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Summary
Despite complete or near-complete suppression of human immunodeficiency virus (HIV)
replication with combination antiretroviral therapy, both HIV and chronic inflammation/immune
dysfunction persist indefinitely. Untangling the association between the virus and the host immune
environment during therapy might lead to novel interventions aimed at either curing the infection
or preventing the development of inflammation-associated end-organ disease. Chronic
inflammation and immune dysfunction might lead to HIV persistence by causing virus production,
generating new target cells, enabling infecting of activated and resting target cells, altering the
migration patterns of susceptible target cells, increasing the proliferation of infected cells, and
preventing normal HIV-specific clearance mechanisms from function. Chronic HIV production or
replication might contribute to persistent inflammation and immune dysfunction. The rapidly
evolving data on these issues strongly suggest that a vicious cycle might exist in which HIV
persistence causes inflammation that in turn contributes to HIV persistence.
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Introduction
With the recent optimization of antiretroviral drugs, most motivated human
immunodeficiency virus (HIV)-infected patients with access to therapy can achieve durable
and perhaps life-long viral suppression. Although these drugs improve quality of life,
prevent acquired immunodeficiency syndrome (AIDS), and reduce overall mortality, they do
not fully restore health. Treatment-mediated immune reconstitution is often incomplete,
even after many years of viral suppression (1–3). Inflammation and T-cell activation remain
elevated, and CD4+ T-cell counts often fail to achieve normal levels (4–8). Limited immune
reconstitution is particularly notable in mucosal lymphoid tissues (9–14) and may result in a
diminished capacity of the adaptive immune system to function effectively (15, 16). As
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compared to age-matched uninfected adults, treated HIV-infected adults have higher risk of
developing a number of non-AIDS-related non-immunological diseases, including
cardiovascular disease, cancer, kidney disease, liver disease, neurologic disease, and bone
diseases (17). Some (but not all) studies have argued that the life-span of the typical long-
term treated adult is not normalized by effective combination antiretroviral therapy. Chronic
immune dysfunction, immune activation, and inflammation predict and likely contribute to
this excess risk of morbidity and mortality (18–23). Defining the mechanisms for persistent
inflammation during combination antiretroviral therapy is key question for the field.

Many factors contribute to persistent inflammation and immune dysfunction during therapy
in HIV-infected individuals. Deposition of collagen in lymphoid organs during untreated
disease causes irreversible tissue fibrosis, which likely contributes to failed T-cell
homeostasis (12, 24), persistent immunodeficiency, excess levels of various pathogens such
as cytomegalovirus (CMV) (25), destruction of mucosal surfaces (26), and persistent
inflammation all likely contribute to ongoing dysfunction. HIV-associated mucosal immune
dysfunction and loss of immunoregulatory mucosal cells such as interleukin-17 (IL-17)-
producing cells also likely persists during therapy, leading to failed control of microbial
translocation and consequent persistent inflammation (27–30). Although less well-studied,
traditional risk factors such as central obesity, treatment-mediated effects on metabolism
leading to the metabolic syndrome, and substance abuse likely also contribute to
inflammation during combination antiretroviral therapy.

One of the more controversial areas in HIV medicine pertains to the association between
persistent HIV infection and chronic inflammation during long-term effective antiretroviral
therapy (where effective is defined as having maintained undetectable plasma HIV RNA
levels using conventional assays for several years)(31). As outlined in detail below, a
positive correlation exists between measures of immune activation (particularly those based
on CD4+ T-cell phenotype) and HIV persistence (as measured in cells and tissues) among
long-term treated adults. Whether immune activation is a cause, a consequence, or both a
cause and a consequence of HIV persistence is unknown. Understanding the mechanisms for
this association could lead to the optimization of strategies aimed at curing HIV infection
and/or at reducing inflammation-associated disease. In this review, we summarize what is
known about immune activation and HIV persistence during antiretroviral therapy and
describe ongoing studies in humans and non-human primates that examine how the virus
and immune system interact once treatment-mediated control of HIV replication is achieved.

Pathogenesis of HIV-associated immune activation
The central role of immune activation in HIV disease progression was noted in the earliest
observations of the clinical disease (32) (Fig. 1). In the 1990s, Janis Giorgi and her
colleagues (33) performed seminal work which argued that HIV-associated alterations in T-
cell phenotype (as defined by expression of ‘activation’ markers such as CD38 and HLA-
DR) predicted disease progression independently of other factors. After the resolution of
primary infection, an apparently steady-state level or ‘set-point’ of T-cell activation is
achieved; this level predicts the rate of CD4+ T-cell decline (34). Importantly, as the level of
T-cell activation is strongly and consistently correlated with level of HIV replication during
untreated disease, defining with precision the independent effects of T-cell activation on
outcome has been challenging (35). Perhaps the strongest evidence that the inflammatory
response to the virus is a critical determinant of pathogenesis comes from study of natural
host for the simian version of the virus (SIV). Although SIV replication is high in these
animals, immune activation/inflammation and disease progression are both limited.
Preservation of central memory CD4+ T cells due to low CCR5 expression, rapid
downregulation of type interferon I response post-infection, preservation of lymphoid
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tissues, maintenance of mucosal barrier integrity, and lower tissue burden of virus are
consistent correlates of protection in these models (36–38). Indeed, all of these factors can
be a cause or effect (or both) of chronic immune activation and disease progression in
untreated HIV infection and thus likely underlie lack of disease progression in natural hosts.

