Skip to main content
. Author manuscript; available in PMC: 2014 May 1.
Published in final edited form as: Proc Nutr Soc. 2013 Feb 6;72(2):207–218. doi: 10.1017/S0029665113000025

Table 3.

Summary of methods for integrative analysis of multiple omics datasets.

Integration Approach Reference Methodology/Tools Omics Data
1) Concordance Analysis
Hirai et al(35), 2004 PCA, SOM Transcriptome and metabolome in
Arabidopsis
Hirai et al(36), 2005 network analysis Transcriptome and metabolome in
Arabidopsis
Le Cao et al(37), 2009 sparse PLS cDNA and mRNA in NCI60 cancer cell
lines
Van Deun et al(39), 2009 multiple methods Comparative analysis of integration
methods assuming data on the same
subjects
2) Sequential Integration
Putluri et al(40), 2011 DE, OCM Metabolomics, meta-genomics in Prostate
cancer
Putluri et al(41), 2011 DE, OCM, CA, PLS Metabolomics abundance & flux data,
meta-genomics in Bladder cancer
Imielinski et al(42), 2012 GSEA, network analysis Transcriptomics, proteomics in Breast
cancer
3) Concurrent Integration
Poisson et al(43), 2011 DE, p-value weighting,
GSEA
Transcriptomics, metabolomics
Jauhiainen et al(44), 2012 sparse mixed linear
model
Transcriptomics and metabolomics in cancer
Shojaie A, Panzitt K, Putluri N,
Putluri V, Samanta S, Vareed SK,
Basu S, Ittmann M, Michailidis G,
Palpattu G, Sreekumar A (2012) A
Network-Based Integrative
Approach to Study the Role of
Metabolic Pathways in Prostate
Cancer Progression
NetGSA, GSEA, rank-
based integration
Transcriptomics and metabolomics in Prostate
cancer

Abbreviations: DE, differential analysis; GSEA, gene set enrichment analysis; CA, correlation analysis; PCA, principal component analysis; SOM, selforganizing maps; PLS, partial least squares; OCM Oncomine concept mapping; NetGSA, network-based gene set analysis.