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ABSTRACT

Motivation: State-of-the-art experimental data for determining binding

specificities of peptide recognition modules (PRMs) is obtained by

high-throughput approaches like peptide arrays. Most prediction

tools applicable to this kind of data are based on an initial multiple

alignment of the peptide ligands. Building an initial alignment can be

error-prone, especially in the case of the proline-rich peptides bound

by the SH3 domains.

Results: Here, we present a machine-learning approach based on an

efficient graph-kernel technique to predict the specificity of a large set

of 70 human SH3 domains, which are an important class of PRMs. The

graph-kernel strategy allows us to (i) integrate several types of phy-

sico-chemical information for each amino acid, (ii) consider high-order

correlations between these features and (iii) eliminate the need for an

initial peptide alignment. We build specialized models for each human

SH3 domain and achieve competitive predictive performance of 0.73

area under precision-recall curve, compared with 0.27 area under pre-

cision-recall curve for state-of-the-art methods based on position

weight matrices.

We show that better models can be obtained when we use information

on the noninteracting peptides (negative examples), which is currently

not used by the state-of-the art approaches based on position weight

matrices. To this end, we analyze two strategies to identify subsets of

high confidence negative data.

The techniques introduced here are more general and hence can also

be used for any other protein domains, which interact with short pep-

tides (i.e. other PRMs).

Availability: The program with the predictive models can be found at

http://www.bioinf.uni-freiburg.de/Software/SH3PepInt/SH3PepInt.tar.

gz. We also provide a genome-wide prediction for all 70 human SH3

domains, which can be found under http://www.bioinf.uni-freiburg.de/

Software/SH3PepInt/Genome-Wide-Predictions.tar.gz.

Contact: backofen@informatik.uni-freiburg.de

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

SH3 domains are an important class of peptide recognition

module and probably the most widespread protein domain

found in protein databases (Cesareni et al., 2002). Thus, SH3

domains are involved in many cellular processes such as signal-

ing, cell-communication, growth and differentiation.

Furthermore, the SH3 complexity corresponds with the complex-

ity of the genome (Carducci et al., 2012). These domains specif-

ically recognize short linear proline-rich peptide sequences (Lim

et al., 1994; Mayer, 2001; Musacchio et al., 1992). SH3 domains

have a conserved �-barrel fold, which is formed by five or six �
strands arranged in two anti-parallel � sheets. SH3 domains are

�60 amino acids in length and mainly found in intra-cellular

proteins.

Approximately 300 SH3 domains are known in the human

proteome (Karkkainen et al., 2006). As 25% of human proteins

contain proline-rich regions (Li, 2005), and SH3 domains recog-

nize proline-rich peptides, it is an open challenge to understand

how the hundreds of SH3 domains achieve a high specificity in

selecting their physiological partners to regulate specific biolo-

gical functions.
The canonical proline-rich peptide motifs recognized by most

of the human SH3 domains have a PxxP core and are classified

in two major groups: class I and class II. The consensus se-

quences for these two groups are denoted as þx�Px�P

(class I) and �Px�Pxþ (class II), where x represents any natur-

ally occurring amino acid, � represents a hydrophobic amino

acid and þ represents as a positively charged amino acid (nor-

mally arginine and lysine). Structural studies of the SH3–peptide

complexes with class I and class II motif suggest that these two

types of peptide ligands bind to an SH3 domains in opposite

orientations (Lim et al., 1994; Yu et al., 1994). Previous studies

reveled that the positively charged residues in the peptide se-

quence, such as arginine and lysine, play an important role in

the binding with the respective SH3 domain (Feng et al., 1994,

1995). Based on the characteristics of the binding site, the SH3

domains prefer either one or the other pepitde motif. Peptide

motifs can be further classified into subgroups depending on

the tolerance for the substitution of the lysine residue with the

arginine residue (Carducci et al., 2012).