In untreated HIV disease, there is a striking and consistent association between activation of
T cells and plasma HIV RNA levels. In some studies, the association between viremia and
T-cell activation is more consistent in CD8+ T cells than in CD4+ T cells, while the
peripheral CD4+ T-cell count is a more consistent predictor of CD4+ T-cell activation (39–
42). These latter observations have been used to argue that viremia drives CD8+ T-cell
activation directly, while homeostatic signals associated with low CD4+ T-cell counts
upregulate certain markers on circulating CD4+ T cells.

The expression of many of the negative regulators of T-cell activation such as programmed
death-1 (PD-1) and cytotoxic T-lymphocyte antigen-4 (CTLA-4) is also strongly correlated
with viremia (43–50), while in other studies the frequency of forkhead box protein 3
(FoxP3)+ and T-regulatory (Treg) cells are correlated with viremia (28, 29, 50, 51). As is
common in these types of studies, it is impossible to define whether HIV replication drives
an immunoregulatory response or whether the immune-suppressive effects of these
responses causes increased viremia, perhaps by preventing an effective HIV-specific
immune response. Untreated HIV infection is also associated with activation and
dysregulation of B cells (52–58). B-cell dysfunction prevents optimal antibody production in
both primary and secondary immune responses, leading to compromised responses to
infection and vaccination (52, 54, 57, 59). Furthermore, innate cells such as natural killer
(NK) cells, dendritic cells, macrophages, and other key regulators of immune function are
also affected by HIV infection and may underlie the high plasma levels of proinflammatory
cytokines and biomarkers observed during infection (60). Indeed, monocytes and
macrophages have been shown to be hyper-activated and have reduced propensity for
phagocytosing pathogens such as bacteria, further promoting microbial translocation and
activation (58, 61, 62). Altered dendritic cell subsets have also been observed during HIV
infection, including abnormal plasmacytoid and myeloid dendritic cells, and (in some
studies) loss of mucosal CD103+ dendritic cells (27, 63, 64). NK cells are also dysfunctional
with both altered cytokine production and homing to tissues observed in HIV-infected
individuals (64–66).

A major driver of immune activation and dysfunction during HIV infection is damage to the
mucosal barriers and lymphoid structures (Fig. 1). Densely populated CCR5-expressing
CD4+ T cells in the gastrointestinal tract are likely the preferred infection targets of HIV/
SIV during early stages of the infection (9, 11, 13, 67–71). HIV/SIV-associated breaches in
the tight epithelial barrier of the gastrointestinal tract allows microbial products to
translocate across the barrier, resulting in local and systemic activation (27, 61, 72–75). This
local activation in the GI tract contributes to increased numbers of inflammatory cells such
as plasmacytoid dendritic cells (pDCs), neutrophils, and monocytes and decreased numbers
of cells that are essential for mucosal regulation, including IL-17 and IL-22-producing
lymphocytes and CD103+ dendritic cells (27, 63, 64, 76–78). The loss of IL-17 and IL-22-
producing CD4+ T cells may be particularly problematic, as these cells regulate epithelial
homeostasis and thus loss of these subsets likely directly contributes to breakdown of the
mucosal barrier (27, 30, 79–85).

In addition to direct infection, a major mechanism underlying lack of reconstitution of CD4+

T cells activation-induced collagen deposition in lymphoid tissues (12, 24) (Fig. 1). Thus,
the vicious cycle of HIV replication and immune activation induces and maintains mucosal
immune dysfunction during HIV infection, which further drives systemic activation.
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Inflammation and immune activation during combination antiretroviral therapy
The level of T-cell activation declines rapidly and durably during combination antiretroviral
therapy but rarely achieves a normal steady state (5, 86). Although the frequency of HLA-
DR and CD38-expressing T cells is a strong predictor of disease progression in untreated
disease, the clinical implications of these cells during treated disease remains largely
undefined, although some studies have suggested they retain some prognostic significance
(20, 87). The immunologic profile of circulating T cells during effective antiretroviral
therapy is also often characterized by lower than normal expression levels of CD28, elevated
levels of CD57 and elevated levels of PD-1, a profile that is consistent with T-cell
‘senescence’ and dysfunction (87–91).

Data on B-cell and innate cell activation during combination antiretroviral therapy is not as
complete as in untreated infection. While partial functional restoration may occur during
treatment, these immune cells are still clearly dysfunctional compared to uninfected
individuals. Indeed, NK cells remain activated despite virus suppression by combination
antiretroviral therapy, and defective antibody-dependent cell-mediated cytotoxicity (ADCC)
signaling by NK cells persists during treatment (92). Monocyte dysfunctions also persist
despite treatment, whereby monocytes maintain decreased phagocytosis and resemble those
isolated from elderly individuals, even in very young patients (93). Furthermore, sCD163, a
marker of monocyte activation, remains elevated despite combination antiretroviral therapy
and is associated with increased risk for atherosclerosis (94, 95). During treatment, the
numbers and function of pDCs and mDCs remain altered as well, and plasma factors have
been demonstrated to contribute to dsyfunctionality despite long-term combination
antiretroviral therapy (96, 97). Finally, it has been demonstrated that even during long-term
combination antiretroviral therapy treatment, innate responses to other pathogens, such as
malaria, remain dysfunctional (98).

