
Vol. 29 ISMB/ECCB 2013, pages i291–i299
BIOINFORMATICS doi:10.1093/bioinformatics/btt216

GeneScissors: a comprehensive approach to detecting and

correcting spurious transcriptome inference owing to RNA-seq

reads misalignment
Zhaojun Zhang1, Shunping Huang1, Jack Wang1, Xiang Zhang2,
Fernando Pardo Manuel de Villena3, Leonard McMillan1 and Wei Wang4,*
1Department of Computer Science, University of North Carolina at Chapel Hill, NC 27599, 2Department of Electrical
Engineering and Computer Science, Case Western Reserve University, Cleveland, OH 44106, 3Department of Genetics,
University of North Carolina at Chapel Hill, NC 27599 and 4Department of Computer Science, University of California,
Los Angeles, CA 90095, USA

ABSTRACT

Motivation: RNA-seq techniques provide an unparalleled means

for exploring a transcriptome with deep coverage and base pair level

resolution. Various analysis tools have been developed to align and

assemble RNA-seq data, such as the widely used TopHat/Cufflinks

pipeline. A common observation is that a sizable fraction of the frag-

ments/reads align to multiple locations of the genome. These multiple

alignments pose substantial challenges to existing RNA-seq analysis

tools. Inappropriate treatment may result in reporting spurious ex-

pressed genes (false positives) and missing the real expressed genes

(false negatives). Such errors impact the subsequent analysis, such as

differential expression analysis. In our study, we observe that�3.5% of

transcripts reported by TopHat/Cufflinks pipeline correspond to anno-

tated nonfunctional pseudogenes. Moreover,�10.0% of reported tran-

scripts are not annotated in the Ensembl database. These genes could

be either novel expressed genes or false discoveries.

Results: We examine the underlying genomic features that lead to

multiple alignments and investigate how they generate systematic

errors in RNA-seq analysis. We develop a general tool, GeneScissors,

which exploits machine learning techniques guided by biological

knowledge to detect and correct spurious transcriptome inference

by existing RNA-seq analysis methods. In our simulated study, Gen-

eScissors can predict spurious transcriptome calls owing to misalign-

ment with an accuracy close to 90%. It provides substantial

improvement over the widely used TopHat/Cufflinks or MapSplice/

Cufflinks pipelines in both precision and F-measurement. On real

data, GeneScissors reports 53.6% less pseudogenes and 0.97%

more expressed and annotated transcripts, when compared with the

TopHat/Cufflinks pipeline. In addition, among the 10.0% unannotated

transcripts reported by TopHat/Cufflinks, GeneScissors finds that

416.3% of them are false positives.

Availability: The software can be downloaded at http://csbio.unc.edu/

genescissors/

Contact: weiwang@cs.ucla.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

RNA-seq techniques provide an efficient means for measuring

transcriptome data with high resolution and deep coverage

(Ozsolak and Milos, 2011). Millions of short reads sequenced

from cDNA provide unique insights into a transcriptome at

the nucleotide-level and mitigate many of the limitations of

microarray data. Although there are still many remaining

unsolved problems, new discoveries based on RNA-seq analysis

ranging from genomic imprinting (Gregg et al., 2010) to differ-

ential expression (Anders and Huber, 2010; Trapnell et al., 2012)

promise an exciting future.
Current RNA-seq analysis pipelines typically contain two

major components: an aligner and an assembler. An RNA-seq

aligner [e.g. TopHat (Trapnell et al., 2009), SpliceMap (Au et al.,
2010) and MapSplice (Wang et al., 2010)] attempts to determine

where in the genome a given sequence comes from. An assembler

[e.g. Cufflinks (Trapnell et al., 2010) and Scripture (Guttman

et al., 2010)] addresses the problems of which transcripts are

present and estimating their abundances.
Existing RNA-seq pipelines can be divided into two major

categories: align-first pipelines and assembly-first pipelines

(Ozsolak and Milos, 2011). Assembly-first pipelines attempt to

assemble and quantify the complete transcriptome without a ref-

erence. Several algorithms, such as Trinity (Grabherr et al., 2011)

and TransABySS (Robertson et al., 2010), have been developed.

However, alignment to a reference genome is still necessary to

interpret the results from an assembly-first pipeline and to relate
them to existing knowledge. The assembly-first pipeline is com-

pute-intensive and may require several days to complete. In

align-first pipelines, a high-quality reference genome serves as a

scaffold for inferring the source of RNA-seq fragments. Current

alignment approaches are both computationally efficient and

easily parallelized. Thus, the align-first RNA-seq analysis can

be finished within hours even on a normal desktop machine.

Therefore, align-first pipelines such as TopHat/Cufflinks

(Trapnell et al., 2010, 2012) or MapSplice/Cufflinks (Wang
et al., 2010) are generally preferred when a suitable reference

genome is available.

1.1 Multiple-alignment problem

In this article, we assume that the RNA-seq data are paired-end

reads, which are widely used for transcriptome inference. Our

approach can be used for single-end reads as well. In paired-

end RNA-seq data, a fragment is a sub-sequence from an

expressed transcript. High-throughput sequencing provides

two reads corresponding to the two ends of the fragment. If a*To whom correspondence should be addressed.

� The Author 2013. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial

re-use, please contact journals.permissions@oup.com

http://csbio.unc.edu/genescissors/
http://csbio.unc.edu/genescissors/
mailto:weiwang@cs.ucla.edu
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt216/-/DC1


fragment can be mapped to more than one location in the
genome, we say that this fragment has multiple alignments, as
showed in Figure 1. As each fragment originates from one loca-

tion in the genome, multiple alignments must be pro-
cessed/corrected before subsequent analysis can proceed.

