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Abstract
Technologic advances now make it possible to collect large amounts of genetic, epigenetic,
metabolomic, and gut microbiome data. These data have the potential to transform approaches
toward nutrition counseling by allowing us to recognize and embrace the metabolic, physiologic
and genetic differences among individuals. The ultimate goal is to be able to integrate these multi-
dimensional data so as to characterize the health status and disease risk of an individual and to
provide personalised recommendations to maximize health. To this end, accurate and predictive
systems-based measures of health are needed that incorporate molecular signatures of genes,
transcripts, proteins, metabolites, and microbes. Although we are making progress within each of
these omics arenas, we have yet to integrate effectively multiple sources of biologic data so as to
provide comprehensive phenotypic profiles. Observational studies have provided some insights
into associative interactions between genetic or phenotypic variation and diet and their impact on
health; however, few human experimental studies have addressed these relationships. Dietary
interventions that test prescribed diets in well-characterized study populations and that monitor
system-wide responses (ideally using several omics platforms) are needed to make correlation-
causation connections and to characterize phenotypes under controlled conditions. Given the
growth in our knowledge, there is the potential to develop personalised dietary recommendations.
However, developing these recommendations assumes that an improved understanding of the
phenotypic complexities of individuals and their responses to the complexities of their diets will
lead to a sustainable, effective approach to promote health and prevent disease — therein lies our
challenge.
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Introduction
Technologic advances now make it possible to collect large amounts of genetic, epigenetic,
proteomic, metabolomic, and gut microbiome data. Many of the applications of this multi-
dimensional data have been in the areas of disease detection, prognosis, and treatment.
However, such approaches may also lend themselves toward characterizing healthy
phenotypes and more effectively informing dietary recommendations for maintaining or
improving the health of individuals on a personal level. Omics data have the potential to
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transform our approach toward nutrition counseling by allowing us to recognize and
embrace the metabolic, physiologic and genetic differences among individuals. The ultimate
goal would be to integrate these multi-dimensional data so as to characterize the health
status and disease risk of an individual and to provide personalised dietary recommendations
to maximize health. To this end, accurate and predictive systems-based measures of health
are needed that incorporate molecular signatures of genes, transcripts, proteins, metabolites,
and microbes.

Nutrition, as a science, has a long tradition of determining the nutrient requirements of
heterogeneous populations eating a wide variety of diets and of providing dietary
recommendations for health. This has typically involved simplifying the inherent complexity
into manageable recommendations in the form of dietary guidance for the purpose of
preventing disease in a population. Despite the application of biostatistical approaches with
the goal to be as inclusive of the population as possible, there are limitations due to
assumptions that metabolic organizational structure is uniform among individuals and that
direct cause-effect relationships exist. In reality, the large number of functional redundancies
and adaptive mechanisms that provide for homeostasis(1) make evaluating the complexities
and nuances challenging.

The concept of a “nutritional phenotype”—i.e., an integrated set of genetic, proteomic,
metabolomic, functional, and behavioral factors that, when measured, could provide the
basis for assessment of human nutritional status—was introduced several years ago by
Ziesel et al(2). It was proposed as a way to integrate the effects of diet on disease/wellness
and provide a quantitative indication of the paths by which genes and environment exert
their effects on health(1). The concept provides a good base from which to begin to establish
approaches to personalised dietary recommendations; however, several questions need to be
addressed. These include, but are not necessarily limited to: What data will we need on an
individual in order to personalise dietary recommendations? How can we use controlled
feeding studies and other dietary interventions to generate a nutritional phenotypic
framework? How can we most effectively integrate omics data so as to be able to apply
them toward personalised nutrition?

What data will we need on an individual in order to personalise dietary
recommendations?

Numerous factors contribute to variation in nutritional requirements and responses to diet,
including sex, stage of life cycle, disease, physical activity level, genetic background, gut
microbial community and environmental exposures. Several of these are already considered
in the construction of personalised nutritional recommendations; for example, sex, age,
adiposity, and activity level are routinely used in determining nutrient requirements in
healthy individuals and understanding the contributions of disease state to nutritional
requirements is a hallmark of therapeutic nutrition. To date, the more complex factors such
as genomics, host microbial community structure, and environmental exposures are often
not included in the equation.

Genetic polymorphisms are well-recognized sources of variation in human response to some
aspects of diet, including taste preference, food tolerance, nutrient absorption, transport and
metabolism, and effects at target tissues(3). Typically, in past studies, one particular genetic
variant has been considered in relation to intake of one particular nutrient. For example, two
polymorphisms in the MTHFR gene (C677T and A1298C) are associated with reduced
methylenetetrahydrofolate reductase activity and higher homocysteine concentrations(3).
Carriers of these polymorphisms are at higher risk of cardiovascular disease, thus sufficient
intake of folate is particularly important. Other examples include iron overload and
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hemochromatosis, copper malabsorption and Menkes disease, and glucose-6-phosphate
dehydrogenase (G6PD) and consumption of fava beans, high in pro-oxidant glycosides
(favism)(reviewed in(3)). Further, genomics may contribute to phenotypic differences in
health behavior and modify response to interventions designed to change health
behaviors(4).