There has been a recent shift in clinical research from studies focused on T-cell phenotype to
studies focused on plasma biomarkers of inflammation. This shift occurred in part because
the number of clinical events in HIV-infected patients has declined, making it difficult for
those cohorts which store peripheral blood mononuclear cells (PBMCs) to define with
adequate power the role of T-cell activation and/or dysfunction during therapy in predicting
subsequent morbidity and mortality. Also, the biology of chronic inflammation during
treated disease is almost certainly unique from that in untreated disease. Many of the
biomarkers that seem to be most strongly associated with disease progression in the modern
era reflect innate immune activation [e.g. IL-1, IL-6, tumor necrosis factor (TNF), C-
reactive protein](18, 19, 99). Markers specific to monocyte activation and/or microbial
translocation (e.g. soluble CD14, CD163) and the coagulation cascade (D-dimers,
fibrinogen) are also consistent correlates or predictors of disease (18, 19, 94, 99–108). Long-
term effective combination antiretroviral therapy reduces many of these markers, but the
treatment effect is less consistent than that observed with T-cell activation outcomes,
suggesting factors other than HIV replication contribute to those pathways associated with
these biomarkers (109–111).

Mechanisms for HIV persistence during antiretroviral therapy
Several non-mutually exclusive mechanisms underlie HIV persistence in adults who have
received suppressive combination antiretroviral therapy for extended periods of time. The
best characterized and potentially the most paramount mechanism for persistence is the
generation and maintenance of a ‘silent’ provirus in resting memory CD4+ T cells (112–
114). The memory CD4+ T-cell compartment where HIV largely resides is heterogeneous.
Using markers such as CD45RA (a tyrosine phosphatase), CCR7 (a lymph node homing
receptor), and CD27 (a member of the TNF superfamily critical for the long term
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maintenance of immunological memory)(115, 116), it has been possible to demonstrate that
HIV primarily persists in three memory T-cell subsets endowed with distinct functional and
survival capacities, namely central memory (TCM)(CD45RA−CCR7+CD27+), transitional
memory (TTM)(CD45RA−CCR7−CD27+) and effector memory (TEM)
(CD45RA−CCR7−CD27−) CD4+ T cells (117).

The distinct T-cell subsets which harbor HIV have unique functional and phenotypic
properties, suggesting that cellular reservoirs might support viral persistence through
different mechanisms. For instance, the drastic differences in the activation status of TCM
and TEM cells (115, 117) suggest that the former may represent an ideal reservoir for latent
HIV, whereas the latter may be more prone to support residual levels of viral replication in
the face of combination antiretroviral therapy. In one study, approximately 85% of the
circulating cells harboring integrated HIV DNA displayed a TCM or a TTM phenotype, with
TEM representing only 15% of the pool of latently infected cells. The distribution of virus in
mucosal T-cell subsets is less well-characterized. The rate at which these unique cell
populations decay during therapy is unknown, but the total resting memory cell reservoir
decays slowly, with an estimated half-life in chronically infected adults of 40 to 44 months,
indicating that more than 70 years of intensive therapy would be required for its eradication
(118).

Other reservoirs for HIV persistence have been described, but their contribution after many
years of effective antiretroviral therapy is less certain. Naive CD4+ T cells, macrophage/
monocytes, astrocytes, and microglial cells are possible reservoirs (31). Most of these
cellular and tissues reservoirs which persist during therapy are assumed to have been
generated prior to treatment. As outlined in detail below, there are some emerging data that
suggest that the suppression of viral replication by combination antiretroviral therapy may
be incomplete in some if not most individuals. Theoretically, low-level replication allows
the continuous replenishment of a small pool of infected cells (119).

Association between immune activation and HIV persistence during
therapy

The association between HIV burden and immune activation during effective therapy
remains controversial. Progress in untangling this association has been limited by the lack of
well-validated measures of viral load during effective therapy. HIV RNA can often be
detected in the plasma of individuals receiving antiretroviral therapy, but the levels are very
low (i.e. 0.1 to 5 copies RNA/mL) and near the limit of quantification for even the most
sensitive assays. HIV can often be more easily detected in cells residing in lymphoid and
mucosal tissues, but such tissues are hard to access, and it is unclear as to whether one
should measure the frequency of virus in all cells, in all CD4+ T cells, or in all resting
memory CD4+ T cells.

Despite these limitations, a number of consistent trends have emerged. There appears to be
no consistent association between T-cell activation (as defined by CD38 and HLA-DR
expression) and the level of HIV RNA in plasma during effective therapy. Although some
small studies have suggested a positive correlation (120), the vast majority of studies have
found no association (89, 121–125). These observations suggest that T-cell activation is
unlikely to be major determinant of plasma HIV RNA levels and that whatever process
causes release of HIV RNA into plasma is not related to a quantifiable level of activated T
cells circulating in blood; also, these observations suggest that HIV production is probably
only a minor determinant of the level of residual T-cell activation that is observed during
treatment.

Klatt et al. Page 5

Immunol Rev. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In contrast to the largely negative associations between T-cell activation and viremia in
treated disease, there is a consistent association between T-cell activation and level of cell-
associated HIV DNA or HIV RNA (89). This effect may be even more apparent in tissues,
where the majority of the virus resides (126–129). Other markers of T-cell activation and
dysfunction that remain elevated despite long-term effective therapy include PD-1 and
CTLA-4 (89, 130). A positive correlation between PD-1-expressing CD4+ T cells and
frequency of infected cells has also been noted in a few studies (89, 117).

Immune activation as a cause of HIV persistence during therapy
The mechanism for the consistent association between T-cell activation and cell-associated
HIV burden during therapy is not known. Indeed, it is not clear if higher levels of T-cell
activation cause higher levels of HIV burden or whether higher viral burdens cause higher
levels of immune activation. As outlined in this and the following sections, it is likely that
the both pathways are active during treated disease, and that a ‘vicious cycle’ might exist
during treatment that results in maintenance of both immune activation and HIV persistence
(Fig. 2).

