTTP and
STOMP.

Limitations of initial open source implementation and
future work
In order to reduce the time to sharing of findings and
software, the LiU EEE implementation is limited in scope.
Fine-grained security aspects such as access control lists
have for example not been studied and implemented in
detail. Import and export of EHR data to other openEHR
systems using EHR extracts, etc., via network is not
implemented either. Some other limitations and future
work are discussed in the subsections below.

Performance
Theoretical performance analysis can be of some help in
system design, but is of limited value since the depend-
encies and mechanisms of implemented systems are
often so complex that monitoring of real systems used
in production is necessary to gain important insights
[42]. At this stage, no EHR system based on our REST-
based design for openEHR has been used in a realistic
setting, so further studies are needed.
The current Java, HTML, and JavaScript implementations

have not been optimized for performance. Performance
profiling of the Java code and database query processing
should also be done to find bottlenecks.
Implementations of MapReduce approaches to query

and storage and high availability aspects are not
reported in this paper, nor included in supplied code,
but as a follow-up to the first storage performance
study [7], experiments with open source distributed
storage solutions based on Apache Hadoop’s, http://
hadoop.apache.org/, HIVE project, Couch DB http://
couchdb.apache.org/ and other solutions are currently
being performed.
The JavaScript-parts of the interface would likely be

helped by more organized development infrastructure and
optimizing compilation provided by frameworks such as
Closure, http://code.google.com/closure/. Graphics could
also be optimized using CSS sprites, etc.
Regarding caching the LiU EEE implementation con-

tains a rudimentary in-memory cache but can also be
configured to use Memcache if such servers are



Figure 6 openEHR reference model. Reference model objects are building blocks that can be configured, constrained, and named by openEHR
archetypes and templates forming document tree structures. Image source: openEHR Architecture Overview ([5] page 28) used with permission.

Sundvall et al. BMC Medical Informatics and Decision Making 2013, 13:57 Page 21 of 25
http://www.biomedcentral.com/1472-6947/13/57
available. Also worth noting regarding caching in the
current LiU EEE implementation is that resources
served under the subdirectory named ‘/static’ are auto-
matically marked with the ‘Cache-Control: public’
HTTP header and a high ‘max-age’ to avoid repeated
downloads.
Query translators
The JavaCC format and tools proved somewhat cum-
bersome to work with. JavaCC was chosen primarily be-
cause it could be expected to be familiar to openEHR
developers since it is already used for ADL parsing in
the openEHR Java Reference implementation. Benefits
and drawbacks of switching to another parser generator
with better tooling support needs to be investigated.
Query return formats
In addition to the XML-based query response formats
currently implemented, it may be useful to develop for
example JSON-based response formats once there are
openEHR specifications for how to serialize openEHR
object trees in those formalisms. Partial conversion rou-
tines for the XML query response results to JavaScript
objects (via JSON) are provided in client side experi-
mental GUI code.
Terminology bound querying
In the development of LiU EEE, initial work [43] has
been done on allowing storage and querying of coded
data. In a demonstration of the abilities of the system,
AQL queries allowed for querying of SNOMED CT



…5f4::example.org::1

Contact
2012 -01-13

03746276 -e84b …

Contribution
(event)

…e83::lab.example.com::1

Test result
2012 -01-18

05acdd13 -605f …

Contribution
(import )

…93c::example.org::1

Contact
2012 -01-29

089 ee9e8 -7aa8 …

Contribution
(event)

…5f4::example.org::2

Contact
2012 -01-13

08f73519 -8c9c…

Contribution
(correction )

…f74::example.org::14

Care plan

…f74::example.org::15

Care plan

…a67::example.org::11

Problem
list

…1ff::example.org::5

EHR access

l

event compo sitions, persistent compositions & EHR Accesscontributions

time

Figure 7 EHR versioning. Example EHR changes to VERSIONED_OBJECTs over time, committed and logged as contributions at four separate
time points (the time axis goes downwards). COMPOSITIONs, FOLDER, EHR_ACCESS, and EHR_STATUS are all versioned using the same
mechanism. Compositions can be flagged as being of type ‘event’ (blue above) intended for one-time recordings, or flagged as ‘persistent’ (green
above) intended for long time continuously updated use. Abbreviated example identifiers are illustrated under the shapes. The figure was inspired
by Figure 8 in the openEHR architecture overview document [5].