Several genome-wide association studies (GWAS) have evaluated the association between
multiple single nucleotide polymorphisms (SNPs) and metabolomics profiles. In a sample of
284 men, Gieger et al.(5) integrated GWAS data with serum metabolomics-based
quantitation of 363 metabolites. They reported associations of frequent SNPs with
differences in the metabolic homeostasis, explaining up to 12% of the observed variance.
Using ratios of certain metabolite concentrations as a proxy for enzymatic activity, up to
28% of the variance can be explained (p-values 10−16 to 10−21). Four variants in genes
coding for enzymes (FADS1, LIPC, SCAD, MCAD) were identified where a corresponding
metabolic phenotype (metabotype) clearly matched the biochemical pathways in which
these enzymes are active.

More recently, Suhre et al.(6) conducted an analysis of genotype-dependent metabolic
phenotypes using a GWAS with non-targeted metabolomics in a sample of 1768 individuals.
They identified 37 genetic loci associated with blood metabolite concentrations, of which 25
showed effect sizes that accounted for 10–60% difference in metabolite levels per allele
copy. These results provided functional insights into disease-related associations that have
been reported in previous studies, including those for cardiovascular and renal disorders,
type 2 diabetes, cancer, gout, venous thromboembolism and Crohn’s disease.

The human gut microbial community also shapes host exposure to dietary constituents by
modulating absorption, storage, and energy harvest from the diet. It is a large, complex
ecosystem, with the number of different species of bacteria estimated to range from 300 and
1000 and the majority of the species diversity distributed between the phyla Firmicutes and
Bacteroidetes(7,8). There is high inter-individual variation in the composition of
communities, mostly at the species level(9), whereas the distribution of bacterial functional
genes is less varied. This functional redundancy is a hallmark of a stable symbiosis in which
many different species carry out the same functional role.

Recent studies suggest that individuals can be clustered into distinct groups based on their
gut microbiome composition and functional metabolism(10). The underlying metabolism of
the dominant bacteria that define these groups is the degradation of plant polymers (e.g.,
dietary fiber) via different metabolic pathways; long-term dietary habits have been
associated with these groupings(10). Through the metabolism of dietary constituents, the gut
microbiome can influence the magnitude and flux of metabolites to which the host is
exposed and some of the variation in what have been identified as genotype-dependent
metabolic phenotypes actually may be due to the composition and activity of the gut
microbiome(11,12). Indeed, of the genotype-dependent metabolic phenotypes identified by
Suhre et al(6), an altered microbiome has been associated with cardiovascular disease(13),
type 2 diabetes(14), some cancers(15,16), and Crohn’s disease(17). However, the relationships
between the gut microbiome, diet, and metabolic phenotypes need to be addressed in
rigorous experimental settings using approaches that integrate metabolomics, host genomics
and the gut microbiome.
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How can we use controlled feeding studies and other dietary interventions
to develop phenotype profiles?

Controlled feeding studies in healthy humans have been used for over a century to establish
the quantitative requirements and confirm essentiality of nutrients in humans. Typically,
these studies had small sample sizes, were intensively controlled, and often focused on
restriction and refeeding of specific nutrients or nutrient sources. They were used to evaluate
the acute effects of food deprivation, show experimentally the effects of dietary restrictions
on development of deficiency diseases, establish specific amino acid requirements, and
describe vitamin metabolism(18). Consequently, they were crucial in determining
recommended daily dietary allowances. Controlled interventions and defined background
diets have also been useful for testing response to varying doses of a dietary constituent(19)

and for testing and monitoring biomarkers of disease susceptibility and dietary exposure(20).
More recently, dietary interventions have been used to test the effects of particular dietary
patterns(21) and to test genotype-phenotype interactions(22).

Controlled feeding studies, particularly with randomized crossover designs where each
person serves as their own control, are a useful venue in which to test genotype-diet
interactions as well as genotype-phenotype interactions. In the latter case, the relationship
between genotype and phenotype can sometimes be better characterized on the background
of the same dietary exposures (i.e., a controlled diet)(22). Participant screening protocols for
recruitment into controlled feeding studies also can be set up to enrich a priori for particular
genotypes or phenotypes so as to provide more equal distributions of sample sizes in
subgroups, particularly if the prevalence of a particular variant is low, and to increase
statistical power to compare these subgroups.

Controlled feeding studies also provide a useful approach in which to characterise host-gut
microbial interactions and to determining gut microbial community response to diet. In the
context of controlled dietary interventions, gut bacterial community composition has been
shown to differ significantly when participants consume different diets(23,24), although the
overall response of the gut bacterial community is often unique for each individual(24,25).
Most studies have tested effects of fermentable complex carbohydrates (e.g., dietary fibers,
resistant starch)(Table 1). Network analysis of the gut microbial community reveals niche
specialization based on a metabolic interconnection between different bacteria that are often
specialized in one enzymatic transformation in the pathway of dietary metabolism(10,26-28).
The type of carbohydrate ingested often influences the prevalence of certain groups of gut
bacteria and the subsequent composition of the microbial metabolic end products to which
the host is exposed (e.g., short chain fatty acids; Table 1). Differences in gut microbial
metabolism of various phytochemicals also contribute to gut bacterial metabolic phenotypes
that influence dietary exposures(29). Being able to test for the effects of these phenotypes in
the context of nutrition interventions is important, since some subgroups may be more
responsive to the intervention than others. For example, Niculescu et al(30) reported
differential lymphocyte gene expression by bacterial metabolic phenotype in
postmenopausal women receiving an isoflavone supplement; a greater increase in estrogen-
responsive genes was observed in women who carried the bacteria capable of converting the
soy isoflavone daidzein to equol.