Although most human SH3 domains bind with class I and/or

class II motifs, a subset of SH3 domains have the ability to rec-

ognize noncanonical or atypical peptide motifs. For example,

NCK1 SH3 domains and the SH3 domains from EPS8 family

are able to bind with a PxxDY motif (Kesti et al., 2007;

Mongiovi et al., 1999). EPS8 and its SH3 domain have an im-

portant role in mitogenetic signaling. Overexpression of EPS8

increased epidermal growth factor-dependent transformation

and mitogenic responsiveness to epidermal growth factor
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(Fazioli et al., 1993; Matoskova et al., 1995). The RxxK motif

was also found to interact with SH3 domains of the STAM2

(Kato et al., 2000), SLP-76, GRAP2-C proteins (Liu et al.,

2003). Peptides that are sufficiently similar to class I or class II

motifs are also recognized by several SH3 domains. For instance,

the motif RxxPxxxP (similar to class I) and the motif PxxxPR

(similar to class II) bind with the SH3 domain in CTTN (Tian

et al., 2006) and CIN85/SH3KBP1 proteins (Moncalian et al.,

2006), respectively.
Enormous amount of data are generated by various high-

throughput experiments designed to address the binding specifi-

city of SH3 domains, such as phage display (Tonikian et al.,

2007), SPOT synthesis (Landgraf et al., 2004) or peptide array

screening (Wu et al., 2007). Current associated computational

methods, however, are usually based on the popular position

weight matrices (PWMs) (Brannetti et al., 2000; Kim et al.,

2011). There are two major drawbacks of PWMs. First, they

are essentially linear models and thus ignore the correlation be-

tween the various positions in the peptide ligand (Liu et al.,

2010). This also implies that they cannot differentiate between

peptide classes. For that reason, few approaches are proposed

recently, which use multi-PWM models for addressing the prob-

lem of multiple peptide classes (Gfeller et al., 2011; Kim et al.,

2011). Second, they are based on a multiple alignment of the

peptide ligands, which is a hard task for proline-rich SH3-

bound peptides. Even minor alignment errors typically introduce

significant noise in PWMs estimate. Other tools rely on resolved

3D domain–peptide structures, which are, however, known only

for a few cases. Thus, they typically cannot directly make use of

the available high-throughput data. These include the structure-

based energy model by Hou et al. (2006) and the neural network

model by Ferraro et al. (2006).
Here, we present a machine-learning approach to overcome

the aforementioned drawbacks. Our method is based on a graph-

kernel technique that, differently from the PWMs, does not

require an initial peptide multiple alignment. Furthermore by

virtue of its nonlinearity assumptions, it can adequately capture

all types of peptide classes. We build specialized models for each

of 70 human SH3 domains achieving competitive predictive per-

formance compared with the state-of-the-art method (Kim et al.,

2011). Furthermore, we show how we can leverage the informa-

tion contained in related domains by building a single compre-

hensive model for a set of six SH3 domains further improving the

predictive performance. Although high throughput datasets are

available to train statistical-based learning approaches, we note

that the presence of spurious interactions in the experimental

data (either false negative or false positive) can severely affect

the quality of the induced model. To tackle this problem, we use

several approaches to identify a subset of high confidence nega-

tive interaction data. These instances are then used to train a

model in a setting with reduced noise-to-signal ratio.

2 METHODS

We present an effective machine-learning method for the prediction of

protein domain-peptide interactions. The method is based on a graph-

kernel approach, which, in contrast to the majority of other approaches,

does not require the peptide sequences to be aligned and can, at the same

time, exploit high-order correlations between amino acid residues.

Finally, we show how to build a model that takes in input both the

peptide information and the (aligned) domain amino acid sequence. By

doing so, we can exploit information from related SH3 domains and

enhance the overall prediction performance.

2.1 Dataset

In our study, we use the large-scale human SH3–peptide interaction data

from the high density peptide array experiment (Carducci et al., 2012). A

total of 9192 peptides of length 15 were used in the CHIP experiment.

The SH3–peptide interactions that gave a positive signal in peptide CHIP

experiment have been stored in the newly developed interaction database

PepspotDB. From PepspotDB, we have retrieved 16 032 nonredundant

interactions for 70 human SH3 domains and 2802 peptides. Among them,

a total of 478 interactions were also supported by the literature as re-

ported by the MINT database (Licata et al., 2012) (see Table 1 for

details).

2.2 Feature encoding

2.2.1 Single domain modeling For some protein domains, it is pos-

sible to identify a key amino acid necessary for a successful binding of a

peptide (e.g. the phospho-tyrosine for the SH2 domain). This pivotal

amino acid can then be used to identify an absolute reference system

that allows to represent the peptide as a fixed size vector, i.e. each

amino acid is identified as having positionþ i or� i starting from the

pivotal amino acid. For SH3 domains, the situation is, however, more

complex, as the key amino acid (proline) is abundant throughout the

peptide sequence. A unique reference system based on proline cannot

therefore be easily identified. Commonly, an initial alignment of the pep-

tide sequences is performed in a preprocessing step. Errors in this phase

can lead to a bad estimate of the model’s parameters and ultimately to

bad predictive performances.