Sundvall et al. BMC Medical Informatics and Decision Making 2013, 13:57 Page 22 of 25
http://www.biomedcentral.com/1472-6947/13/57
coded data taking the subsumption hierarchy of the
terminology into consideration.
For future development, a number of terminology

related issues have to be considered. If the level of use of
codes in patient information instances is high, the inter-
face between the EHR system and any terminology
server can be expected to be a bottleneck. Depending on
the specific situation with regard to the ratio of number
of relevant codes to the number of information in-
stances, the optimal placement of the terminology
querying function may vary. For example, querying a
large set of documents for a single code is different from
querying a limited set of documents for codes from a
large hierarchy of codes. Also, the results of different
terminology queries will have to be integrated with the
query based on information structure, adding complexity
to the querying task. Thus, testing different indexing
techniques for coded information integrated with ter-
minology servers needs to be explored.

Demographics and access control
Demographic services and user account administration are
rudimentary. The openEHR demographics and access con-
trol mechanisms have not been implemented but are
needed to get a realistic functional system. How to best
modify querying to respect (possibly fine-grained) access
control lists is an interesting future work.

Embedded contribution builders
It might be possible to make the Contribution Builder
partly or fully embeddable in fairly ‘thin’ clients, thus
improving performance and enabling temporary offline
data entry. The Restlet framework is for example avail-
able both for Android and GWT (Google Web Toolkit).
Appendix B: Introduction to openEHR
The openEHR project, described at http://www.openehr.
org, has specified data structures and supporting semantics
(clarifying the meaning) for the content of Electronic Health
Records (EHRs). The formalisms in openEHR and the ISO
13606 standard are closely related. The EHR content is
structured in a multi-level modeling approach including
templates, archetypes, and a reference model (RM) [5]
intended to improve semantic interoperability and reuse.
The idea of a layered modeling that separates tech-

nical infrastructure concerns from clinical concerns is
not unique to the archetype approach – configurable
template systems, for example as customizable forms,
have been available in proprietary EHRs for a long
time. However, they are seldom standardized and inter-
operable (Figure 6).
The technical Reference Model (RM) provides the foun-

dational general building blocks (see Figure 6) that are then
combined, named, and used in tree-like data structures
according to rules and constraints defined in archetypes
and templates. The RM aims to provide a common design
for general data that is useful in many clinical settings, for
example configurable data fields, units, time-points, user
participations, and versioning [5].
Some openEHR RM structures are crucial in the sug-

gested REST-based openEHR architecture, here capitalized
as in the openEHR specifications:

http://www.openehr.org
http://www.openehr.org


/data[openEHR-EHR-COMPOSITION.encounter.v1]

(no section in this example) 

/content[openEHR-EHR-OBSERVATION.blood_pressure.v1]

/data

/events[at0006]

/data

/items[at0004]

/value

/magnitude

URI retrieving  the XML representation of a specific VERSION within a VERSIONED_COMPOSITION:
http://localhost:8182/ehr:Medinfo-Example-EHR-ID/c90103a0-0f02-4ae5-9a85-af82cb5068fb::test2.eee.mi.imt.liu.se::1?media=text/xml

Path, within the versioned composition, to the systolic blood pressure magnitude above: 

/data/events[at0006]/data/items[at0004]/value/magnitude
/data[openEHR-EHR-COMPOSITION.encounter.v1]/content[openEHR-EHR-OBSERVATION.blood_pressure.v1]

Nesting structure:
EHR > Versioned Objects> Versions  
Composition> Sections> Entries> Data structures > 
Item  structures> Data types (values)

Figure 8 Document tree and paths. A simplified document tree rendered from an XML representation of a VERSIONED_COMPOSITION. An
example path is illustrated using the same color encoding as the RM building blocks in Figure 6. Paths and values can be used in queries to
extract and display data in the EHR system.

Sundvall et al. BMC Medical Informatics and Decision Making 2013, 13:57 Page 23 of 25
http://www.biomedcentral.com/1472-6947/13/57
� CONTRIBUTIONs can be thought of as a commit-
log in a versioning system pointing to all objects
updated in a single commit and containing
metadata about who did what and when, together
with an optional textual description.
Figure 9 AQL query example. Example of a query in ‘archetype query langu
� VERSIONED_OBJECTs are containers that keep track
of VERSIONs of data objects like COMPOSITIONs
(containing EHR data) and FOLDERs (optionally
grouping COMPOSITIONS and other FOLDERs as a
directory).
age’ (AQL).