“Omics”—transcriptomics, proteomics, and metabolomics—approaches have been
hypothesised to revolutionise our understanding of the interactions of the various systems
that are often studied in isolation and have the potential to revolutionise many aspects of our
study of nutrition and health promotion. Despite the excitement, at this stage, the
technologies still require rigorous evaluation and validation. Controlled feeding studies are a
useful approach in which to validate and test the robustness of these omics approaches with
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the goal of ultimately being able to use them to evaluate the effects of totality of diet on
totality of response in humans. In addition, they provide important details on the behavior of
proteins, transcripts and metabolites under controlled conditions.

Several studies have used the construct of controlled feeding interventions to test effects of
diet on omics measures (Table 2). The majority of these have utilized metabolomics to
characterize response to phytochemical-containing foods—fruits, vegetables, tea, nuts—
compared to a control in healthy individuals. Many of the metabolites identified typically
correspond to dietary biomarkers of the intervention foods consumed (e.g., proline betaine
after consumption of citrus fruits). Although many studies also yield a handful of
endogenous metabolites that differ in abundance between the interventions, these
compounds are often generally reported as differences in metabolite profiles owing to a lack
of adequate pathway analysis tools. Thus, it is often unclear whether differences in
metabolite profiles are indicative of perturbations in specific pathways or molecular targets
in response to the dietary intervention, or are unrelated compounds identified by chance.
Some investigators have explored pathways manually. For example, Solanky et al(31) found
that soy consumption was associated with osmolyte fluctuations and differences in energy
metabolism. Work in our lab (unpublished data) suggests potential differences in energy
utilization from glucose to fat between a diet devoid of fruits and vegetables compared to a
diet high in crucifers, citrus and soy. These examples provide provocative views of other
mechanisms through which plant foods may promote health; however, even with manual
analyses, the interpretation is still broad, speculative, and incomplete.

Other investigations have employed alternative omics technologies to study response to diet
and have evaluated other endpoints beyond differences in metabolite profiles. Brauer et
al(32), interrogated the proteome in response to two weeks of a diet high in cruciferous
vegetables, and assessed whether response differed by glutathione S-transferase (GST)M1
genotype. GST enzymes metabolise a variety of exogenous compounds, including
isothiocyanates from cruciferous vegetables, and the GSTM1 variants resulting in a
complete lack of gene product are common(22). Twenty-four distinct peaks were associated
with cruciferous vegetable consumption compared to a fruit- and vegetable-free diet, two of
which were identified that changed in a GSTM1-genotype-dependent manner. Another study
provides an example of a novel use of omics to link metabolic phenotypes with dietary
preferences. Taking a targeted approach, Rezzi et al(33)used lipidomics to determine
metabolites associated with chocolate “desiring” or chocolate “indifferent” preferences
among individuals consuming 50 g/d chocolate or bread as a placebo. Heinzmann et al(34)

used metabolomics to study the stability of phenotypic response to diet through sequential
dietary challenges. They found that inter-individual differences were often greater than
differences within an individual in response to dietary modulation, providing evidence that
individuals each have a unique metabolic phenotype. Moreover, intra-individual differences
between consecutive dietary challenges were linked to differences in excretion of microbial
co-metabolites suggesting flexibility in gut microbiome function in response to dietary
modulation. As the authors point out, these differences illustrate the importance of assessing
response to diet in the context of a crossover rather than parallel study design in order to
move toward personalised nutrition. As a whole, these controlled feeding studies illustrate
the potential for omics technology in characterizing individual nutritional phenotypes, but
make evident the challenges (i.e., compound identification, pathway analysis) that still exist.

How can we most effectively integrate omics data so as to be able to apply
them toward personalisednutrition?

Given that cellular functions are carried out via orchestrated activities of multiplex
components of biological systems, data from different omics platforms can shed light on
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cellular activities at different levels. Methods that integrate omics data from different
molecular profiling studies, e.g. data from transcriptomics, proteomics or metabolomics
studies, have the potential to provide new insight into how different components of
biological systems interact with each other and form the basis of an individual’s health.
Here, we provide an overview of available methods of data integration from multiple omics
platforms, provide examples of each of different approaches, and discuss their advantages
and limitations.