Inappropriate handling of the multiple alignment fragments im-
pacts the subsequent analysis and may lead to questionable con-
clusions. For example, the ‘widespread RNA and DNA sequence

differences’ (Li et al., 2011) are suspected to be (at least partially)
due to systematic technical errors, including misalignments

(Kleinman and Majewski, 2012).
Current RNA-seq analysis pipelines handle the multiple-align-

ment problem in both the alignment and assembly steps. Most

existing aligners [e.g. TopHat (Trapnell et al., 2009)] use a scor-
ing system where only the alignments with the ‘best score’ are
kept. However, a fragment may still have multiple alignments

with equally good scores. In our experiments on real mouse
RNA-seq data, we observe that at least 5% fragments have mul-

tiple alignments. The assembler [e.g. Cufflinks (Trapnell et al.,
2010)] either assumes that they contribute equally to each loca-
tion or uses a probabilistic model to estimate their contributions

based on the abundance of the corresponding transcripts (Li
et al., 2010).

1.2 Genomic factors causing multiple alignments

In general, multiple alignments are caused by the existence of

paralogous sequences within a genome. Duplicated and repetitive
sequences need not be strictly identical. In this subsection, we
discuss genomic factors that may lead to multiple alignments and

their impact on RNA-seq analysis. Retrotransposition and gene
duplication are two biological phenomena that generate se-

quences with high levels of nucleotide similarity. Interspersed
highly repetitive sequences, such LINEs and SINEs, can be ex-
pressed in an autonomous or nonautonomous manner, but they

are not our focus. That leaves us with three major types of gen-
omic factors: processed pseudogenes (Balakirev and Ayala, 2003;

Vanin, 1985; Zhang et al., 2003), nonprocessed pseudogenes
(Hurles, 2004) and repetitive sequences shared by gene families
(Häsler et al., 2007; Jurka and Smith, 1988).

Pseudogenes (Harrison et al., 2003; Khelifi et al., 2005) are
typically nonfunctional, though some of them may be expressed
(Hirotsune et al., 2003). They can be further categorized in two

groups: processed pseudogenes and nonprocessed pseudogenes
based on their causes. Both of them lead to the repetitive gen-

omic sequences. In general, the pseudogenes are nonfunctional
and under reduced selection pressure; thus, they typically exhibit

a higher mutation rate than the expressed genes from which they
originated.

1.2.1 Processed pseudogene A processed pseudogene (Vanin,
1985) is generated when an mRNA is reverse transcribed and

reintegrated back to the genome. The resulting DNA sequence of
the processed pseudogene is the concatenated exon sequences

from its original transcript. Because there are no splice junctions
in the sequence of the processed pseudogene, it is easier for the
current RNA-seq aligners to map the fragments to processed

pseudogene than the actual gene from which they are expressed,
especially those fragments that cross a splice junction. Both the

unexpressed pseudogene and its corresponding expressed gene
may be reported by the assembler if the implementation of the
assembler does not consider such cases. For example, Guttman

et al. (2010) observed that a few highly expressed transcripts may
not be able to be fully reconstructed owing to alignment artifacts

caused by the processed pseudogenes.

1.2.2 Nonprocessed pseudogene Nonprocessed pseudogenes
(Hurles, 2004) are typically caused by a historical gene duplica-

tion event, followed by an accumulation of mutations, and an
eventual loss of function. Nonprocessed pseudogenes often share
similar exon/intron structures with their originating gene. From

the aligner’s perspective, fragments can be mapped to either the
expressed original gene, or its nonprocessed pseudogene, or both.

Similar to processed pseudogenes, the assembler may report a
nonprocessed pseudogene when its corresponding functional
genes are expressed.

1.2.3 Repetitive shared sequences Besides pseudogenes, many

functional gene families share subsequences that are almost iden-
tical to each other. One repetitive sequence shared by different

genes in human genome is Alu (Häsler et al., 2007; Jurka and
Smith, 1988). Consider the case when, among all genes that share
the Alu sequence, but only a subset is expressed. Hence, the

aligner will map the fragments originating from the expressed
subset to all similar sequences on the genome. The assembler

may report all genes sharing the repetitive sequence as being
expressed.
Any of these three biological factors may lead to multiple

alignments. Without proper post-processing, an assembler may
report many unexpressed pseudogenes or even random regions

as expressed genes, and it may also miss a few highly expressed
genes.
Existing RNA-seq analysis pipelines provide heuristics for ad-

dressing the multiple alignment problem, however, they do not
explicitly consider their genomic causes. In our study, using
mouse RNA-seq data, the transcripts reported by Cufflinks in-

clude �3.5% from known pseudogenes and �10% from unan-
notated regions. A quarter of these 13.5% transcripts are likely

to be false positives caused by multiple alignments.
Figure 2 shows the pile-up plots of two regions from a mouse

genome reported by a current RNA-seq pipeline. The top one is

a gene named Caml3, whereas the bottom one is unknown. The
unknown gene’s sequence is similar to the sequence of concate-

nated exons from Caml3. Fragments that are uniquely aligned to
the unknown gene by the aligner can also be aligned to Caml3.
However, the aligner fails to find the proper alignment because it

does not consider all possible alignments crossing splice junctions

Read Read

Fragment

Genome

Fragmmentm
Alignment

Alignment

Fig. 1. A fragment with paired end reads that can be aligned to two

locations in the genome

i292

Z.Zhang et al.



owing to the search complexity. This collection of evidence indi-

cates that the unknown gene is actually an unannotated pro-

cessed pseudogene of Caml3.