Here, we propose a kernel approach defined independently of an ab-

solute reference for amino acid positions. In this way, we can move from

a fixed-size vector type of encoding to a variable length sequence type

encoding while still preserving a high discriminative power. The shift

from a vector-based to a sequence-based approach can be extended fur-

ther: if we move from sequences to graphs, we can then encode any other

ancillary information on specific amino acids. To do so, we have to move

from string kernel to efficient graph kernels. To ensure low run-times, we

resort to the recently introduced (Costa and Grave, 2010) Neighborhood

Subgraph Pairwise Distance Kernel (NSPDK) (see Supplementary

Information for more details).

In more detail, to encode the peptide information, we proceed as fol-

lows. Given the experimental CHIP design constraints in peptide array

library, we can only use peptide sequences of exactly 15 residues in length.

We enrich the information available on each amino acid with their aver-

age physico-chemical properties, i.e. charge and hydrophobicity. As the

graph-kernel approach can deal only with discrete labels, we discretize all

properties. More specifically, as for charge, we have divided all common

20 amino acids into three groups as basic (R, K, H), acidic (D, E) and

Table 1. Summary of the whole data for 70 human SH3 domains

No. of Positive No. of Negative No. of Unknown

Peptides 2802 9188 9188

Interactions 16 032 (478) 262 883 627 177

Note: Data available from the high density peptide array experiment of Carducci

et al. (2012). In brackets are the interactions evidence available in MINT (Licata

et al., 2012).
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neutral (the remaining amino acids); as for hydrophobicity, we have

identified four groups (very low, low, high and very high) based on

their hydrophobicity scales following Kyte and Doolittle (1982), obtain-

ing I, L, V as very high hydrophobic residues; A, M, C, F as high hydro-

phobic residues; G, T, S, W, Y, P as low hydrophobic residues; and rest

of the amino acids (i.e. R, K, H, D, E, Q, N) are considered as very low

hydrophobic residues.

The peptide is then modeled as a chain of unlabeled vertices: one per

amino acid. Each vertex is then connected with a side-chain graph that

encodes the ancillary properties, namely, of proximity: the charge, the

hydrophobicity and the amino acid code (see Fig. 1, left). To generate

features that are discriminative of the sequence direction, we model the

peptide as a directed graph.

2.2.2 Multiple domains modeling When developing models for

single domains, the input encodes only the information for the peptide

sequence. However, when we want to induce a general model for a subset

of related domains, the input should include also information on how a

specific domain relates to the other ones so that useful knowledge can be

transferred from interactions on similar domains. To do so, we model the

domain amino acid sequence information in a similar fashion to the

peptide encoding, with one important difference: as the position of spe-

cific amino acids is relevant to determine the specificity of the domain–

peptide interaction, we additionally encode the information of an abso-

lute positional reference. To do so, we align the related domains with the

MUSCLE (Edgar, 2004) alignment software. In contrast to the peptide

alignment, the SH3 domain alignment is highly reliable, mainly the align-

ment of n-SRC-loop and RT-loop in SH3 domains. Each domain-specific

sequence is then projected onto the alignment, and the necessary gaps are

finally introduced (see Fig. 1, right). The input for the multi-domain

model therefore comprises two disconnected components, one for the

peptide and one for the domain. To eliminate ambiguity issues, we dis-

tinguish the label alphabet for the peptide sequence from that of the

domain sequence by means of appropriate prefixes.

3 RESULTS

3.1 Modeling with graph kernel features

Our approach is based on a graph encoding that allows to model

relations between specific amino acids as well as different amino

acid abstractions. This graph is then processed by a fast graph-

kernel technique called NSPDK, recently introduced by Costa

and Grave (2010), which extracts as explicit features, the occur-

rence counts of all the possible pairs of near small neighborhood

subgraphs. The subgraph pairs are characterized by a radius and

by a topological distance parameter (for details, see in

Supplementary Information). The final classification task is

then performed by a Support Vector Machine (SVM) based on

the NSPDK graph kernel. By using an explicit vector encoding,

we gain efficiency, as we avoid computing and storing the pair-

wise similarity matrix.