Inflammation and target cell generation
Theoretically, persistently high levels of CD4+ T-cell activation during combination
antiretroviral therapy may contribute to HIV persistence by continuously providing a pool of
cellular targets for the virus to infect (131–133)(Figs 2 and 3). The recent observation that
CD8+ T-cell activation during effective therapy predicts subsequent episodes of low-level
detectable viremia is generally consistent with this possibility (125). In one early study of
long-term treated adults, higher levels of HIV DNA were found in activated compared to
resting CD4+ T cells; phylogenetic analyses suggested ongoing rounds of de novo infection
events between these distinct populations (134). Similarly, it has been argued that the
continuous production of HIV antigens from any cell source may lead to the generation of
activated HIV-specific CD4+ T cells, which are being continually primed to migrate to foci
of virus production, thereby providing the virus with a potential source of target cells.
Although experimental data from such a model is lacking during treated disease, there are
data from untreated individuals, which support this possibility (135, 136).

While resting CD4+ T cells are resistant to in vitro infection by HIV compared to activated
CD4+ T cells, resting memory CD4+ T cells with integrated HIV DNA can be stimulated ex
vivo and presumably in vivo to produce infectious virions (137–140). Multiple
inflammatory stimuli can cause production of virus from resting cells, including many
known to be elevated during treated HIV disease such as IL-2, TNF, IL-6, IL-12 and IL-18
(141–144). Furthermore, exposure to a combination of certain chemokines (i.e. CCL19 and
CCL21) renders resting CD4+ T cells susceptible to infection and the establishment of
latency ex vivo (144, 145). Many of these pro-inflammatory stimuli are known to remain
elevated during treated HIV disease. While the role of these cytokines and chemokines in
promoting infection and generation of latency in vivo is unknown, the increased
permissibility to HIV infection that occurs on exposure to these cytokines/chemokines
indicates that an inflammatory environment in the host might make CD4+ T cells more
susceptible to infection(146).

Many of the activated T cells during untreated and perhaps treated HIV infection target
herpes viruses. CMV-specific CD4+ and CD8+ T-cell responses, for example, are much
higher in HIV-infected adults than age-matched uninfected adults (147). If these cells are
preferentially activated, then they may be more likely to become infected and hence
enriched for HIV during untreated and eventually treated disease. In one recent survey of
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untreated men presenting with early HIV infection, the presence of detectable CMV in
semen or PBMCs was associated with higher HIV DNA content in PBMCs (148).

Although many have argued that activation-induced production of virus from latently
infected cells might lead to their destruction and ultimately a cure (149–152), this hypothesis
is dependent on HIV-producing cells dying through some clearance mechanisms and on all
susceptible target cells being protected by antiretroviral therapy. Both of these assumptions
are now being challenged (153).

Inflammation and migration of target cells to sites of HIV spread
HIV/SIV spread to new target cells is likely localized, with virions only able to infect cells
which are nearby (154) (Figs 2 and 3). This is likely to be particularly true when other
factors such as strong immunity (as seen in elite controllers) or antiretroviral therapy place
additional constraints on HIV replication. Indeed, it has been argued that any residual
replication of HIV during potent antiretroviral therapy will be via direct cell-to-cell contact,
which allows such high concentrations of spreading virions that standard concentrations of
antiretroviral drugs in cells fail to inhibit replication (155). The finding that raltegravir
intensification reduced HIV levels and inflammation in lymphoid tissue-rich ileum but not
in blood is consistent with this emerging model of HIV persistence (127).

HIV-associated damage to the mucosal barrier causes localized inflammation in
gastrointestinal tract tissues (27, 61, 74). This inflammation drives migration of T cells to
mucosal tissues, where the higher concentration of activated target cells should make HIV
replication more efficient (49, 156, 157). The concentration of highly-susceptible gut-
homing activatedα4β7

high CD4+ T cells in mucosal surfaces likely contribute to
development of an optimal environment for cell-to-cell spread (158, 159). Reduced
penetration of certain antiretroviral drugs into these tissues might also allow localized
rounds of HIV replication (160, 161). In addition, although the translocation of microbial
products from a ‘leaky gut’ is reduced during antiretroviral therapy (26), abnormally high
levels of bacterial products often persist and may contribute to HIV persistence by inducing
production of pro-inflammatory cytokines known to enhance cell cycling and/or HIV
replication (such as IL-1 and IFN)(129, 162). This may result in increased levels of residual
viral replication and in the cycling of infected cells, thereby promoting viral spread and
possibly persistence. Tissue-based studies of lymphoid tissue-rich areas of the gut will be
needed to define the precise role of localized inflammatory environment in lymphoid
structures of the gut as a cause of persistence.