Therefore, the identification of expressed genes and unex-

pressed pseudogenes is a significant confounding factor in

RNA-seq analysis. No existing analysis methods explicitly at-

tempt to identify and reassign fragments that are mapped to

pseudogenes. A similar observation was made by ContextMap

(Bonfert et al., 2012) that multiple alignments from a RNA-seq

aligner could be handled by removing the incorrect alignments

based on the ‘context’ of the alignments. However, ContextMap

simply defines the ‘context’ as a fixed window around the align-

ment on the genome. It also does not try to rescue any missed

alignments. In contrast, we introduce the concept of fragment

attractor, which leverages the results from both an aligner and an

assembler to determine the appropriate ‘context’ for each indi-

vidual alignment. Sharing maps between fragment attractors are

built to help discover and restore missed alignments.
In this article, we introduce the GeneScissors pipeline, a com-

prehensive approach to address the problem of detecting and

correcting those fragments errantly aligned to unexpressed gen-

omic regions. When compared with the standard TopHat/

Cufflinks pipeline, GeneScissors is able to remove 57% pseudo-

genes without using any annotation database. GeneScissors can

reduce inference errors in existing analysis pipelines and aid in

distinguishing truly unannotated genes from errors.

2 METHODS

In this section, we present GeneScissors, a general component that can be

applied to any align-first RNA-seq pipeline to detect and correct errors in

transcriptome inference owing to fragment misalignments. In a standard

RNA-seq pipeline, the ‘best’ alignment for a fragment with multiple

alignments is determined without considering the surrounding alignments

of other fragments. Such decisions may be premature without considering

the other fragments aligned to these regions. In the GeneScissors pipeline,

we first collect all possible alignments for all fragments, and then examine

those regions of the genome where multiple alignments map and then

consider the other fragments aligned to these regions. In this way,

GeneScissors is able to leverage statistics of fragment distribution and

other features of the alignments.

Figure 3 describes the proposed workflow for RNA-seq analysis. It

uses existing aligner and assembler (with minor modifications to keep all

possible alignments discovered, details in Section 3.1) to identify regions

to which fragments align. To distinguish from expressed genes, we refer to

each such region as a fragment attractor. Fragments with multiple align-

ments link corresponding fragment attractors. We refer to these frag-

ments and their alignments as shared fragments and shared alignments,

respectively. The relationships among linked fragment attractors are

defined by their shared fragments. GeneScissors uses sharing graphs to

represent the linked fragment attractors and to discover new fragment

alignments. We create training instances using simulated RNA-seq frag-

ments from annotated genes in Ensembl to build a classification model.

Then, on real data, the classification model predicts and removes the

fragment attractors that are likely due to misalignments. Existing assem-

bly methods can be applied on the remaining fragment alignments to

re-estimate the abundance level of expressed fragment attractors. We

introduce the sharing graph in Section 2.1, a classification model to iden-

tify the unexpressed fragment attractors in Section 2.2 and the features

extraction method from the sharing graphs in Section 2.3.

2.1 Sharing graph

We construct sharing graphs as follows. Each fragment attractor is rep-

resented by a node, and each pair of linked fragment attractors are con-

nected by an edge. Each connected component is called a sharing graph.

For each edge in a sharing graph, we build a position-by-position sharing

map between the pair of linked fragment attractors through their shared

fragments. For any fragment f aligned to a fragment attractor g, we first

define function �f)g, which returns the aligned position in fragment at-

tractor g, given a position in fragment f and its inverse function ��1g)f,

which returns the corresponding position in f (if it exists), given a position

in g. For a pair of linked fragment attractors ga and gb and one of their

shared fragments f1, position k in f1 may be aligned to position i in

fragment attractor ga and position j in gb. This provides a correspondence

between position i in ga and position j in gb by j ¼ �f1)gb ð�
�1
ga)f1
ðiÞÞ and

i ¼ �f1)ga ð�
�1
gb)f1
ðjÞÞ. A sharing map can be built between ga and gb

through this approach by using all their shared fragments. It is possible

that two shared fragments f1 and f2 map the same position in ga to two

different positions in gb, i.e. �f1)gb ð�
�1
ga)f1
ðiÞÞ 6¼ �f2)gb ð�

�1
ga)f2
ðiÞÞ.

Empirically, such cases are rare, and when it happens, we use the majority

rule to resolve the conflict.

The region of a fragment attractor that is covered by the sharing map

is called the shared region. In addition to the shared fragments, some

other fragments uniquely aligned to the fragment attractor may align

to the shared region. These fragments should have been aligned to the

linked fragment attractor too, but the aligner might have failed to recog-

nize the alignments owing to the reasons we discussed previously.

Therefore, with the help of the sharing map, we can ‘restore’

these missed alignments from existing aligner’s result. For example, in

Figure 4a, we show a sharing graph among three fragment attractors. The

red regions in the bottom row of each fragment attractor are the shared

regions. The red dashed boxes contain the fragments uniquely aligned to

one fragment attractor by the aligner but should have been aligned to the

linked fragment attractors too. In Figure 4b, we show more details on

how the new alignments of the fragments are established through the

sharing map. This alignment discovery operation needs to be done in

both directions for each pair of linked fragment attractors. In our previ-

ous example in Figure 2, the uniquely aligned fragments (between the

black curve and the red curve) in the shared regions should have been

Fig. 2. Two transcripts reported by Cufflinks. The top one maps to a

known gene named Caml3, and the bottom one does not map to any

known gene. Two transcripts are aligned by their shared fragments in the

plot. Owing to the space limitation, the top figure is truncated, and only

shows the region containing shared fragments. The dashed line indicates

the truncated boundary. The three vertical lines in purple represent three

splice junctions in the top transcript

i293

GeneScissors



aligned to both fragment attractors. Restoring fragment alignments to

multiple positions does not cause inflation in abundance level estimation

because transcriptome inference methods such as Cufflinks already con-

sider the shared alignments. This approach enables us to safely rescue

fragment alignments missed by an aligner.