3.1.1 Single domain modeling When developing models for each
specific domain, we need only encode information on the candi-
date peptide sequence as described in Section 2.2. Different

values for the radius parameter give rise to the parts illustrated
in Figure 2.

Given the directed nature of the encoding graph, each neigh-
borhood subgraph includes only amino acids that are downstream

with respect to the current root node. With radius 1 and distance
0, each labeled vertex is considered independently: the corres-

ponding feature representation encodes the frequency of each
physico-chemical property (either the charge, the hydrophobicity

or the amino acid type) in the single peptide; radius 2 allows
properties of adjacent residues (e.g. hydrophobicity and adjacent
charge information) to be modeled; radius 3 allows all properties

for a single residue to be taken into account jointly. Even larger
radius values can capture the joint information for adjacent pairs,

triplets, etc., of residues. When pairs of neighborhood subgraphs
at different distances are used, the composition of the subsequence

between the two root vertices is ignored allowing a don’t care or
soft type of feature matching. The order in which the properties

are encoded is chosen to avoid generating features that subsume
each other (i.e. given a neutrally charged amino acid, one can have

multiple values for the hydrophobicity, but not the other way
around). The final descriptors for each peptide contain all features

with radii ranging from 0 up to Rmax and distances in ½0,Dmax�.
The optimal ranges are determined experimentally via cross-val-

idation techniques. Finally, the training phase allows the deter-
mination of the weight distribution on all feature types (general

and specific) to obtain optimal predictive performance

3.1.2 Multiple domains modeling Several SH3 domains in the
human genome bind strongly with class I and/or class II

Fig. 2. Top: NSPDK features for Distance (D)¼ 0 and Radius (R)¼ 1, 2,

3 relative to a given root vertex highlighted in orange. The directedness

property of the graph allows to induce features that can differentiate

strand directions. Bottom: Ex. of feature for R¼ 3 and D¼ 5 capable

to capture the correlation of two amino acid at relative distance 5. The

sequence information that is not contained in the neighborhoods is

ignored; the effect is equivalent to a don’t care pattern

Fig. 1. Graph encoding for peptide sequences (left) and for domain sequences (right). The encoding is enriched with charge, hydrophobicity and amino

acid-type information. Peptide amino acid positions do not have an absolute reference, whereas domain amino acid positions receive an absolute

positional reference according to a consensus alignment. Gaps receive a special encoding
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peptides. SH3 domains for FYN, BTK, HCK, FGR, SRC and

LYN proteins are among them. The intuition underlying the

multiple domains approach is that, if we are able to exploit the

similarities across these domains, we can then increase the pre-

dictive performances for each specific domain. In practice, we

would be performing a form of transfer-learning (Caruana, 1997)

from one protein domain to another so that the examples used to

induce a model on one domain would also contribute to form the

bias of related models, increasing the effective number of avail-

able training instances.

To do so, we proceed by coupling the peptide information

with the encoding for the domain in a joint feature space;

more specifically, we encode the domain amino acid sequence

information via its projection with respect to the domain con-

sensus alignment. Here, the backbone vertex labels encode the

specific position of the amino acid within the reference align-

ment. By introducing these absolute reference ids, all features

(those describing physico-chemical properties and those describ-

ing the amino acid composition) become position specific. This

absolute reference creates a joint feature space that ultimately

allows information about interactions with different domains

to be shared.

We are not trying to model the exact pairs of interacting

amino acid residues (one in the peptide and one in the

domain), as done in Ferraro et al. (2006). To do so would

imply resorting to resolved protein complexes information,

which is not available in large-scale. Rather, we represent the

candidate interacting peptide and domain as a pair of discon-

nected graphs. The NSPDK procedure alone does not instantiate

features that can directly express the relationship between parts

of the peptide and of the domain sequences. However, we can

take full advantage of the kernel trick and use nonlinear (i.e.

polynomial or Gaussian) kernels. By doing so, the peptide-

domain complex is implicitly represented by features that express

combinations of the original features. We then rely on the stat-

istical analysis of high-throughput experiments to infer the im-

portance of each position specific features in the domain

combined with nonposition specific features of the peptide

sequence.