Current methods for integrative analysis of omics data from multiple data platforms can be
broadly grouped into three categories. The first class of models, which we refer to as
concordance analysis methods, studies concordance/correlation between two omics data
sets, e.g., comparing the gene expression levels and proteomics datasets on the same set of
subjects. The objective of such an approach is to identify genes/proteins/metabolites with an
orchestrated activity in a given biological setting. To this end, methods of multivariate
analysis, including different variations of Principal Component Analysis (PCA), Partial
Least Squares (PLS), Self-Organizing Maps (SOM), as well as methods of network
visualization and analysis, have been used to assess the associations among multiple data
sets. For instance, Hirai et al(35) applied PCA as well as SOM to discover relationships
between transcriptome and metabolome in Arabidopsis. In another study, Hirai et al(36)

analyzed the network of gene-to-gene and gene-to-metabolite associations. More recently,
Cao et al(37) proposed a sparse PLS procedure for comparative analysis of data from two
omics platforms and applied their method to data from cDNA and Affymetrix chips in
NCI60 cancer cell lines.

Concordance analysis methods provide interesting information about components of
biological systems that interact with each other in a given setting. Moreover, such analyses
can lend themselves to better classificatory models based on a combination of biomarkers
from different platforms. However, these approaches often provide limited new insight into
the underlying biological mechanisms as omics data from different platforms often show
low levels of correlation due to complex mappings of genes to proteins and metabolites, and
various post-transcriptional events(38). Further, the underlying assumption in the majority of
these methods is that omics measurements are obtained on the same set of individuals, or
more formally, share a common dimension. Van Deun et al(39) reviewed these different
approaches for analysis of multiple omics data, in the setting where the data sets share a
common set of features.

The second class of integrative models, which we refer to as sequential integration, includes
methods that incorporate multiple sets of omics data in order to discover new biomarkers or
delineate biological mechanisms of complex phenotypes. It uses multiple omics data sets, in
a sequential manner, to further narrow down, or expand, the set of biomarkers. Sequential
integration methods can exploit different methods of data analysis, from simple differential
expression analysis to gene-set enrichment analysis or analysis of networks. In examples of
such an approach, Putluri et al(40) first identified the set of differentially active metabolites,
and then used meta genomic data to identify pathways associated with prostate cancer
progression. In another study, Putluri et al(41) coupled this approach with a concordance
analysis based on metabolomics flux measurements to delineate pathways and biomarkers
associated with bladder cancer. More recently, Imielinski et al(42) used gene set enrichment
analysis coupled with the knowledge of biological networks and compared two sequential
approaches, called “gene-centric” and “protein-centric,” in a study of molecular bases of
breast cancer. In each of these approaches, the authors first evaluated the enrichment of
biological pathways based on one source of data (transcriptomic or proteomic) and then
filtered the set of identified pathways based on the second source of data. The authors also
compared the results of these methods with a concordance-based approach, where the
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pathways were identified based on gene and protein pairs that demonstrated orchestrated
levels of activity.

Sequential integration methods offer an opportunity to gain new insight based on multiple
sources of omics data. Moreover, these methods do not require the omics measurements to
be necessarily observed for the same set of individuals. Finally, unlike methods of
concordance analysis, which cannot be directly extended to analysis of more than two sets of
omics data, sequential integration methods offer the flexibility of analyzing multiple omics
datasets. However, the power of these methods is clearly limited by the ability of the omics
data chosen for the first stage of analysis to capture important biological mechanisms. As the
study by Imielinski et al(42) indicates, the results of the analysis can vary depending on the
omics platform used for the first stage of analysis. This sensitivity to the order of analysis
can potentially hinder the applications of sequential integration methods, and additional
studies are needed to determine whether data-driven criteria can be developed to assess the
optimal order of analysis in these methods.

The final group of omics integration techniques, which we refer to as concurrent integration
methods, includes emerging approaches that attempt to address some of the shortcomings of
the above two sets of approaches. Similar to sequential integration methods, concurrent
integration methods try to exploit the information content of multiple sets of omics data.
However, these methods often include measures of activity of biological pathways, or their
components, based on multiple omics data. This is often achieved by defining a combined
score for the activity of each pathway based on activities of its members measured by
different omics datasets. Poisson et al(43) compared the performance a number of methods
for combining data from multiple omics platforms, by considering different summary
measures defined based on individual test statistics, with methods based on a single omics
data source and show that the integrative approaches can improve the power of the analysis.
In a recent study, Jauhiainen et al(44) proposed a multivariate approach, using a mixed linear
model, to assess the association of transcriptomics and metabolomics measurements with
cancer progression. The proposed model requires measurements to be observed on the same
set of samples, but offers the potential for discovering novel biological mechanisms, as well
as biomarker identification. On the other hand, Shojaie et al. (Shojaie A, Panzitt K, Putluri
N, Putluri V, Samanta S, Vareed SK, Basu S, Ittmann M, Michailidis G, Palapattu G and
Sreekumar A. A Network-Based Integrative Approach to Study the Role of Metabolic
Pathways in Prostate Cancer Progression, 2012) propose a network-based method, based on
the NetGSA method (45), for integrating multiple sources of omics data, which can be
applied to data from different samples. This procedure does not lend itself directly to
selection of biomarkers, and follow-up analyses are needed to determine which components
of the selected pathways should be used as biomarkers.