2.2 Classification model

GeneScissors processes RNA-seq data at the granularity of linked frag-

ment attractors. Because there is no easy way to determine whether a

fragment attractor are expressed in real datasets, we build our training

model from simulated data and apply it to real data. We first generate our

training set from a simulated population, and each sample is a set of

fragments simulated based on a set of selected transcripts from the an-

notation database. (More details are in Section 3.1). Then, we apply the

aligner and the assembler on each sample of the simulated data, build the

sharing graphs based on their results and generate training instances from

the sharing graphs. The fragment attractors that cannot be mapped back

to the selected transcripts are unexpressed ones. We use a classification

model to infer whether a fragment attractor (hereby referred to as the

target fragment attractor gt) is expressed using features of gt and another

fragment attractor (hereby referred to as the assistant fragment attractor

ga) linked to gt by an edge in the sharing graph. For every pair of linked

fragment attractors, we build two instances. The instance is labeled ac-

cording to whether the target fragment attractor is expressed. Therefore,

one fragment attractor may be the target fragment attractor in multiple

instances. The intuition is that, for an unexpressed target fragment at-

tractor, there should always be some instances in which the assistant

fragment attractors are expressed. In such instances, the assistant frag-

ment attractor should have less consistent mismatches, longer sequence

and lower proportion of shared fragments than the target fragment at-

tractor (More details are in Section 2.3, which describes all features we

use). Thus, we can train a binary classification model using these features

to identify unexpressed target fragment attractors. When we apply the

model to test data and real data, all target fragment attractors, which are

predicted as unexpressed at least once will be removed from the result of

the assembler, and the reads that are uniquely aligned to these fragment

attractors will be redistributed to the corresponding expressed fragment

attractors. We experimented with support vector machines (SVMs),

DecisionTrees and RandomForests as the learning method and found

that RandomForests had the best overall performance. Once the classifier

is built, we apply it on test data to evaluate the prediction accuracy and

then apply it to real data to predict unexpressed fragment attractors and

remove their fragment alignments. Recall that, for all uniquely aligned

fragments in the shared regions of these fragment attractors, we also

discover new alignments to their linked fragment attractors using the

sharing map.

2.3 Fragment attractor features

We extract features from both target fragment attractor gt and assistant

fragment attractor ga in each instance. Each instance contains 14 features,

listed in Table 1. All features except the number of consistent mismatch

locations are straightforwardly calculated: features NE and NI are dir-

ectly collected from the assembler’s output, and NR, MF, MR and CM

are calculated by our sharing graph generator. The use of consistent

mismatch count CM, as a feature is motivated by the observation that

the pseudogenes usually have higher mutation rate. The concept of con-

sistent mismatch and the method to find consistent mismatch locations

across the genome are described in Appendix 1. The number of exons

is helpful in distinguishing processed pseudogenes, which are singletons.

(b)
(a)

Fig. 4. (a) A sharing graph of three fragment attractors A, B and C. Each solid box represents a pile-up of fragments of a fragment attractor. Each pair

of connected hollow rectangles represents a fragment of paired end reads. The red fragments are the shared fragments that can be mapped by the aligner

to all three fragment attractors. The bottom row in each box represents the transcript sequence. The red regions (except the splice junctions in the

transcript sequences) are the region to which the shared fragments align. (b) A sharing map between fragment attractors A and C and the discovered new

alignments (shown in dashed rectangles). These new alignments are rescued from the uniquely aligned fragments in the shared region of one of the two

fragment attractors

Fig. 3. The workflow of GeneScissors Pipeline. The traditional RNA-seq

analysis pipeline is the path on the left side. Its alignment and assembly

results are used by GeneScissors to infer fragment attractors, build shar-

ing graphs and identify all fragment alignments in the genome.

GeneScissors then builds a classification model to detect and remove

unexpressed genes

i294

Z.Zhang et al.



All the other features are motivated by our observation that the unex-

pressed fragment attractors tend to have smaller number of alignment

fragment and shorter region than their corresponding expressed ones.

3 RESULTS

We first describe a series of modifications made to open-source
RNA-seq analysis tools to support GeneScissors. Then, we de-
scribe the various datasets used for evaluation. We evaluated two
standard pipelines that do not use GeneScissors: one using

TopHat and the second using MapSplice as an aligner. We
then added GeneScissors to each pipeline, to improve the align-
ment results, and we refer to these as GeneScissors(TopHat)

and GeneScissors(MapSplice) pipelines. All four pipelines use
Cufflinks as the transcriptome assembler.

3.1 Software

GeneScissors uses modified versions of TopHat and Cufflinks

and uses components written in Cþþ, Python and the
BamTools (Barnett et al., 2011) library. Cuffcompare is used
to map the reported genes back to Ensembl annotations and

categorize them into three types: annotated normal genes/tran-
scripts, annotated pseudogenes and unannotated regions.

3.1.1 Modifications to TopHat and Cufflinks We first present

the algorithms used by TopHat and Cufflinks in ranking and
reporting alignments and genes and then discuss our modifica-
tions to retain all fragment and partial fragment (unpaired reads)

alignments.
In TopHat, if the fragment f has multiple alignments x and y,

TopHat retains only alignment y and does not report alignment
x, when one of the following conditions is satisfied (tests are

applied in order):

� Mismatch rule: x has more mismatches than y.

� Splice junction rule: x crosses more splice junctions than y.

� Other rules: Owing to the space limitations, we omit the
conditions that are not relevant to the article.

Only alignments with the best score are reported by TopHat.
We observed that the splice-junction rule tends to favor pro-
cessed pseudogenes; the correct alignment of a fragment with a

splice junction is frequently discarded by TopHat if the fragment
can be aligned to a processed pseudogene with the same number
of mismatches.