Reeves and colleagues (163) have recently found that interferon-α-producing plasmacytoid
dendritic cells (pDCs) accumulate in the gut mucosa during untreated SIV disease and that
the level of viremia correlated with frequency of these cells (as defined by expression of
retention integrinα4β7). They argued that pDC activation in mucosa might cause trafficking
and retention of CCR5-expressing CD4+ T cells to foci of localized inflammation (perhaps
by secretion of MIP-1β and other chemokines), thereby enabling more efficient transmission
of virus. Similarly, Favre and colleagues (28, 29) have found that activation of mDCs results
in upregulation of indoleamine 2,3-dioxygenase (IDO) and a shift in local T-cell
populations, with loss of Th17 cells (which protect against microbial translocation and
regulate epithelial cell regeneration) and increased Treg cells (which have complex effects,
including potentially blunting local clearance mechanisms for HIV and other pathogens).
Activation of this complex pathway appears to contribute to ongoing microbial
translocation, which in turn activates dendritic cells, resulting in ongoing cycles of localized
inflammation. Consistent with these various observations, Chege and colleagues (68)
observed persistent loss of duodenal Th17 cells during effective antiretroviral therapy. The
loss of these cells was associated with higher levels of microbial translocation (as expected),
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while higher levels of microbial translocation (as defined by plasma lipopolysaccharide
levels) was associated with higher levels of HIV DNA in gut. The observed correlation
between markers of microbial translocation, T-cell activation, and HIV DNA levels in the
gut of treated individuals is largely consistent with this model (126, 129). The critical role of
location in driving the impact of inflammation on HIV persistence is well illustrated by
recent studies of T-follicular helper cells (Tfh cells). These cells largely reside in the
germinal centers of lymph nodes, are defined phenotypically by the expression of CXCR5,
PD-1, and Bcl-6, produce high levels of IL-21, and regulate antibody development by
nearby B cells. The chronic inflammatory response to SIV infection appears to drive the
expansion and activation of these cells in lymph nodes (164). In untreated SIV and HIV
disease, the frequency of activated Tfh cells appears to be expanded (165), and these cells
appear to be enriched for HIV DNA (as compared to other CD4+ T-cell populations)(57,
166, 167). The degree to which this process persists during long-term effective antiretroviral
therapy is not known.

The theoretical model that inflammation-associated release of chemokines could lead to
migration of CD4+ T cells to these foci of inflammation was the rationale for at least one of
the maraviroc intensification studies (168). Other interventions aimed specifically at
addressing these mucosa-based pathways are in development, including the potential use of
IDO inhibitors and inhibitors of the interferon-αpathway(169).

Inflammation and the immunoregulatory response
Successful integration of HIV DNA into genomes of resting memory T cells occurs very
early during acute infection (170–172). Acute HIV infection is associated with a potent
inflammatory response marked by the production of excess amounts of a number of pro-
inflammatory cytokines, including interferon-α, interferon-γ, TNF, IL-6, IL-8, IL-15, and
CXCL10 (173, 174). This inflammatory response causes a potent and sustained
immunoregulatory response, with the production of cytokines such as IL-10 observed very
early during acute infection (173). Treg cell numbers and responses also occur, which along
with other cells release strong anti-inflammatory cytokines such as transforming growth
factor-β (TGF-β). These immunoregulatory responses to chronic inflammation persist
during untreated chronic infection and even during long-term effective antiretroviral therapy
(175–177).

These anti-inflammatory responses may contribute to establishment and maintenance of
latent infection. IL-10 might inhibit T-cell activation, allowing resting cells containing
integrated DNA to persist indefinitely (178). Upregulation of negative regulators of T-cell
activation, which are aimed at containing the inflammatory response and preventing tissue
damage, may act to prevent recently infected cells from dying, leading to persistence. The
observation that PD-1-expressing CD4+ cells are enriched for HIV and associated with
reservoir size is consistent with this hypothesis (89, 117). Inflammation-associated
upregulation of Treg cells and local release of TGF-β may initiate a cascade of events in
lymphoid tissues resulting in collagen deposition, lymphoid fibrosis, and irreversible
immune dysfunction (179, 180), leading to a chronic inflammatory state and persistent HIV
through multiple mechanisms outlined in this review.

Inflammation and dysfunction of adaptive and innate immune responses
Not all HIV-mediated immune responses are harmful. CD8+ T-cell responses are the
quintessential immune cell that protects from virus replication. Although HIV-specific
cytotoxic activities are decreased or dysfunctional during chronic untreated disease, a small
subset of individuals appear to effectively control their virus in the absence of therapy due to
the generation and preservation of effective immunity (44, 181–184). Polyfunctional CD8+
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T-cell responses and proliferation capacity are consistent correlates of virus control (185,
186). Certain ‘protective’ class I HLA alleles such as B5701 are highly enriched in
controllers, providing strong evidence for positive role of active CTL activation in virus
control (186–189), although HLA may be mediating its effect via other mechanisms,
including directing the activity of NK cells and other immune responses (190, 191).

CD4+ T-helper cell responses are also vital to adaptive immunity against infections.
Although less well characterized than CD8+ T-cell responses, HIV-specific CD4+ T-cell
function and proliferation seems to predict virus control in the absence of therapy (133,
192). This beneficial effect may be mediated through direct killing/control of the virus, or
indirectly through enhanced CD8+ T-cell and B-cell activities (53, 54, 57, 193). More
recently, chronic activation and HIV/SIV infection of CD4+ Tfh in lymphoid tissues has
been recently demonstrated to result in dysfunctional B-cell responses (57, 194, 195).

Although the influence of the adaptive immune response on HIV replication in the absence
of combination antiretroviral therapy has been extensively studied, surprising few studies
have focused on the impact of these responses during therapy. In the early combination
antiretroviral therapy era, a substantial proportion of treated patients failed to achieve
complete viral suppression. Many of these ‘virologic failures’ were able to maintain partial
suppression of viral replication for months to years, even as high-level drug resistance
emerged. Strong HIV-specific CD8+ and CD4+ T cells were often present in such
individuals, with levels that were in comparable to those observed in elite controllers,
suggesting that the adaptive immune response could contribute to virus control virus when
used with combination antiretroviral therapy (196–198).