Sundvall et al. BMC Medical Informatics and Decision Making 2013, 13:57 Page 24 of 25
http://www.biomedcentral.com/1472-6947/13/57
These structures, as RM structures in general, have
identifiers that can be used to access data. Some version
changes are illustrated in Figure 7. The identifier of a
versioned COMPOSITION is derived from its enclosing
VERSION object.
An aspect that helps in replicated openEHR systems is

that openEHR records are ‘append only’, so old VERSIONs
are never physically changed or deleted. Logical deletion,
if needed, is done inside the VERSIONED_OBJECT creat-
ing a new VERSION marked as deleted. The identifiers in
the versioning system also include the ID of the EHR sys-
tem creating a VERSION; this facilitates branching and
merging of objects distributed over several care providers,
etc. (Figure 7).
An archetype in openEHR and ISO 13606 contains meta-

data and a set of terms, rules, and constraints describing
how to use the RM building blocks to create a clinically rele-
vant data structure. One method often used in archetype de-
sign is trying to cover all possible aspects (maximal dataset)
of a specific well-bounded clinical concept, such as the
recording of blood glucose measurements or body weight
(including details of measurement method, amount of cloth-
ing, etc.). The archetypes can then, for example when used
for data entry, be combined with other archetypes to form
larger composite structures [5].
An archetype can also contain language translations so

that structured data entered using terms from the archetype
in one language can automatically be displayed in another
language.
A template (in the openEHR sense of the word) is used

to combine several archetypes into a larger structure,
intended for a specific or local use case, to be used as the
basis for a clinical system entry form in a certain EHR sys-
tem, for example an in-patient admission form. A template
can also further constrain, remove, or set default values from
the archetypes and the reference model it builds upon. Tem-
plates cannot remove mandatory fields or ‘add’ new fields,
just use and further constrain concepts defined by existing
archetypes. Thus all EHR data based on a template must
also be valid instances in accordance with the archetypes in-
cluded in the template [5].
The intentional split between archetypes and templates

is primarily for practical and pedagogical reasons since
they have different purposes. Due to their maximal
dataset nature, archetypes are supposed to be reusable
and created regionally, nationally, or internationally
when possible [44].
The openEHR RM, like any labeled tree data structure,

can be traversed using paths. Every part (node) of an
archetype-based data structure in an EHR is addressable
and thus retrievable by a path containing a concaten-
ation of traversed RM attribute names and within
brackets archetype IDs and subsequent node-IDs. Tem-
plates don’t add data with any other paths than the ones
available in the archetypes. Thus data originating from
systems using different templates but the same archetype
can be retrieved using the same query. Figure 8 exempli-
fies paths in a data structure (Figure 8).
One of the domain specific languages (DSLs) designed

for archetype-based queries is the ‘archetype query lan-
guage’ (AQL) [9,10] that uses an XPath-inspired syntax
exemplified in Figure 9.
The AQL example in Figure 9 selects and labels some

specific return measurement values and metadata from
all blood pressures with a systolic value above 185 that
were recorded as part of patient encounters in a specific
EHR. Variables are in green text (the value of the vari-
able $current_ehr_uid is supplied by the calling program
context and contains the EHR ID of a specific patient),
paths are blue and AQL commands BOLD.

Abbreviations
AM: Archetype model; EHR: Electronic health record; HTML: Hypertext
markup language; JSON: Javascript object notation; PHR: Personal health
record; QR Code: Quick response code, a type of matrix barcode;
REST: Representational state transfer; RM: Reference model; STOMP: Simple
text orientated messaging protocol; XML: Extensible markup language.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
ES Did the initial drafting of major parts of the manuscript and was the
coordinating editor. ES developed the idea of applying REST to openEHR
and designed and implemented major parts of LiU EEE in cooperation
primarily with ME, MN, and DK. RC extended the openEHR Java reference
implementation to include archetype- and template-based validation as well
as the RM-instance/skeleton builder components. RC also drafted the
manuscript parts about these components. MN and ME designed and
implemented the AQL parser and the AQL to XQuery translator. MN, ME, and
ES designed the initial bookmarking features. MN pointed out the need for
privacy preserving opaque bookmark URIs. Detailed design and
implementation was then finished by ES and ME. HÖ supervised parts of the
design and development and contributed to major clarifications of the
manuscript All authors have commented, contributed to, critically reviewed,
and approved the manuscript. Parts of the text describing the bookmarking
features have been previously published as a poster abstract at MIE 2011 in
Oslo: Bookmarking Service Considerations for an Archetype-Based EHR Using
REST, by ES, MN, ME, DK, and HÖ.