3.2 Dealing with false negatives

Traditional methods for peptide characterization rely on genera-

tive approaches where the probability of the model (often repre-

sented as a motif) is estimated from positive data alone. A typical

approach is represented by PWMs (Kim et al., 2011) where the

multinomial probability distribution for each position in the se-

quence is estimated independently via frequency counts. In the

Machine Learning community, it is known that discriminative

models have an advantage over generative ones, as they can rely

on both positive and negative data; this allows them to better

identify the decision boundary for the relevant region of the data

space. Although generative methods often require less training

examples, they do not achieve the same performance (Ng and

Jordan, 2001). However, when negative data are assumed to be

severely affected by noise, or even when the negative data is

overly represented, one-class models can exhibit an advantage

over discriminative ones. A typical scenario is when dealing

with high-throughput experimental results such as phage display

(Tonikian et al., 2007), SPOT synthesis (Landgraf et al., 2004) or

peptide array screening (Wu et al., 2007). Here, to increase the

confidence on the measurements, the experimental protocol

makes use of stringent thresholds (e.g. requiring the agreement

on several replicated experiments). In these cases, a large part of

what would be labeled as lack of interaction (negative example)

is just a weaker true interaction (positive example). To deal with

these cases, we developed two approaches. The first one is a

generative approach that makes use of multiple PWMs to

model each peptide class. We then select a subset of instances

that are not recognized by any specialized PWMs and use those

are reliable negative instances to train a binary classifier. The

second approach is based on a combination of a one-class and

a semi-supervised method.

3.2.1 False negatives refinement The key idea here is to use a
generative approach to model each peptide class and select a

subset of instances that are not recognized by any specialized

model. We take an approach similar to Hui and Bader (2010)

and select confident negative interactions using profile-based

models (i.e. PWMs). To better represent the binding specificity

of each domain, instead of using a single model, we resort to

multiple PWMs, namely, one for each motif class for each SH3

domain.

In more detail, we first used the fuzzpro pattern search pro-

gram from the EMBOSS package (Rice et al., 2000) to cluster the

peptides into eight groups, one for each known motif class. We

found that the majority of the peptides belong to the canonical

motifs of class I and/or class II, whereas the rest belong to atyp-

ical motifs, mainly PxRP, PxxxPR, PxxDY and RxxKP motifs

(see Supplementary Table S1).

Afterward, we used the popular EM-based MEME (Bailey

and Elkan, 1995) algorithm to generate a PWM for each group.
Finally, we used MAST (Bailey and Gribskov, 1998), a se-

quence homology search algorithm, to identify the peptides

matching the various PWMs. MAST ranks the input sequences

according to an E-value type of score. We consider the peptides

with high E-value (i.e. those that are not recognized with confi-

dence by the model) as negatives. The cutoff score was set to the

maximum E-value calculated for the known positive instances.

Finally, for each domain, we select those peptides that are not

recognized by any of the class specific PWMs. By doing so, we

identify a total of �200K (262 883) negative interactions for the

whole set of 70 human SH3 domains (see Table 1). Peptides

considered as negative but that are close to the cutoff score are

structurally similar to positive peptides.
Training and testing a model using only high confidence nega-

tive interactions can in principle induce a bias. To rule out such a

case, we perform an additional experiment (see Section 3.4 later

in the text) where we do not filter in any way the negative data.

3.2.2 One class semi-supervised model The key idea here is to
use the SVM one-class approach, pioneered by Schölkopf et al.,

2001, to warm-start the self-training method for semi-supervised

learning (Culp and Michailidis, 2007), restricting the prediction

to negative instances only. In Schölkopf et al., 2001, it is shown

how, to identify a region that contains with high probability

most of the positive data, one can formulate the classic SVM

optimization problem for binary classification using the origin of
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the feature space as the only negative instance. In case of normal-

ized kernels, this boils down to using negative instances that are

just the symmetric counterparts of the available positive in-

stances. Here, we follow this latter way, given that we can pro-

duce the explicit sparse encoding and can therefore efficiently

invert each instance.
The self-training approach to semi-supervised learning (Culp

and Michailidis, 2007) is a wrapper method that iteratively uses

the class predictions over the unlabeled data as true labels for a

successive training phase until convergence to a stable state is

reached. Here, we use the one-class model to initially induce the

class information on the unsupervised instances, but, rather than

using both positive and negative predictions, we accept only

negative predictions. We select those instances that are predicted

with the highest confidence (i.e. that are further away from the

class boundary hyperplane) and use them to iteratively train the

SVM model. For simplicity, we fix the fraction of the accepted

negatives to 50% of the total number of unsupervised instances.