There has as of yet been no comprehensive assessment of the role of HIV-specific immunity
in determining the size of the reservoir during combination antiretroviral therapy. In one
cross-sectional analysis of individuals of long-term treated adults with undetectable viremia
who were enrolled in a treatment intensification study, strong HIV-specific CD8+ and CD4+

T cells (as defined by the co-expression of IL-2 and interferon-γ) in the rectal mucosa was
associated with lower frequency of infected cells (122). T-cell vaccine-mediated reduction
in frequency of infected cells in one study also argues that effective adaptive immunity
during therapy may affect the size of the reservoir (199), perhaps because a greater than
expected proportion of ‘resting’ cells make low levels of HIV proteins (200).

Another consequence of chronic inflammation that is likely to contribute to HIV persistence
is the deleterious impact that immune activation has on HIV-specific T-cell responses (Figs
2 and 3). Indeed, it is well described that chronic exposure to antigens leads to T-cell
exhaustion (43, 45, 47). Although HIV-specific CD8+ T cells that persist after prolonged
combination antiretroviral therapy may regain some function (201, 202), it is clear that their
frequency is extremely low and that they may not migrate or persist in the compartments in
which HIV replication still occurs (203). In a recent study, Shan and colleagues (153)
demonstrated that HIV-specific cytotoxic T lymphocytes (CTLs) from the blood of virally
suppressed subjects are inefficient at eliminating CD4+ T cells in which HIV replication
occurs. Of note, the killing capacity of these cells may be restored after in vitro stimulation
with HIV peptides (204). This observation suggests that the extremely low frequency of
HIV-specific CD8+ T cells after prolonged therapy is unable to control residual levels of
HIV replication and that, assuming the problem of virus epitope escape can be surmounted,
strategies aiming at increasing these frequencies (through vaccination for example) may be
needed to eliminate or at least control the small pool of productively infected CD4+ T cells
that persists during combination antiretroviral therapy.
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The inflammatory environment of treated HIV infection stimulates a compensatory response
aimed at blunting any inflammation-associated harm. For example, HIV-associated
inflammation causes increased numbers of Treg cells(205). During HIV infection, Tregs are
dysfunctional and accumulate in high numbers, particularly compared to T-cell subsets such
as Th17 cells (28, 29, 206). The increased levels of Tregs may, in turn, suppress the capacity
of the adaptive immune system to clear virus.

Another potential driver of HIV latency may be inappropriate antigen presentation and
innate immune cell function due to immune activation. As discussed above, several antigen-
presenting cells, including monocytes/macrophages, B cells, and dendritic cells, are
dysregulated, hyper-activated, and exhausted during HIV infection (55, 56, 62, 63, 108, 207,
208). Given that antigen-presenting cells are responsible for inducing antigen-specific
responses in T cells via major histocompatibility complex (MHC):T-cell receptor (TCR)
interactions, dysfunctionality of these cells may lead to inappropriate activation and
exhaustion of T cells.

Another innate immune system factor that may affect HIV persistence is the relationship
between restriction factors and innate immune activation. Recent studies have demonstrated
that restriction factors (e.g. TRIM5α and APOBEC3G) play a role in the innate immune
response to HIV and may alter the viral replication life cycle in this process (209–212).
Thus, restriction factor inhibition of complete HIV replication may result in non-
productively or latently infected cells, which may later be inducible to re-establish
productive HIV replication. While preliminary evidence exists for the mechanisms described
here, these are hypothetical ideas for how immune activation may induce and maintain HIV
persistence and latency, and further studies are required.

Common γ chain cytokines and HIV persistence
IL-7-induced cycling of CD4+ T cells (which is distinct from the T-cell proliferation induced
by inflammatory cytokines discussed above) has also been associated with reservoir size
during long-term effective therapy. In one study of long-term treated adults, the frequency of
CD4+ T cells expressing Ki67 (a cell cycle marker) but not the frequency of cells expressing
classical activation markers such as CD25, HLA-DR, and CD71 was significantly associated
with frequency of CD4+ T cells harboring HIV DNA (117). Subjects with low CD4+ T-cell
counts and higher levels of IL-7-mediated proliferation had higher levels of Ki67 expressing
cells. They also had levels of HIV DNA in those cell populations which emerge from such
proliferation events (i.e. transitional memory CD4+ T cells)(117). In a related analysis from
a separate cohort, a lower pre-treatment CD4+ T-cell count nadir was associated with higher
frequency of infected cells, a finding that is consistent with a model in which homeostatic
proliferation of CD4+ T cells contributes to HIV persistence(213).

The stability of the TCM reservoir is ensured by the intrinsic capacity of these cells to
survive for decades and to self-renew upon antigenic stimulation (Figs 2 and 3) (116). The
survival of TCM cells depends, at least in part, on the activation and phosphorylation of
signal transducer and activator of transcription 5a (STAT5a) and FOXO3a. Signaling via
both the TCR and γ-chain (γc) cytokine receptors (such as CD127, the receptor for IL-7)
leads to FOXO3a phosphorylation and drives the survival of TCM cells. The TTM reservoir
also appears to be maintained in part by the effect of IL-7 on homeostatic proliferation, a
natural mechanism ensuring the long-term persistence of immunological memory. The
importance of this mechanism for the persistence of latently infected CD4+ T cells was
originally predicted by a mathematical model (214) and is now supported by several studies
that indicate a role for this cytokine in the maintenance of a stable pool of latently infected
cells.
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The impact which IL-7 might have on the latent reservoir during effective therapy is the
focus of intense interest. IL-7 is produced in lymphoid organs by stromal cells, which have
yet to be fully characterized. In a recent study, fibroblastic reticular cells and lymphatic
endothelial cells were identified as the major producers of IL-7 during lymph node
remodeling after viral infection in mice and humans (220). Unlike many other cytokines that
act on lymphocytes, IL-7 production by stromal cells is not substantially affected by
extrinsic stimuli. The amount of available IL-7 protein is thought to be regulated by the rate
that it is scavenged by T cells (221). In states of chronin lymphopenia (such as HIV disease),
less consumption of IL-7 leads to higher levels of this cytokine. As a consequence, the
remaining T cells encounter abundant IL-7, which induces expansion in the depleted niche.
In HIV disease, this model of ‘regulation through consumption’ is supported by the strong
negative correlation between CD4+ T-cell counts and plasma IL-7 levels (217) and by the
high frequencies of CD4+ T cells undergoing cell proliferation in subjects displaying
abnormally low CD4+ T-cell counts, independently of their plasma viremia (42, 222).