Acknowledgements
This work was partly funded by the Swedish National Board of Health and
Welfare, by the Swedish Association of Local Authorities and Regions
(SALAR), by Cambio Healthcare Systems, by TEKIT funds from Linköping
University, and by the EU-funded regional network NovaMedTech.
The Department of Clinical Engineering (MTÖ) in the County Council of
Östergötland supported feedback and funding for GUI prototyping through
the AIV project http://www.advancedinfovis.org/.
The implementation was considerably helped by all open source projects,
components, and tools involved.
We want to express our gratitude to late professor Hans Åhlfeldt who
supervised ES from the start. Professor Åhlfeldt believed in and supported
this project from its infancy but did not live to see the final result. We also
want to thank Marie Sandström for help with implementation, testing, and
project support during parts of the development.

Author details
1Department of Biomedical Engineering, Linköping University,
Linköping 581 85, Sweden. 2Cambio Healthcare Systems, Brigadgatan 14,
Linköping 587 58, Sweden.

http://www.advancedinfovis.org/


Sundvall et al. BMC Medical Informatics and Decision Making 2013, 13:57 Page 25 of 25
http://www.biomedcentral.com/1472-6947/13/57
Received: 21 September 2012 Accepted: 21 March 2013
Published: 9 May 2013
References
1. #teaching @ Erik Sundvalls Research Page - IMT, LiU, Sweden. http://

www.imt.liu.se/~erisu/#teaching.
2. Chen R, Klein G: The openEHR Java reference implementation project.

Stud Health Technol Inform 2007, 129:58–62.
3. Sundvall E, Qamar R, Nyström M, Forss M, Petersson H, Karlsson D, Ahlfeldt

H, Rector A: Integration of tools for binding archetypes to SNOMED CT.
BMC Med Inform Decis Mak 2008, 8(Suppl 1):S7.

4. Chen R, Klein GO, Sundvall E, Karlsson D, Ahlfeldt H: Archetype-based
conversion of EHR content models: pilot experience with a regional EHR
system. BMC Med Inform Decis Mak 2009, 9:33.

5. Beale T, Heard S: openEHR Architecture: Architecture Overview. In openEHR
Specification Project. 1.0.2 edition. London: The openEHR Foundation; 2008.

6. Bødker S, Grønbæk K: Cooperative prototyping: users and designers in
mutual activity. Int J Man–Mach Stud 1991, 34:453–478.

7. Freire SM, Sundvall E, Karlsson D, Lambrix P: Performance of XML
Databases for Epidemiological Queries in Archetype-Based EHRs.
Scand Conf Health Inform 2012, 2012:51–57.

8. Beale T, Heard S, Kalra D, Lloyd D: The openEHR Common Information
Model specification. In openEHR Specification Project. 1.0.2 edition. London:
The openEHR Foundation; 2008.

9. Archetype Query Language Description - Specifications - openEHR Wiki.
http://www.openehr.org/wiki/display/spec/Archetype+Query+Language
+Description.

10. Ma C, Frankel H, Beale T, Heard S: EHR query language (EQL)–a query
language for archetype-based health records. Stud Health Technol Inform
2007, 129:397–401.

11. Fielding R: Architectural styles and the design of network-based software
architectures. PhD Thesis. Irvine: University of California; 2000.

12. Fielding R, Gettys J, Mogul J, Frystyk H, Masinter L, Leach P, Berners-Lee T:
Hypertext Transfer Protocol -- HTTP/1.1. Internet RFCs 1999,
RFC 2616:1–176.

13. Berners-Lee T, Fielding R, Masinter L: Uniform Resource Identifier (URI):
Generic Syntax. Internet RFCs 2005, RFC 3986:1–61.

14. Gregorio J, Fielding RT, Hadley M, Nottingham M, Orchard D: URI Template.
Internet RFCs 2012, RFC 6570:1–34.

15. Fette I, Melnikov A: The WebSocket Protocol. Internet RFCs 2011, RFC 6455:1–71.
16. Henderson C: Building Scalable Web Sites: Building, Scaling, and Optimizing

the Next Generation of Web Applications. Sebastopol, CA, USA: O’Reilly Media;
2006.