Concurrent integrative methods have also been proposed for gaining insight into biological
mechanisms in the cell. An example of such an approach includes the proposal of Shojaie et
al. (Shojaie A., Jauhiainen A, Kallitsis M, and Michailidis G. Inferring Regulatory Networks
by Combining Perturbation Screens and Steady State Gene Expression Profiles, 2012) to
integrate perturbation screens and steady-state gene expression profiles for discovering
causal genetic regulatory mechanisms. In this study, the authors compare their proposed
integrative approach with state-of-the-art methods based on a single source of omics data,
and show superior estimates of regulatory networks can be obtained that by combining
multiple omics data. Table 3 summarises the different classes of integration methods.

Novel biomedical technologies continue to improve the quality of the omics data, as well as
to reduce the cost of obtaining such data. In nutrition studies, biological experiments now
generate multiple sources of omics data including transcriptomic, proteomic, metabolomic
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and gut microbial community measurements. The main challenge is now integrating such
measurements in a systematic way, in order to provide a holistic view of biological systems.
As more and more measurements become available, the complexity of the analysis, i.e. the
number of variables in statistical models, increases. This poses additional challenges for
design of trials, and necessitates the use of advances statistical models appropriate for
analysis of high dimensional problems. A potential solution for this challenge is to
incorporate available biological knowledge, including information on biological pathways
and genetic, protein interaction and metabolic networks. Incorporating biological
information can both reduce the dimensionality of the problem, and also improve the power
and reproducibility of analysis methods.

A Way Forward to Personalised Nutrition
There is still a lot of effort needed to establish a robust health phenotype framework on
which to develop personalised dietary recommendations. The improving omic technologies
and the ability to integrate various omics platforms in a systematic fashion will facilitate
providing a holistic view of cellular functions related to healthy phenotypes; however, the
characterisation of the contribution of diet to the biochemical and metabolic parameters
associated with healthy phenotypes would benefit from systematic evaluation under
controlled conditions in well-described groups of individuals. Controlled human feeding
studies are a useful experimental setting in which to conduct this work. Nonetheless, these
types of studies are expensive and funding multiple, new large-scale dietary interventions
that capture a variety of dietary patterns and intakes is likely to be prohibitive.

An efficient and effective way to develop some of the necessary omics databases under
experimental conditions may be to take a collaborative approach, leveraging existing
samples from previously conducted human interventions. Stored samples from controlled
feeding studies are stashed away in freezers around the globe and in many cases are well
characterized and ideal for further omic analysis. Statistical techniques for integrating
multiple omics data from a common platform but different study populations, i.e., meta-
analysis techniques, already exist; they improve statistical power by integrating samples
from multiple related studies(46-54) and also allow for testing of reproducibility of results
across studies. Looking toward future studies, the adoption of standardized sample and
metadata collection protocols would allow for easier pooling of data across studies.

Overall, the careful collection and integration of omics data from controlled dietary
interventions may provide us with the data necessary to successfully move toward a goal of
more personalised dietary recommendations. Nonetheless, even with the generation of
expansive, integrated datasets that allow for in-depth characterisation of health phenotypes,
several factors need to be considered if personalised nutrition is to move toward being a part
of routine health practice. Adherence to dietary recommendations for chronic disease
prevention at the population level, such as those of national and international associations
(e.g., US Department of Agriculture, World Cancer Research Fund, American Heart
Association, etc)is associated with lower risk of chronic disease; for example, greater
adherence to the 2005 US Dietary Guidelines was inversely associated with risk of coronary
heart disease, stroke, diabetes, and total cancer.(55) In theory, tailored recommendations may
be an improvement over general, population-based dietary recommendations; however,
whether more extensive phenotyping, beyond current approaches, is cost-effective in
promoting health and preventing disease will need to be determined. Further, in practice,
finding individualised approaches that facilitate and maintain desired dietary behavior on the
heels of a personalised diet prescription for health will likely remain an ongoing challenge
for nutrition practitioners.
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Table 1

Summary of human dietary intervention studies of response of the gut microbiome to diet.

Dietary
intervention,
reference and
year

Sample size/
population

Dietary intervention/
dose of food agent

Treatment
duration

Platform/biological sample/
key outcomes

Dietary intervention in normal weight individuals

Hooda et al(56),
2012

n=20 M;
Healthy adults

Randomized controlled
crossover,
TRTS- no fiber, polydextrose
(PDX;
21g/d);soluble corn fiber(SCF;21
g/d)

21 d Pyrosequencing of V4 region of 16S
rRNA gene/faeces. PCA showed gut
microbial community shifts with fiber
interventions.

Ross et al(57),
2011

N=17; 11 F, 6 M Randomized controlled
crossover,
Whole grain /(WG; 150/d) vs.
refined
grain (RG)

2-wk Bacterial enumeration using FISH; C.
leptum group increased in WG diet along
with stool frequency.

Costabile et
al(58), 2008

n=31; 16 F, 15 M Randomized controlled
crossover,
48g/d breakfast cereal of either
100%
whole grain (WG) (11.8g DF/
100g;
chosen after a pre-screening for
bifidogenicity) or wheat bran
(WB)
(27g DF/100g) ad-lib diet;
energy composition was not the
same; WG
contained higher content of non-
sugar carbohydrate

two 3-wk
periods

Bacterial group enumeration using FISH
showed changes in several groups with
both WG and WB diets and differences
between diets. No change in faecal
SCFA. Increase in fasting plasma ferulic
acid with WB.