Although the impact of such a mechanism on the pool of reservoir cells is still unclear, it is
likely that IL-7 not only expands uninfected T cells but also expands T cells harboring
integrated HIV DNA. In vitro, physiological concentrations of IL-7 induce homeostatic
proliferation of latently infected cells without viral production (223), suggesting that IL-7
does not disrupt viral latency as originally proposed (224, 225) but rather induces
proliferation of latently infected cells. In addition, a recent study examining the sequences of
viruses recovered during viral blip episodes upon IL-7 administration showed that these
viral particles reflect predominantly transient induction of virus from a pre-existing pool of
productively infected cells rather than activation of silent quasispecies from stable reservoirs
(226). In line with this model, incomplete T-cell recovery and elevated IL-7 levels would be
predicted to cause increased levels of T-cell proliferation and with stability of the HIV
reservoir in its size and genetic diversity over time (117). These findings collectively argue
that T-cell division of latently infected cells in the absence of viral production is likely to be
a major mechanism contributing to the restoration of the CD4+ T-cell compartment and to
the persistence of a pool of reservoir cells during suppressive combination antiretroviral
therapy.

Other cytokines involved in the maintenance of memory CD4+ T cells may contribute to
HIV persistence by promoting survival and/or proliferation of latently infected cells during
treatment: Several γc cytokines (IL-2, IL-7, IL-15 and IL-21) have been shown to induce
the expression of PD-1 at the surface of T cells (227), a marker associated with CD8+ T-cell
dysfunction that identifies HIV infected cells in the CD4+ T-cell compartment in treated and
untreated lentiviral infections (117, 228, 229). In addition to their potential role in the
establishment and maintenance viral latency, these cytokines are important
immunomodulators and may contribute to the control of residual levels of viral replication
during antiretroviral therapy by enhancing antiviral T-cell responses, particularly in tissue
reservoirs. For instance, administration of IL-15 to SIV-infected macaques has originally
been shown to induce CD4+ effector memory T-cell production and tissue emigration (230).
However, a recent study in which the cytokine was administered concomitantly with
combination antiretroviral therapy indicates that although IL-15 is able to transiently
promote the proliferation of antigen-specific CD8+ T cells in the peripheral blood, it failed
to boost antiretroviral treatment-induced CD4+ T-cell recovery both in the blood and in
peripheral tissues and delayed viral suppression (231). Taken together, these studies suggest
that IL-15 may have a positive impact on antiviral T-cell responses when viremia is fully
suppressed by combination antiretroviral therapy, whereas the administration of the cytokine
may have no impact or even a deleterious effect when residual levels of viral replication
persist. These IL-15 studies emphasize the difficulty to predict the beneficial of deleterious
effect of a γc cytokine-based therapy during combination antiretroviral therapy and suggest
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that the degree of viral suppression may be a critical parameter to monitor before initiating
such therapies.

Impact of immune-based therapeutics on HIV persistence
The consistent observation that immune activation and measures of HIV persistence are
positively correlated is intriguing and consistent with a number of theoretical models.
However, establishing causal biological pathways to explain these associations in humans
will require controlled clinical trials in which the pathways are interrupted or enhanced in a
precise manner, and the size of the reservoir measured. The recent development of effective
antiretroviral treatment regimens for non-human primates allows this model to be used to
explore the role of agents aimed at interrupting the inflammatory response on viral
persistence. For example, probiotic/prebiotic supplementation of combination antiretroviral
therapy decreased the frequency of cycling CD4+ T cells in the colon of SIV-infected
macaques; although not tested, this effect would be expected to result in reduce levels of
SIV persistence (232). Many such studies in nonhuman primates are now being developed.

Defining the role of host environment in HIV persistence will ultimately require
performance of controlled clinical trials in which long-term treated individuals receive an
immune-based therapeutic and the impact of this intervention on HIV persistence quantified.
Several questions remain as to the optimal design of such studies. How long should
antiretroviral treatment be administered before enrolling subjects? Will response to such
regimens differ in those individuals treated during acute versus chronic infection? How
should HIV persistence be quantified? Which tissues (if any) need to be sampled? When
should primary outcomes be measured? Will promising agents that might work in only in
combinations with other modalities be allowed to move forward in combination regimens
even if monotherapy studies fail to detect an effect? Finally, given that HIV is generally no
longer a fatal disease in the setting of antiretroviral therapy, ethical questions will likely
arise as to the benefit conferred by using potentially toxic interventions to manipulate the
immune response in an attempt to cure an infected individual.