17. An Unorthodox Approach to Database Design: The Coming of the
Shard. http://highscalability.com/blog/2009/8/6/an-unorthodox-approach-
to-database-design-the-coming-of-the.html.

18. Scalability Strategies Primer: Database Sharding. http://blog.maxindelicato.
com/2008/12/scalability-strategies-primer-database-sharding.html.

19. Gilbert S, Lynch N: Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. ACM SIGACT News 2002, 33:51.

20. Brewer’s CAP Theorem. http://www.julianbrowne.com/article/viewer/
brewers-cap-theorem.

21. Anderson JC, Lehnardt J, Slater N: Eventual Consistency. In CouchDB: The
Definitive Guide. Sebastopol, CA, USA: O’Reilly Media, Inc; 2010:11–20.

22. Dean J, Ghemawat S: MapReduce: simplified data processing on large
clusters. Commun ACM 2008, 51:107–113.

23. Memcached protocol. https://raw.github.com/memcached/memcached/
master/doc/protocol.txt.

24. Node + Path Persistence - Developers - openEHR Wiki. http://www.
openehr.org/wiki/x/NwAM.

25. openEHR-Technical mailing list archives. http://openehr.org/community/
mailinglists.

26. XQuery 1.0: An XML Query Language (Second Edition). http://www.w3.
org/TR/xquery/.

27. Markwell D, Sato L, Cheetham E: Representing clinical information using
SNOMED Clinical Terms with different structural information models.
In KR-MED 2008, 2008:72–79.

28. Rector AL: What’s in a code? Towards a formal account of the relation of
ontologies and coding systems. Stud Health Technol Inform 2007,
129:730–734.
29. HL7 Terminfo Project. http://www.hl7.org/special/committees/terminfo/
index.cfm.

30. Karlsson D, Berzell M, Schulz S: Information Models and Ontologies for
Representing the Electronic Health Record. In International Conference on
Biomedical Ontology. Buffalo, NY; 2011:153–157.

31. Cheong YC, Bird L, Tun NN, Brooks C: Using a logical information model-
driven design process in healthcare. Stud Health Technol Inform 2011,
169:804–808.

32. Rector AL, Solomon WD, Nowlan WA, Rush TW, Zanstra PE, Claassen WM: A
Terminology Server for medical language and medical information
systems. Methods Inf Med 1995, 34:147–157.

33. Understanding and Applying Operational Transformation - Code
Commit. http://www.codecommit.com/blog/java/understanding-and-
applying-operational-transformation.

34. Brass A, Moner D, Hildebrand C, Robles M: Standardized and flexible
health data management with an archetype driven EHR system
(EHRflex). Stud Health Technol Inform 2010, 155:212–218.

35. Atalag K, Yang HY, Tempero E, Warren J: Model driven development of
clinical information sytems using openEHR. Stud Health Technol Inform
2011, 169:849–853.

36. Kobayashi S, Tatsukawa A: Ruby Implementation of the OpenEHR
Specifications. J Adv Comput Intell Intell Inform 2012, 16:42–47.

37. Cavalini L, Cook T: Health Informatics: The Relevance of Open Source and
Multilevel Modeling. In Open Source Systems: Grounding Research. 365th
edition. Edited by Hissam S, Russo B, de Mendonça Neto M, Kon F. Boston:
Springer; 2011:338–347.

38. Archetype Query Language Grammar - Specifications - openEHR Wiki.
http://www.openehr.org/wiki/display/spec/Archetype+Query+Language
+Grammar.

39. Sundvall E, Nyström M, Forss M, Chen R, Petersson H, Ahlfeldt H: Graphical
Overview and Navigation of Electronic Health Records in a Prototyping
Environment Using Google Earth and openEHR Archetypes.
Stud Health Technol Inform 2007, 129:1043–1047.

40. SMART Data Model, #section7.5. http://dev.smartplatforms.org/reference/
data_model/#section7.5.

41. SMART REST API. http://dev.smartplatforms.org/reference/rest_api/.
42. Wilson S, Kesselman J: Measurement Is Everything. In Java platform

performance: strategies and tactics. 1st edition. Addison-Wesley Professional;
2000:17–36.

43. Karlsson D, Nyström M, Kron B: An integrated Expression Repository EHR
system. In SNOMED CT Implementation Showcase. Copenhagen, Denmark:
IHTSDO; 2012. http://www.ihtsdo.org/fileadmin/user_upload/doc/showcase/
?t=show12_EhrDesign.