Finley et al(59),
2007

n=40 pre-
metabolic
syndrome;
n=40 controls; 20

1/2 cup (130g) of pinto bean
pureevs.
chicken-noodle soup

4-wk
equilibration
and 12-wk
intervention

Faecal bacterial species enumeration
using FISH. Breath methane measured.
No effect of bean consumption, except E.
limosum levels decreased by 50%.

Smith et al(60),
2006

F, 20 M
n=18 M

Single-blind randomized
crossover,
self-managed with addition of
seven
experimental foods (bread,
muffin,
brownie, choc milk drink,
muesli,
pasta, mashed potatoes) with or
without lupin kernel fiber (LKF);
LKF diet provided 17-30g
additional
fiber/d; Mean fiber intake was
23g/d
on control and 45g/d on LKF;
LKF
diet was sig. lower in starch

28-d ;3-d
pooled faecal
collection at
end of each
period

FISH of 16S rRNA genes/faeces with
probes for total bacteria and specific
groups. No difference in total bacteria,
but changes in certain groups in response
to treatment

Johnson et al(61),
2006

n=38 M Single-blind crossover, same as
Smith et al(60)above

28-d; 3-d
pooled faecal
collection at
end of each
period

SCFA and bacterial enzyme activity in
faeces. LKF altered bowel function
parameters and decreased faecal pH.
Faecal SCFA increased and β-
glucuronidase activity decreased. No
difference in faecal ammonia
concentration.

Tuohy et al(25),
2001

n=31; 17F, 14M 20g FOS + 10g partially
hydrolyzed
guar gum (PHGG)/d vs. placebo

crossover, 3-
wk feeding
periods; two
consecutive d
stool sample
mix

FISH of 16S rRNA genes. Increase in
Bifidobacterium spp., but no difference in
total bacteria between diets or other spp.
enumerated. No change in faecal pH.
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Dietary
intervention,
reference and
year

Sample size/
population

Dietary intervention/
dose of food agent

Treatment
duration

Platform/biological sample/
key outcomes

Hylla et al(62),
1998

n=12; 5 F, 7 M Randomized controlled
crossover,
high vs. low resistant starch
(RS):
amylomaize starch in bread,
pasta,
cake and biscuits [Hylon VII,
Natl
Starch]

4-wk Changes in breath hydrogen and several
faecal parameters associated with
bacterial activity (e.g., pH, certain SCFA,
β-glucosidase, secondary bile acids).

Dietary intervention in overweight/obese individuals

Weickert et
al(63), 2011

n=69; 43 F, 26 M Randomized controlled
crossover,
High Cereal Fiber (HCF) 43g/d,
moderately high cereal/fiber/
protein
diets MIX 23% protein of
energy-
intake, cereal fiber 26g/d

18 wk FISH/Flow cytometry of faecal bacteria.
No effect of diet on bacterial groups.

Russell et al(23),
2011

n=17 M;
obese

Randomized controlled
crossover.
Maintenance diet (85 g protein,
116 g
fat, and 360 g carbohydrate/d)
high-
protein and moderate-
carbohydrate
(HPMC; 139 g protein, 82 g fat,
and
181 g carbohydrate/d) diet and a
high-protein and low-
carbohydrate
(HPLC; 137 g protein, 143 g fat,
and
22 g carbohydrate/d)

7 d
maintenance
followed by
14- d
intervention

FISH of 16S rRNA genes/GC-MS
analysis of faecal water content/faeces.
HPMC and HPLC diets resulted in
increased proportions of branched-chain
fatty acids and concentrations of
phenylacetic acid and N-nitroso compounds.
HPLC dietdecreased
proportion of butyrate in faecal SCFA
concentrations, concomitant with
reduction in Roseburia/Eubacterium
rectale bacteria, and reduced fiber-
derived, antioxidant phenolic acids.

Duncan et al(64),
2007

n=19 M Randomized controlled
crossover,
high (399g carbs, 52%), medium
(HPMC; 164g/d, 35%) or low
carb
(HPLC; 24g/d, 4%) ad-lib diet
for 4
wks; nonstarch polysaccharide
levels
in maintenance: 28g, HPMC
12g,
HPLC 6g

3-d
maintenance/4-
wk
experimental
diet

Bacterial enumeration using FISHshowed
shifts in certain groups of bacteria. Faecal
SCFA and ammonialower during
experimental periods than maintenance
and proportions of some SCFA differed
by diet.

Ley et al(65),
2006

n=12;
obese adults

Reduced fat ~30% of calories
from
fat or 25% of calories from
carbohydrate; fiber was 10-15g/d

1 y Pyrosequencing of 16S rRNA gene. Ratio
of Bacteroidetes to Firmicutes decreased
over time associated with weight loss. No
difference between diets

Abbreviations: F, female; FISH, fluorescent in-situ hybridization of 16S rRNA genes; M, male;PCA, Principal Components Analysis; SCFA,
short-chain fatty acids.
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Table 2

Summary of human dietary intervention studies using metabolomic and proteomic platforms.