HIV persistence as cause of immune activation
As emphasized throughout this review, the directionality of any observed associations
between HIV persistence and immune activation is difficult to define in vivo. Although the
focus of this review is how immune activation might contribute to HIV persistence, HIV
production/replication can cause immune activation through several mechanisms (Figs 1–3).
Most of the activated CD4+ T cells during untreated disease are not HIV-specific. More
specifically, a higher than expected frequency of activated cells are specific for persistent
herpes virus antigens (147, 233). Mechanistically, it has been proposed that HIV activates
dendritic cells and that these cells are more likely to activate CD4+ T cells in the presence of
commonly prevalent antigens, such as those associated with Herpes simplex virus, Epstein-
Barr virus, and CMV (234). The remarkably high levels of CMV-specific T cells in
untreated and treated HIV infection is consistent with this model (147, 235, 236). These
observations might argue that much of the latent reservoir during combination antiretroviral
therapy is in herpes-specific T cells, a hypothesis which should be testable.

The strongest evidence that HIV causes immune activation during therapy comes from
recent therapy intensification studies. Although some studies have failed to find an impact of
intensification on T-cell activation in blood or rectal mucosa (122, 237), one study found
that the addition of raltegravir reduced the frequencies of infected cells and of activated cells
in ileum (which is densely populated with T cells)(127, 128). In one randomized study of
raltegravir intensification, a decline in T-cell activation was more readily detectable in those
individuals who exhibited a virologic response to the intervention (238, 239). Other studies
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have found an impact of raltegravir intensification on immune activation (240, 241). These
data provide compelling evidence that HIV persistence during antiretroviral therapy causes
immune activation, although a larger more definitive study will be needed to address
remaining uncertainty on this issue.

The lack of clear temporal evolution in viral sequences during suppressive therapy reported
in some studies (242, 243) as well as the failure of most clinical trials to demonstrate an
appreciable effect of combination antiretroviral therapy intensification on HIV persistence
(122, 244–246) suggest that persistent low levels of HIV RNA in plasma and tissues
primarily reflect continuous production from stable reservoir. However, increased levels of
2-LTR circles (238) as well as a significant reduction in the amount of cell associated RNA
in the gut of combination antiretroviral therapy subjects upon intensification with raltegravir
(127) suggest that complete cycles of viral replication may still occur during combination
antiretroviral therapy, at least in a subset of individuals. Novel therapeutic strategies aimed
at abrogating these low levels of viral replication/production are clearly needed. For
instance, selecting a combination of antiretroviral drugs endowed with the ability to
penetrate in anatomical reservoirs such as the CNS and the gut may prove to be beneficial in
reducing residual replication and inflammation in virally suppressed subjects.

Conclusion
Despite the effectiveness of combination antiretroviral therapy in suppressing virus
replication, immunological abnormalities persist, even after years of suppressive therapy (5,
7, 247–249). Combination antiretroviral therapy does not always restore normal CD4+ T-cell
counts, and in a substantial fraction of virally suppressed subjects, levels of immune
activation remain elevated compared to uninfected individuals (216, 250). The association
observed between residual levels of immune activation and viral persistence suggests that
these two phenomena may be reciprocally connected (216, 251). However, whether immune
activation is a cause or a consequence of HIV persistence is still unclear. It is likely to be
both.
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Fig. 1. HIV initiates and sustains a ‘vicious cycle’
(A). Acute HIV infection causes damage to the mucosal integrity of the gastrointestinal
tract, resulting in continuous local and systemic exposure to gut microbial products. HIV
and these microbial products cause activation of T cells and expansion of CD4+ T cells,
resulting in more target cells and higher levels of HIV replication. Direct and indirect
mechanisms lead to CD4+ T-cell loss, broad immunodeficiency, and higher levels of both
HIV and microbial translocation. (B). Chronic activation of the immune system results in
direct damage to lymphoid tissues, which in turn contributes to failure to regenerate T cells
and overall decrease in function of adaptive and innate immune systems. The resulting
immunodeficiency results in excess pathogens (e.g. HIV, gut microbes, herpes viruses) and,
as a result, yet more immune activation. This chronic inflammatory state predicts and
presumably causes development of AIDS and non-AIDS conditions such as early
cardiovascular disease.
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Fig. 2. Immune activation sustains HIV persistence during antiretroviral therapy
HIV-associated damage to the lymphoid system is only partially reversible. During long-
term antiretroviral therapy, the residual immune dysfunction (which is due in part to loss of
thymic tissue, fibrosis in germinal centers of secondary lymphoid structure, hematopoietic
stem cell loss, and mucosal barrier breakdown) results in immunodeficiency, excess
amounts of pathogens and chronic immune activation. The immune activation in turn leads
to migration of CD4+ T cells to foci of HIV replication, generation of activated and
susceptible target cells, and production of virus from latently infected cells (all of which
enable more efficient cell-to-cell spread of HIV and replenishment of infected cells). The
inflammatory environment also leads to proliferation and maintenance of latently infected
cells. The residual HIV replication/production in turn contributes to sustained tissue damage
and immune activation.
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Fig. 3. Mechanisms by which immune activation causes HIV persistence
The chronic immune dysfunction of antiretroviral-treated HIV infection contributes to HIV
persistence by (1) enabling HIV replication via generation of activated CD4+ T cells, (2)
enabling infection of resting cells, (3) reducing the capacity of the adaptive immune system
to clear infected cells, (4) causing differentiation and proliferation of infected cells, and (5)
increasing expression of cell-surface negative regulators, which in turn contributes to
persistence of latently infected cells. Detailed knowledge regarding the mechanisms which
contributes to each of these steps might lead to the development of immune-based
therapeutics which could contribute to an HIV cure.
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