3.3 Performance of single domain model with filtered

negatives

As detailed in Section 3.2.1, we induced PWMs to model several

known classes of binding peptides for each SH3 domain. We

used these models to select and filter away all peptides that

were experimentally identified as noninteracting but that are

recognized by the PWMs as belonging to one of the known

classes of binding peptides. In this way, we obtain a total of

262 883 confident negative interactions for all 70 SH3 domains

(the full list of positive and negative interaction data along with

the class balance is given in Supplementary Table S2). We encode

the peptide sequences as described in Section 2.2 and induce an

SVM model for each SH3 domain based on the graph kernel.

Even if here we use a linear SVM, we are inducing a nonlinear

model with respect to the sequence of amino acid residues, i.e.

the linear model is aware of higher order features that capture

the correlation between pairs, triplets, etc., of amino acids.
We used a 10-fold stratified cross-validation to evaluate the

predictive performance of each model. The hyper-parameters of

the method were optimized in each fold by using a 5-fold cross-

validation over the training set. Specifically, we optimized the

radius parameter R 2 f1, . . . , 8g and the distance parameter

D 2 f1, . . . , 8g for the graph kernel. The linear SVM model is

induced using the Stochastic Gradient Descent approach cham-

pioned by Bottou and Bousquet, 2008. The optimal values are

achieved at R ¼ 6 and D ¼ 8 for most of the domains.
In Supplementary Table S3, we report the following quanti-

ties: Sensitivity=Recall ¼ TP
TPþFN , Specificity ¼

TN
TNþFP , Precision

¼ TP
TPþFP, the area under the precision-recall curve (AUC PR)

and the Area Under the Curve for the Receiver Operating

Characteristic (AUC ROC). On average, we obtain a remarkable

0.73 AUC PR and 0.94 AUC ROC.
As for run times, as the NSPDK has essentially a linear com-

plexity when dealing with bounded degree graphs, we report

the estimated average time per instance: 0.07 s/instance on an

ordinary 2.33GHz Intel Core2 Duo CPU. This time includes

the file upload in main memory, the graph feature generation

and the parameters fitting of the model via the Stochastic

Gradient Descent. In practice, this means that we can generate

a model, given 1K peptides in 1 min, or equivalently, a model for

a proteome-scale 100K peptides dataset in52h on a desktop

machine.
We note that at times, we suffer from the high imbalance

problem. For certain domains (e.g. CSK, DLG1, FISH,

GRAP2-1, RUSC1, STAM2, etc.), the ratio between the avail-

able information for positive interactions and negative inter-

actions is above 1–100. It is known in the Machine Learning

literature that severely imbalanced class distribution negatively

affects the performance of adaptive predictors (He and Garcia,

2009), as the tuning algorithms are generally biased toward the

majority class. In our case, the majority class is the negative class,

which implies a low sensitivity (true positive rate).

3.3.1 Comparison with state-of-the-art PWM approach We have
compared our results with a recently developed tool (Kim et al.,

2011) based on PWMs called Multiple Specificity Identifier

(MUSI). Even if the tool tries to increase the modeling complex-

ity by replacing a single PWMwith multiple PWMs, it remains in

essence a linear model and therefore still suffers from the issues

detailed in the Section 1, namely, the inability to model features

correlation and the fact that it requires an initial error-prone

peptide alignment phase. We have used exactly the same

experimental setup as in our approach. In Figure 3, we report

the comparative results with respect to AUC PR and AUC ROC

performance measures for all 70 human SH3 domains. On aver-

age MUSI achieves a noncompetitive 0.27 AUC PR and 0.69

AUC ROC.
We were curious to see how our method performs on the same

experimental dataset as done in Kim et al., 2011. To do so, we

collected the interaction data used in the article by Kim et al.,

2011. A total number of 2457 unique positive interactions were

available for the SH3 domain from SRC protein. As the inter-

action peptides were identified by the phage display experiment,

we could only get the positive interaction data. For preparing the

negative interaction data, we took three different strategies. First,

we consider the filtered negative data used in our study. Second,

we prepare random negatives automatically generated by randðÞ

function in Perl and third, we prepare the random negatives

generated by the same strategy as described earlier in the text

with PxxP core. Finally, we have performed stratified 10-fold

cross-validation, using same parameter ranges for optimization

and report AUC PR and AUC ROC performance measures for

all these three datasets. Our approach shows much higher per-

formance than MUSI tool. This would add another layer of

confidence to the performance of our models. We also compare

the performances of our graph-kernel approach and MUSI on

our original dataset with these three datasets (see details in

Supplementary Fig. S4).