44. Garde S, Knaup P, Hovenga E, Heard S: Towards semantic interoperability
for electronic health records. Methods Inf Med 2007, 46:332–343.

doi:10.1186/1472-6947-13-57
Cite this article as: Sundvall et al.: Applying representational state
transfer (REST) architecture to archetype-based electronic health record
systems. BMC Medical Informatics and Decision Making 2013 13:57.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://www.imt.liu.se/~erisu/#teaching
http://www.imt.liu.se/~erisu/#teaching
http://www.openehr.org/wiki/display/spec/Archetype+Query+Language+Description
http://www.openehr.org/wiki/display/spec/Archetype+Query+Language+Description
http://highscalability.com/blog/2009/8/6/an-unorthodox-approach-to-database-design-the-coming-of-the.html
http://highscalability.com/blog/2009/8/6/an-unorthodox-approach-to-database-design-the-coming-of-the.html
http://blog.maxindelicato.com/2008/12/scalability-strategies-primer-database-sharding.html
http://blog.maxindelicato.com/2008/12/scalability-strategies-primer-database-sharding.html
http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
https://raw.github.com/memcached/memcached/master/doc/protocol.txt
https://raw.github.com/memcached/memcached/master/doc/protocol.txt
http://www.openehr.org/wiki/x/NwAM
http://www.openehr.org/wiki/x/NwAM
http://openehr.org/community/mailinglists
http://openehr.org/community/mailinglists
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery/
http://www.hl7.org/special/committees/terminfo/index.cfm
http://www.hl7.org/special/committees/terminfo/index.cfm
http://www.codecommit.com/blog/java/understanding-and-applying-operational-transformation
http://www.codecommit.com/blog/java/understanding-and-applying-operational-transformation
http://www.openehr.org/wiki/display/spec/Archetype+Query+Language+Grammar
http://www.openehr.org/wiki/display/spec/Archetype+Query+Language+Grammar
http://dev.smartplatforms.org/reference/data_model/#section7.5
http://dev.smartplatforms.org/reference/data_model/#section7.5
http://dev.smartplatforms.org/reference/rest_api/
http://www.ihtsdo.org/fileadmin/user_upload/doc/showcase/?t=show12_EhrDesign
http://www.ihtsdo.org/fileadmin/user_upload/doc/showcase/?t=show12_EhrDesign

	Abstract
	Background
	Results
	Conclusions

	Introduction
	Background
	Representational State Transfer (REST), URIs, and HTTP
	Solutions and design patterns complementing REST
	Event-driven messaging systems
	Sockets

	Scalability - the ability to scale
	Sharding
	The CAP theorem
	Distributed database systems and MapReduce

	Performance, caching, and reducing number of requests
	High availability

	Implementation
	Componentization and separation of concerns
	Storage considerations and grouping of use cases
	Conversions and storage format changes
	Individual focus versus population focus

	URIs to central resources representing EHR RM objects
	User interface
	Querying
	Query storage, execution, and HTTP redirection flow
	Response formats and hybrid queries

	Caching and reducing number of requests
	Contribution Builder
	Validating RM instances using archetypes and templates
	Instance builder and RM-skeleton
	Bookmarks
	Sharing and privacy

	Triggers

	Results
	Familiar bookmarking support
	Client caching included in HTTP
	User action logging almost for free
	Representation format conversions and upgrades
	Fast prototyping
	Benefits from storing and redirecting POSTed queries
	Tradeoffs resulting from the separation of concerns
	Benefits resulting from sharding on EHR-ID
	Tradeoffs resulting from sharding on EHR-ID
	Merging records
	Simultaneous retrieval or change of many EHRs


	Discussion
	Applicability to other existing or future Archetype-based models
	Need for sharding
	Sharding key mechanisms
	Terminology system binding and querying
	Is a REST architectural style appropriate for EHR deployments?
	Other drivers for using HTTP and web-based clients
	Notification of bookmark changes
	Security and confidentiality considerations
	Future work

	Conclusions
	Availability and requirements
	Appendix A: LiU EEE – Implementation details
	Storage and representations
	Frameworks used in the current LiU EEE implementation
	User interfaces
	AQL, query parsing, translation and hybrid queries
	Event driven messaging
	Limitations of initial open source implementation and future work

	Performance
	Query translators
	Query return formats
	Terminology bound querying
	Demographics and access control
	Embedded contribution builders
	Appendix B: Introduction to openEHR
	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
    /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.440 793.440]
>> setpagedevice




