Table 3.
Summary of methods for integrative analysis of multiple omics datasets.
Integration Approach | Reference | Methodology/Tools | Omics Data |
---|---|---|---|
1) Concordance Analysis | |||
Hirai et al(35), 2004 | PCA, SOM | Transcriptome and metabolome in Arabidopsis |
|
Hirai et al(36), 2005 | network analysis | Transcriptome and metabolome in Arabidopsis |
|
Le Cao et al(37), 2009 | sparse PLS | cDNA and mRNA in NCI60 cancer cell lines |
|
Van Deun et al(39), 2009 | multiple methods | Comparative analysis of integration methods assuming data on the same subjects |
|
2) Sequential Integration | |||
Putluri et al(40), 2011 | DE, OCM | Metabolomics, meta-genomics in Prostate cancer |
|
Putluri et al(41), 2011 | DE, OCM, CA, PLS | Metabolomics abundance & flux data, meta-genomics in Bladder cancer |
|
Imielinski et al(42), 2012 | GSEA, network analysis | Transcriptomics, proteomics in Breast cancer |
|
3) Concurrent Integration | |||
Poisson et al(43), 2011 | DE, p-value weighting, GSEA |
Transcriptomics, metabolomics | |
Jauhiainen et al(44), 2012 | sparse mixed linear model |
Transcriptomics and metabolomics in cancer | |
Shojaie A, Panzitt K, Putluri N, Putluri V, Samanta S, Vareed SK, Basu S, Ittmann M, Michailidis G, Palpattu G, Sreekumar A (2012) A Network-Based Integrative Approach to Study the Role of Metabolic Pathways in Prostate Cancer Progression |
NetGSA, GSEA, rank- based integration |
Transcriptomics and metabolomics in Prostate cancer |
Abbreviations: DE, differential analysis; GSEA, gene set enrichment analysis; CA, correlation analysis; PCA, principal component analysis; SOM, selforganizing maps; PLS, partial least squares; OCM Oncomine concept mapping; NetGSA, network-based gene set analysis.