The problem of generating the initial alignment was also

tackled in a recent publication by (Andreatta et al., 2013).

They identify multiple specificities in peptide data by performing

two essential tasks simultaneously, alignment and clustering, and

therefore find biologically relevant binding motifs that cannot be

described well with a single PWM. Our approach sidesteps these

issues altogether, as we just make a model based on all available

peptide features (achieving at the same time a speed up of several

orders of magnitude in run times).
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3.4 Performance of single domain model with unfiltered

negatives

Training and testing systems using only high confidence negative

interactions can in principle induce a bias that alters the com-

parison between methods. To rule out such a case, we perform

an additional experiment where we do not filter in any way the

negative data. We use the same setup as in previous experiments

(i.e. stratified 10-fold cross-validation), using the same param-

eters ranges for optimization. In Figure 3, we report the com-

parative results with respect to AUC PR and AUC ROC

performance measures for all 70 human SH3 domains. The

graph-kernel approach achieves an average AUC PR 0.35 and

0.90 AUC ROC. In the same conditions, MUSI achieves a

noncompetitive AUC PR 0.04 and AUC ROC 0.58. This result

confirm the advantages of the proposed discriminative graph-

based method. The large difference in the performance with

respect to the filtered case is due to (i) the imbalanced class dis-

tribution (up to 1:100) and (ii) the presence of a possibly large

portion of false negatives.

3.5 Test on single domain model with one-class and semi-

supervised filtered negatives

To test how important the precise information on true negatives

(i.e. peptides that do not interact with the domain) is, we used the

one-class and semi-supervised technique described in Section

3.2.2. The key idea here is to make use of information based

primarily on the positive interactions to characterize the binding

peptides; instances that are not well recognized by the model are

then assumed to be negative. Once again, we operate in the same

setup as for the unfiltered negatives experiment. In Figure 3, we

report the comparative results with respect to AUC PR and

AUC ROC performance measures for all 70 human SH3 do-

mains. The one-class approach achieves an average AUC PR

0.063 and 0.61 AUC ROC. Although this result is statistically

significant (according to a Wilcoxon Matched-Pairs Signed-

Ranks Test, with P¼ 0.0003), the magnitude of the result let

us conclude that using a generative approach to model pro-

tein–peptide interactions is noncompetitive with respect to dis-

criminative approaches.

3.6 Multi-domain model

We aligned six domains (SH3 domains for FYN, BTK, HCK,

FGR, SRC and LYN proteins) with the MUSCLE tool (Edgar,

2004). We used the SVM light (Joachims, 1999) software to train a

Gaussian SVM over the explicit sparse feature encoding of pep-

tide and domain sequence pairs. We evaluated the predictive

performance using a 10-fold cross-validation over the six

domain set using the filtered negatives as specified in Section

3.2.1. The value for the Gaussian width was optimized on an

internal 20% validation set over the range � 2 f:001, :01, :1, 1g
and the trade-off parameter C 2 f1, 10, 100g, whereas the values

of R and D for the graph kernel were fixed at the optimal value

obtained in the previous experiments of R ¼ 6 and D ¼ 8. As a

baseline, we trained (and evaluated in an analogous setting) the

six models independently on each domain, both using a linear

kernel and a Gaussian compounded kernel. In Figure 4, we

report the AUC PR and the AUC ROC for each SH3 domain

and MUSI performance. In Supplementary Fig. S5, we report

the sensitivity and the specificity, respectively. The experimental

result confirms our intuitions: sharing information across related

(a) (b)

(c) (d)

Fig. 3. A 10-fold cross-validation performance. (a)þ (b) comparison when using filtered negative interactions for Graph Kernel (GK) and MUSI.

(c)þ (d) comparison with nonfiltered negative interactions for binary class Graph Kernel (GK), one-class Graph Kernel and MUSI. The error bars

represent respective standard deviation. The domains are sorted by increasing average performance for the Graph Kernel method

i340

K.Kundu et al.

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt220/-/DC1


domains increases the predictive performance, mainly owing to an

increase in sensitivity. We also note that the difference between

models trained over single domainswhen using the linear kernel or

the Gaussian one is nonstatistically significant. This result is also

in line with our expectations, as the correlation between features is

fully captured by the pairwise neighborhood subgraphs features,

leaving no margin of improvement to the nonlinearity imple-

mented by the kernel trick. With radius R ¼ 6 and distance

D ¼ 8, the kernel generates features spanning the whole sequence.