Dietary
intervention,
reference and
year

Sample size/
population

Dietary intervention/
dose of food agent

Treatment
duration

Platform/biological sample/
key outcomes

Fruits and vegetables

May D, Navarro
SL,
Ruczinski I,
Hogan J,
Ogata Y,Schwarz
Y, Levy
L, Holzman T,
McIntosh
MW,Lampe JW
(2012)
Metabolomic
Profiling of
Urine in Response
to a
Randomized,
Controlled
Feeding Study of
Select
Fruits and
Vegetables, and
Application to an
Observational
Study

n=10; 5 F, 5 M;
Healthy adults

Randomized controlled
crossover,mixture of cruciferous
vegetables, citrus fruits and soy
(F&V)
compared to fruit and vegetable-
free
diet (basal); 5 g/kg BW

2 wk Metabolomics/8 h fasting urine ; more
abundant in the F&V: markers of dietary
intervention (e.g., crucifers, citrus and soy
metabolites), fatty acids and niacin; more
abundant in basal: riboflavin, several
acylcarnitines, and amino acid metabolites;
differences in energy utilization between
diet treatments.

Van Dorsten et
al(66), 2012

n=58 (29 in each
treatment arm);
25 F, 33 M
Hypertensive adults

Randomized double-blind placebo-
controlled double-crossover,
capsules
containing a polyphenol rich mix of
either red wine and red grape juice
extracts (800 mg) or only red grape
extract (800 mg), and placebo

4 wk Metabolomics/urine; 18 phenolic acids
elevated after either polyphenol treatment
including syringic acid, 3- and 4-
hydroxyhippuric acid and 4-hydrohippuric
acid
and 4-hydroxymandelic acid.

Brauer et al(32),
2011

n=36;
17 F, 19 M;
n=42; 17 F, 25 M;
Healthy adults
recruited based on
GSTM1 genotype
(present or null)

2 separate randomized controlled
crossover trials of mixed
vegetables:
1) 436 g cruciferous; 90 g allium;
and
270 g apiaceous; 2) 7 g/kg BW
cruciferous; 14 g/kg BW
cruciferous; 7
g/kg BW cruciferous + 4 g/kg BW
apiaceous; both compared to fruit
and
vegetable-free diet (basal)

6 d;
2 wk

Proteomics/8 h fasting serum; 24 distinct
peaks associated with cruciferous
vegetables; 20 associated with GSTM1
genotype; joint study analysis showed 6
peaks changed in genotype-dependent
manner; 2 identified as TTR and ZAG.

Heinzmann et
al(67), 2010

n=8;
7 F, 1 M
Healthy adults

Standardized mixed fruit meal
(apple,
orange, grapes and grapefruit; no
dosage provided)

3 d Metabolomics/urine; excretion of proline
betaine, tartaric acid, hippuric acid and
benzoic acid was increased compared to
baseline.

Walsh et al(68),
2007

n=21; 12
F, 9 M
Healthy adults

Non-controlled crossover, 2 d
habitual
diet; 2 d low phytochemical diet
and 2
d high phytochemical diet (100 mL
× 4
apple, carrot, and strawberry drinks)

2 d Metabolomics/fasting urine; higher
excretion of hippurate and lower excretion
of creatinine and methylhistidine
discriminated the high phytochemical and
habitual diets from the low phytochemical
diet.

Other plant foods

Tulipani et al(69),
2011

n=42;
Adults with
metabolic syndrome

Randomized parallel
intervention,mixed nuts, 30 g d and
control

12 wk Metabolomics/urine; 20 potential markers
of nut intake including fatty acid, phase II,
microbially-derived phenolic, and
serotonin metabolites.
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Dietary
intervention,
reference and
year

Sample size/
population

Dietary intervention/
dose of food agent

Treatment
duration

Platform/biological sample/
key outcomes

Llorach et al(70),
2010

n=24;
Healthy adults

Randomized blind placebo-
controlled,encapsulated almond
skin
extract, 3.5 g

Single
dose of 10
capsules

Metabolomics/urine; 34 metabolites of
almond skin including flavonoids,
hydroxyphenylvalerolactone, 4-hydroxy-5-
(pheny;)-valeric acid,
hydroxyphenylpropionic acid,
hydroxyphenylacetic acid and other
phenolic acid conjugates.

van Dorsten et
al(71), 2006

n=17 M;
Healthy adults

Randomized crossover, black tea (6
g/d),
green tea (6 g/d) or caffeine
(control)

2 d Metabolomics/urine; green and black tea
increased urinary excretion of hippuric
acid and 1,3-dihydroxyphenyl-2-O-sulfate;
greater increase in several citric acid cycle
intermediates with green tea.

Solanky et al(31),
2005

n=9 F;
Pre-menopausal

Controlled, miso (50 g/d; n=6) or
soy
protein (60 g/d; n=3)

4 wk Metabolomics/urine; increased TMAO,
methylamine, dimethyl amine, choline,
creatine, glutamine (soy only) and
glutamate (soy only), and
decreased creatinine, hippurate, benzoate,
citrate
(miso only) and lactate (miso only).