In Cufflinks, a gene that meets the following criteria is

suppressed:

� 75% rule: More than 75% of the fragment alignments sup-

porting the gene are mappable to multiple genomic loci.

Consider the example shown in Figure 2. Cufflinks fails to

remove the unannotated pseudogene, which is composed

mostly of uniquely aligned fragments. This suggests that the

75% rule is insufficient.

Therefore, in the GeneScissors pipeline, we disabled the splice

junction rule in TopHat and the 75% rule in Cufflinks.

3.1.2 Simulator To generate training data for our classification
model and evaluate the effectiveness of GeneScissors for detect-

ing and removing unexpressed fragment attractors, we built

a RNA-seq simulator to provide a ‘ground truth’ model for

fragment attractors. The simulator randomly chooses a (user-

specified) number of genes, and for each gene, it samples a

subset of its transcripts. Then, it uniformly samples paired-end

fragments up to a certain abundance level for each selected

transcript. For each fragment, it assigns a quality score to each

base pair, drawing from an empirical distribution derived from

real data, and generates base pair errors based on their quality

scores.

3.2 Data

Our study used inbred and F1 crosses of three mouse strains:

CAST/EiJ, PWK/PhJ and WSB/EiJ. To minimize the impact of

unknown SNPs to the alignments, we generated strain-specific

genomes by incorporating high-confidence SNPs detected in a

recent DNA sequencing project of laboratory mouse strains con-

ducted by the Welcome Trust (Keane et al., 2011) into the mm9

reference genome. We used the Ensembl database (build 63)

(Flicek et al., 2011) to annotate and evaluate the results from

real and simulated data.

3.2.1 Simulated Data A RNA-seq simulator was used to gen-
erate synthetic data from 60 RNA-seq samples also derived from

three inbred mouse strains: CAST/EiJ, PWK/PhJ and WSB/EiJ.

In each sample, we selected 13, 000 annotated functional genes

in Ensembl as the expressed genes and randomly set them to

different levels of abundance. Many genes included multiple

transcripts. We generated 10 million fragments with 100 base

pair paired-end reads for each sample. We used TopHat and

Table 1. The features used for detecting fragment attractors resulting from misalignments

Features Description

NEðgaÞ ¼¼ 1, NEðgtÞ ¼¼ 1 NEðgaÞ andNEðgtÞ are the observed numbers of exons. These two Boolean features tell whether the genes are

singleton of exons.

NRðgaÞ, NRðgtÞ, NRðgaÞ=NRðgtÞ NRðgaÞ, NRðgtÞ are the proportions of the fragments that can be aligned to ga and gt to the total fragments,

respectively.

MFðgaÞ, MFðgtÞ, MFðgaÞ=MFðgtÞ MFðgaÞ, MFðgtÞ are the proportions of the shared fragments to the fragments aligned ga and gt, respectively.

MRðgaÞ, MRðgtÞ, MRðgaÞ=MRðgtÞ MRðgaÞ, MRðgtÞ are the proportions of the entire regions of ga and gt that are covered by shared fragments.

CMðgaÞ, CMðgtÞ, CMðgaÞ � CMðgtÞ CMðgaÞ, CMðgtÞ are the numbers of base pairs that have consistent mismatches in the shared regions of ga
and gt, respectively.

i295

GeneScissors



MapSplice as aligners and Cufflinks as the assembler to analyze

the simulated data. More than 7.5% of the genes reported in

the results were not from the selected genes in our simulation

setting. From the results, we built shared graphs and used cross-

validation to train and test our model. A feature selection study

using the simulated data can be found in the supplementary

material.

3.2.2 Real data We applied GeneScissors to RNA-seq data
from nine inbred samples and 53 F1 samples derived from

three inbred mouse strains CAST/EiJ, PWK/PhJ and WSB/

EiJ. We sequenced cDNA from mRNA extracted from brain

tissues of three to six replicates of both sexes and the six possible

crosses (including the reciprocal). To mitigate misalignment

errors owing to heterozygosity, for each F1 sample, we aligned

each fragment to the genome of each parent separately

(i.e. the mm9 reference sequence with annotated SNPs)

and then merged the two alignments while retaining all distinct

multiple alignments (a union of the set of all mapped frag-

ments each identified by their mapping coordinate and read

identifier). For comparison purposes, we also applied this

alignment strategy in the TopHat and MapSplice pipelines.

3.3 Results from simulated data

In Table 2, we first present the average precision, recall, F scores

and Area under the Curve when LinearSVM, DecisionTree and

RandomForests were used to build the classification models. All

scores were measured by 10-fold cross-validation. The results

demonstrate that our feature set is adequate and can help

detect unexpressed genes efficiently. The RandomForests is the

best and most consistent among all three methods. The classifi-

cation model trained by RandomForests can detect near 90%

spurious calls owing to misalignments. Though SVM has a

slightly higher precision score, the recall is much lower than

RandomForests. This is because RandomForests is more suit-

able than SVM for data with discrete features and is more

powerful in handling correlations between features. Therefore,

we chose RandomForests as the default classification method

for our GeneScissors pipeline.
Next, we investigated how much improvement GeneScissors

could bring to the overall transcriptome calling by correcting

fragment misalignment. We compared the results of our im-

proved GeneScissors pipelines with those from the TopHat and

MapSplice’s pipelines. Both GeneScissors pipelines used the

modified version of Cufflinks. The GeneScissors (TopHat) pipe-

line used the modified version of TopHat. The MapSplice and

TopHat pipelines used the regular version of Cufflinks. We used

the following three measurements to compare the performance at

the gene level:

GenePrecision ¼
Number of Correct Genes

Number of Reported Genes
, ð1Þ

GeneRecall ¼
Number of Correct Genes

Number of Simulated Genes
, ð2Þ

GeneF�measurement ¼ 2�
GenePrecision� GeneRecall

GenePrecisionþ GeneRecall
: ð3Þ

The results of different pipelines are summarized in Table 3.