Miscellaneous

Rasmussen et
al(72), 2012

n=77;
44 F, 33 M;
Overweight , adults

Randomized, high (23-28% of
energy;
n=42) or low (10-15% of energy;
n=35) protein diet

6 mo Metabolomics/urinary; creatine increased
with a high protein diet; citric acid
increased with the low protein diet.

Moazzami et
al(73), 2011

n=17 M;
Prostate cancer
patients

Randomized controlled
crossover,whole grain rye, rye bran
and refined white wheat product,
control (485 g/d)

6 wk Metabolomics/fasting plasma; metabolites
increased after rye bran included 3-
hydroxybutyric acid, acetone, betaine,
N,N-dimethylglycine, and dimethyl
sulfone.

Heinzmann et
al(34), 2011

n=7;
6 F, 1 M
Healthy adults

Controlled, various dietary
challenges
including mixed fruit (apple,
orange,
grapes and grapefruit), fish, wine
and
grapes, beef and fish

7 d Metabolomics/urine; inter-individual
metabolic differences were greater than
effects of any single dietary challenge;
differences to dietary challenges differed
between individuals.

Zivkovic et al(74),
2009

n=3; 1 F, 2 M;
Healthy adults

Standardized test beverages, 40%
kcal
needs; 230 g lactose-free milk, 227
g
low-fat yogurt, 30 g 100% whey
protein powder, 118 g banana, 22 g
flax seed oil

3 single
test
beverages

Targeted lipidomics/plasma; serum fatty
acid differences were greater among
individuals than within; 3 metabolites
discriminated individuals in ApoB
fraction: TG16:ln7, TG18:2n6, and
PC18:3n3.

Llorach et al(75),
2009

n=10; 5 F, 5 M;
Healthy adults

Randomized crossover, 40 g cocoa
powder with water or 250 mL milk,
or
250 mL milk alone

Single test
beverages

Metabolomics/urine; 27
cocoaphytochemical
metabolites identified after
both cocoa-containing beverages.

Bertram et al(76),
2007

n=28;
8 y-old boys

Randomized, 53 g/d protein from
lowfat
milk or low-fat meat

7 d Metabolomics/urine and serum; urinary
hippurate excretion was decreased with
milk; urinary creatinine, histidine and urea
was increased with meat.

Rezzi et al(33),
2007

n=75 M;
Healthy adults

Controlled crossover, chocolate (50
g)
or bread (placebo)

Single
feedings

Lipidomics/urine and plasma; metabolic
phenotypes associated with chocolate
desiring or chocolate indifferent
preferences.

Stella et al(77),
2006

n=12 M;
Healthy adults

Randomized crossover, vegetarian
(420 g/d), low-meat (60 g/d), or
high-
meat(420 g/d)

15 d Metabolomics/urine; urinary excretion of
carnitine, creatinine, taurine, TMAO,
methyhistidine was increased with
highmeat;
p-hydroxyphenylacetate increased
after vegetarian diet.
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Abbreviations: BW, body weight; F, female; GSTM1, glutathione S-transferase M1; M, male; SMCSO, S-methyl-L-cysteine sulfoxide; TMAO,
trimethylamine-N-oxide; TTR, transthyretin; ZAG zinc α-2-glycoprotein.
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Table 3

Summary of methods for integrative analysis of multiple omics datasets.

Integration Approach Reference Methodology/Tools Omics Data

1) Concordance Analysis

Hirai et al(35), 2004 PCA, SOM Transcriptome and metabolome in
Arabidopsis

Hirai et al(36), 2005 network analysis Transcriptome and metabolome in
Arabidopsis

Le Cao et al(37), 2009 sparse PLS cDNA and mRNA in NCI60 cancer cell
lines

Van Deun et al(39), 2009 multiple methods Comparative analysis of integration
methods assuming data on the same
subjects

2) Sequential Integration

Putluri et al(40), 2011 DE, OCM Metabolomics, meta-genomics in Prostate
cancer

Putluri et al(41), 2011 DE, OCM, CA, PLS Metabolomics abundance & flux data,
meta-genomics in Bladder cancer

Imielinski et al(42), 2012 GSEA, network analysis Transcriptomics, proteomics in Breast
cancer

3) Concurrent Integration

Poisson et al(43), 2011 DE, p-value weighting,
GSEA

Transcriptomics, metabolomics

Jauhiainen et al(44), 2012 sparse mixed linear
model

Transcriptomics and metabolomics in cancer

Shojaie A, Panzitt K, Putluri N,
Putluri V, Samanta S, Vareed SK,
Basu S, Ittmann M, Michailidis G,
Palpattu G, Sreekumar A (2012) A
Network-Based Integrative
Approach to Study the Role of
Metabolic Pathways in Prostate
Cancer Progression

NetGSA, GSEA, rank-
based integration

Transcriptomics and metabolomics in Prostate
cancer

Abbreviations: DE, differential analysis; GSEA, gene set enrichment analysis; CA, correlation analysis; PCA, principal component analysis; SOM,
selforganizing maps; PLS, partial least squares; OCM Oncomine concept mapping; NetGSA, network-based gene set analysis.
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