All statistics are averaged over a 10-fold cross-validation. We

observe that Cufflinks tends to report a much higher number

of genes in all four pipelines. There are only �13 000 expressed

genes, but Cufflinks reports 430000 genes in the TopHat or

MapSplice pipelines and 426 000 genes in the GeneScissors

pipelines.

A significant percentage of these reported genes can be

mapped back to the ‘expressed’ genes from which we generated

synthetic reads. Several reported genes are often mapped back to

the same expressed gene by Cuffcompare. Cufflinks failed to

recognize them as (possibly different transcripts of) the same

gene, perhaps owing to both the length and variable number of

splice junctions and/or the low fragment coverage seen for some

transcripts. In this case, when we computed GenePrecision and

GeneRecall, only one of them was counted as the ‘correct’ gene,

the remaining ones were counted as ‘incorrect’ genes. As all four

pipelines used Cufflinks to infer transcriptome, all of them had

relatively low GenePrecision. The GeneScissors (MapSplice)

pipeline had a 12.6% improvement in GenePrecision over the

original MapSplice pipeline, at the cost of a slight drop in

GeneRecall. The GeneScissors (TopHat) pipeline had a 6.5%

improvement in GenePrecision over the TopHat pipeline while

retaining the same level of GeneRecall. GeneScissors was able to

detect and remove44000 spurious (gene) calls by correcting frag-

ment misalignments.

We also observed that the MapSplice pipeline has the highest

score on GeneRecall, but a much lower GenePrecision score

comparing with TopHat pipeline and GeneScissors pipeline.

This is because MapSplice can find more possible alignments

than TopHat but is not able to identify the correct alignment

when a fragment has multiple alignments. Hence, the MapSplice

pipeline reported more false positives than the TopHat pipeline.
Overall, the GeneScissors (TopHat) pipeline performed best

among the four pipelines on this challenging test case. It is ob-

vious that (i) detecting and correcting fragment misalignments

can improve the accuracy in transcriptome inference under all

circumstances and (ii) given the correct fragment alignments,

better transcriptome inference algorithms are still needed. In

addition, GeneScissors does not assume all pseudogenes are un-

expressed. GeneScissors is able to distinguish expressed pseudo-

genes from the rest with a comparable accuracy, demonstrated

by a simulation study in the supplementary material.

3.4 Results from real RNA-seq data

We also applied both TopHat pipeline and our GeneScissors

(TopHat) pipeline on the real RNA-seq data. The running

Table 2. Summary of the results from different classification methods

Statistics LinearSVM DecisionTree RandomForests

Precision 81.90% 83.70% 89.60%

Recall 83.00% 84.80% 87.80%

F-measurement 85.70% 84.20% 88.60%

Area under the curve 0.843 0.837 0.91

i296

Z.Zhang et al.

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt216/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt216/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt216/-/DC1


time for TopHat pipeline was �24h per sample, and the extra

running time for GeneScissors (TopHat) pipeline were �10h per

sample. Overall, the GeneScissors (TopHat) pipeline reported

4.25% fewer transcripts in real data than the TopHat pipeline

(Fig. 5a). Considering that GeneScissors removed most of false

positives in our simulation study, it suggests that the transcripts

reported by the TopHat pipeline include a significant number of

false positives.

Despite the fewer number of transcripts reported by

GeneScissors, Figure 5b shows that GeneScissors actually re-

ported 0.97% more transcripts that exactly match or partially

match the splice junction annotations in the Ensembl database

than the TopHat pipeline (The improvement is statistically sig-

nificant with a P-value lower than 10�14 under the paired stu-

dent’s t-test). These transcripts are likely the false negatives

missed by the TopHat pipeline owing to misalignments.

(a) (b)

(c) (d)

Fig. 5. Comparisons between multiple samples run through both the GeneScissors pipeline and the TopHat pipeline. Results from the same sample are

connected by an arrow. The three strains used were CAST/EiJ, PWK/PhJ and WSB/EiJ, and they are indicated by the initials C, P and W, respectively.

The two letter designations indicate the direction of the cross with the initial of the maternal strain followed by the initial of the paternal strain. The

samples are clustered according to replicates from the same sex and F1 cross, followed by the reciprocal cross. The sex is indicated by F(female) and

M(male)

Table 3. Comparison of MapSplice, TopHat, GeneScissors (MapSplice) and GeneScissors (TopHat) pipelines

Statistics MapSplice pipeline TopHat pipeline GeneScissors (MapSplice) GeneScissors (TopHat)

Number of reported genes 36 516 30 622 26556 26473

GenePrecision 35.6% 41.8% 48.2% 48.3%

GeneRecall 95.1% 93.2% 93.0% 93.2%

GeneF-measurement 51.5% 58.2% 63.5% 63.6%

Note: The bold value of each row represents the best pipeline measured by the corresponding metric.

i297

GeneScissors



Figure 5c shows that the TopHat pipeline reported4800 tran-

scripts that are annotated as pseudogenes in Ensembl.

GeneScissors managed to remove453.6% of them, and the frac-

tion of transcripts that overlap any pseudogenes decreased from

3.2 to 1.57%. Figure 5d shows that GeneScissors reported 16%

fewer unannotated transcripts than the TopHat pipeline. All

these results indicate that GeneScissors is effective in detecting

and correcting false positive and false negative transcript reports

caused by fragment misalignments.

Furthermore, the number of pseudogenes reported by the ori-

ginal TopHat/Cufflinks pipeline in inbred samples is fewer than

the number in F1 hybrids. Similarly, the fraction of pseudogenes

(�57%) removed by GeneScissors in the inbred samples is smal-

ler than the fraction (�36%) removed in the F1 hybrids. This

indicates that the additional complications of F1 samples pose

additional challenges to RNA-seq analysis pipelines and makes

them more prone to errors than the inbred samples.

4 DISCUSSION AND CONCLUSION

In this article, we presented GeneScissors, a general approach to

detect and correct transcriptome inference errors caused by mis-

alignments, which can be applied to any RNA-seq analysis pipe-

line. GeneScissors considers three underlying biological factors

that lead to fragment misalignments and spurious transcript re-

porting. We proposed a classification model to detect false dis-

coveries owing to misalignment, and the results show that it can

provide significant improvement in overall accuracy.

Other heuristic approaches have been used to avoid reporting

unexpressed genes in the RNA-seq assembly result, such as dis-

carding all known pseudogenes reported by the TopHat pipeline,

masking repeated elements in genome or aligning fragments to

known transcriptome instead of genome. The key difference is

that our RNA-seq analysis does not require any additional an-

notations beyond adding SNPs, and it still supports a novel

‘transcript discovery’.

Transcript discovery is important because current annotations

are incomplete with regard to genes, isoforms and allele-specific

variants. For example, in the real data, we observed�4000 unan-

notated transcripts clustered �2300 unannotated genes on aver-

age. These transcripts persist after applying GeneScissors, which

attempts to identify and correct misaligned fragments. This

implies that current annotations are neither complete nor entirely

accurate. For example, recent studies (Hirotsune et al., 2003;

Khelifi et al., 2005) found that some regions previously thought

to be pseudogenes can actually be transcribed to mRNA. Hence,

removing all annotated pseudogenes or highly repeated regions

may lead to the removal of actual expressed transcripts. In con-

trast, GeneScissors might choose a pseudogene over the anno-

tated paralog based on which better matches known genetic

variants.

Furthermore, current pipelines using Cufflinks tend to over-

report genes, especially when the genes share a high degree se-

quence similarity with other expressed genes in the data. The

problem is alleviated to some extent by GeneScissors by recover-

ing missed multiple fragment alignments and discarding frag-

ment alignments to unexpressed genes/regions. However, there

is still room for improvement.

In the future work, though our precision and recall scores are

near 90%, we plan to exploit additional features and constraints

to improve the classification accuracy. Example constraints in-

clude that each sharing graph must contain at least one expressed

gene and each shared fragment must belong to an expressed

gene. In addition, we plan to investigate how to rescue the dis-

carded fragment alignments to an unexpressed fragment attrac-

tor, but not in the shared regions with any linked fragment

attractors because these fragments should belong to some ex-

pressed genes.

ACKNOWLEDGEMENTS

The authors thank those center members who prepared and pro-

cessed samples as well as those who commented on and encour-

aged the development of GeneScissors; in particular, Weibo

Wang, Isa-Kemal Pakatci, Zhishan Guo, John Calloway,

James J. Crowley and Patrick F. Sullivan. They also thank

three anonymous reviewers for their thoughtful comments.

Funding: [NIMH/NHGRI P50 MH090338], [NIH GM P50

GM076468], [NSF IIS-1313606], [NSF IIS-0812464].

Conflict of Interest: none declared.

REFERENCES

Anders,S. and Huber,W. (2010) Differential expression analysis for sequence count

data. Genome Biol., 11, R106.

Au,K.F. et al. (2010) Detection of splice junctions from paired-end RNA-seq data

by SpliceMap. Nucleic Acids Res., 38, 4570–4578.

Balakirev,E.S. and Ayala,F.J. (2003) Pseudogenes: are they ‘‘junk’’ or functional

DNA? Ann. Rev. Genet., 37, 123–151.

Barnett,D.W. et al. (2011) BamTools: a Cþþ API and toolkit for analyzing and

managing BAM files. Bioinformatics, 27, 1691–1692.

Bonfert,T. et al. (2012) A context-based approach to identify the most likely map-

ping for RNA-seq experiments. BMC Bioinformatics, 13 (Suppl. 6), S9.

Flicek,P. et al. (2011) Ensembl 2012. Nucleic Acids Res., 40, D84–D90.

Grabherr,M.G. et al. (2011) Full-length transcriptome assembly from RNA-seq

data without a reference genome. Nat. Biotechnol., 29, 644–652.

Gregg,C. et al. (2010) High-resolution analysis of parent-of-origin allelic expression

in the mouse brain. Science, 329, 643–648.

Guttman,M. et al. (2010) Ab initio reconstruction of cell type–specific transcrip-

tomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat.

Biotechnol., 28, 503–510.

Harrison,P.M. et al. (2003) Identification of pseudogenes in the Drosophila melano-

gaster genome. Nucleic Acids Res., 31, 1033–1037.

Häsler,J. et al. (2007) Useful ‘junk’: Alu RNAs in the human transcriptome. Cell.

Mol. Life Sci., 64, 1793–1800.

Hirotsune,S. et al. (2003) An expressed pseudogene regulates the messenger-RNA

stability of its homologous coding gene. Nature, 423, 91–96.

Hurles,M. (2004) Gene duplication: the genomic trade in spare parts. PLoS Biol., 2,

e206.

Jurka,J. and Smith,T. (1988) A fundamental division in the Alu family of repeated

sequences. Proc. Natl Acad. Sci. USA, 85, 4775–4778.

Keane,T.M. et al. (2011) Mouse genomic variation and its effect on phenotypes and

gene regulation. Nature, 477, 289–294.

Khelifi,A. et al. (2005) HOPPSIGEN: a database of human and mouse processed

pseudogenes. Nucleic Acids Res., 33, D59–D66.

Kleinman,C.L. and Majewski,J. (2012) Comment on ‘Widespread RNA and DNA

sequence differences in the human transcriptome’. Science, 335, 1302–1302.

Le Cam,L. (1960) An approximation theorem for the poisson binomial distribution.

Pacific J. Math., 10, 1181–1197.

Li,B. et al. (2010) RNA-Seq gene expression estimation with read mapping uncer-

tainty. Bioinformatics, 26, 493–500.

i298

Z.Zhang et al.



Li,M. et al. (2011) Widespread RNA and DNA sequence differences in the human

transcriptome. Science, 333, 53–58.

Ozsolak,F. and Milos,P.M. (2011) RNA sequencing: advances, challenges and

opportunities. Nat. Rev. Genet., 12, 87–98.

Robertson,G. et al. (2010) De novo assembly and analysis of RNA-seq data. Nat.

Methods, 7, 909–912.

Trapnell,C. et al. (2009) TopHat: discovering splice junctions with RNA-seq.

Bioinformatics, 25, 1105–1111.

Trapnell,C. et al. (2010) Transcript assembly and quantification by RNA-seq reveals

unannotated transcripts and isoform switching during cell differentiation. Nat.

Biotechnol., 28, 516–520.

Trapnell,C. et al. (2012) Differential gene and transcript expression analysis of

RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc., 7, 562–578.

Vanin,EF. (1985) Processed pseudogenes: characteristics and evolution. Ann. Rev.

Genet., 19, 253–272.

Wang,K. et al. (2010) MapSplice: accurate mapping of RNA-seq reads for splice

junction discovery. Nucleic Acids Res., 38, e178.

Zhang,Z. et al. (2003) Millions of years of evolution preserved: a comprehensive

catalog of the processed pseudogenes in the human genome. Genome Res., 13,

2541–2558.

APPENDIX 1

CONSISTENT MISMATCHES

For a given base pair location in the genome, if the number of
aligned fragments that carry an allele different from the reference

genome is much higher than the expected number owing to
random sequencing errors, we call it a consistent mismatch loca-
tion. There are three possible reasons that a consistent mismatch

occurs: (i) A missing SNP or heterozygous site in a diploid sam-
ple’s genome (inconsistency between the reference DNA
sequence and the sample’s DNA sequences), (ii) an RNA-editing

site, and (iii) misaligned fragments (difference between the
sequences of a gene and its pseudogene). Consider the example
shown in Figure 2, there are two visible consistent mismatches on
the expressed gene, Caml3, and they are due to either of the first

two reasons (an unreported SNP, a heterozygous SNP, or an
RNA-editing event). Because the fragments aligned to the unan-
notated region originated from Caml3, in the pile-up plot of the

unannotated region, there are more than six visible consistent
mismatches owing to the third reason (misaligned fragments).
It is important to separate the consistent mismatches from the

mismatches owing to sequencing errors. We assume that the
sequencing error rate of a given base pair c in a given fragment
is reflected in its quality score qc and can be derived as a function

eðqcÞ. Given a base pair location l in the genome, let R(l) be the
set of base pairs aligned to the location. The number of mis-
matches NM(l) at this location should follow a sum of
Bernoulli distributions with different success probabilities,

which is M ¼
P

c2RðlÞ BernðeðqcÞÞ. The P-value of the location
is defined as PðM � NMðlÞÞ. A significant P-value indicates

that this location may be a consistent mismatch location. To

find all consistent mismatch locations, we first need to estimate

the sequencing error rate. The original function to calculate the

error rate is

eðqcÞ ¼
Total number of mismatches occurring with quality qc

Total number of base pairs with the quality qc
:

In this calculation, we need to exclude the consistent mis-

matches that are not caused by sequencing errors. This can be

done iteratively, starting from an initial estimation using all posi-

tions that have at least ten fragments aligned. In each iteration,

we mask positions on the genome that have much higher mis-

match rate than the current estimated error rate and re-estimate

the error rate. We use the empirical distribution of e as the new

estimation of e. For the positions that contain less than three

mismatches, we first calculate the following two probabilities in

OðjRðlÞjÞ time complexity:

PðM ¼ 0Þ ¼
Y

c2RðlÞ

ð1� eðqcÞÞ ð4Þ

PðM ¼ 1Þ ¼
X

c2RðlÞ

eðqcÞ
Y

c02RðlÞ=fcg

ð1� eðqc0ÞÞ ð5Þ

then we calculate the exact probability as the P-value:

PðM � 0Þ ¼ 1 ð6Þ

PðM � 1Þ ¼ 1� PðM ¼ 0Þ ð7Þ

PðM � 2Þ ¼ 1� PðM ¼ 0Þ � PðM ¼ 1Þ ð8Þ

The number of mismatches at a position should be equal to a

sum of Bernoulli distributions with different parameters, and the

distribution of the sum can be approximated by a Poisson dis-

tribution based on Le Cam’s inequality Le Cam (1960):

CMðlÞ ¼
X

c2RðlÞ

bernðeðqcÞÞ � Poissonð
X

c2RðlÞ

eðqcÞÞ:

Therefore, the P-value can be approximated by

PðM � CMðlÞÞ �
X

m4¼CMðlÞ

fðm;
X

c2RðlÞ

eðqcÞÞ:

The positions with P-values less than 10�20 are classified as

consistent mismatch locations. This process continues until no

more consistent mismatch locations are found. This threshold is

empirically determined because current threshold gives us the

best performance to identify the unexpressed genes.

i299

GeneScissors