Finally, we report the performance of the joint model when

trained over the six domains, but tested over a novel albeit related

LCK dataset. In this experiment, we are asking to predict the

specificity for a novel domain, given only the information about

the alignment of this domain to the overall consensus alignment.

The model achieves an average AUC PR 0.85 and AUC ROC

0.96, with a high sensitivity 0.91 and specificity 0.96. The interest-

ing finding is that the results are better than those obtained by

training amodel on the LCK protein alone; in this case, we obtain

an average AUC PR 0.86 and AUC ROC 0.94, with a low sensi-

tivity 0.55 and a high specificity 0.99. To understand the result, in

the case of the LCK domain, we have experimental evidence only

for 150 positive interactions, whereas the dataset for the six do-

mains has a total of 910 nonredundant peptides involved in posi-

tive interactions. The experimental results support therefore the

hypothesis that, at least in the LCK case, the domain alignment is

sufficient to characterize the peptides binding model and to

achieve therefore a higher overall sensitivity.

3.7 Genome-wide analysis

We have performed a genome-wide analysis of SH3 domain-

mediated interactions. Our aim was to identify the novel inter-

actions that have important biological roles. We used

UniProtKB/Swiss-Prot database (Magrane and UniProt

Consortium, 2011), which is a manually curated and reviewed

database. We retrieved 20225 human proteins from UniProtKB/

Swiss-Prot database, release 2012-06. For retrieving the peptide

sequences, we scan all the available proteins with a window size

of 15 and step size of 5. In this way, we have extracted a total

number of �2M (2209 474) peptide sequences.
In this analysis, we implemented co-cellular localization filter

to avoid unlikely interactions, considering the term relative to the

subcellular localization hierarchy in the controlled vocabulary of

the Gene Ontology database (Ashburner et al., 2000). More

clearly, the mature protein that contains the peptide and the

protein that expresses the domains should share the same subcel-

lular localization. In case of multiple cellular localization (e.g.

GRB2 protein can be found in nucleus, cytoplasm, endosome

and golgi apparatus), we consider a peptide eligible for binding

only if it shares at least one of the localization term with the

domain-containing proteins.
After filtering the eligible peptides, we scored them by the

trained models and ranked according to the SVM scores.

Finally, we report the top 50 predictions by each SH3 domain

(see Supplementary File S1). Among the predictions, we observed

a peptide (CKKLSPPPLPPRASI, position 151–165) from

Phosphatidylinositol 4-phosphate 3-kinaseC2domain-containing

subunit beta (Uniprot-id: O00750) was targeted by many SH3

domains (21 domains) that also share the same cellular compart-

ment as annotated in Gene Ontology term database. There are

also two evidence of interactions between PIK3C2B with GBR2

and PLC�-1 reported in STRING database (Franceschini et al.,

2013). In addition, we took 478 real interactions reported in the

MINT database (Licata et al., 2012), discarded them from our

training set and could recover 397 (i.e. a recall 0.83).
In addition, we performed an analysis on these top 50 predic-

tions for each SH3 domain to uncover the novel interaction

functionalities using DAVID tool (Huang et al., 2009). The

tool allows the possibility to perform a term-centric enrichment

analysis on 440 different annotation categories. DAVID func-

tional annotation chart, which identify enriched annotation terms

associated with predicted proteins are reported. The smaller

P-values indicate higher enrichment (see Supplementary File S2).

Applying the term-centric analysis, we have observed some

biological meaningful interactions. For example, (i) SH3 do-

mains from human P85-� binds with a potential group of pro-

teins (Uniprot-id: P21854, Q08209, Q07890, O00459, Q6ZUJ8)

that play important role in B cell receptor signaling pathway. (ii)

Among the top prediction by the SH3 domain from Human

BTK protein, 450% proteins take a vital role in alternative

splicing.

4 DISCUSSION

SH3 domain is probably the most widespread class of protein

recognition modules. The interactions mediated by SH3 domains

Fig. 4. Precision-recall curves and AUC ROC curves for the Multi-Domain Gaussian Graph Kernel (MD-G-GK), the Single Domain Gaussian Graph

Kernel (SD-G-GK), the Single Domain Linear Graph kernel (GK) and the MUSI tool for six related SH3 domains. The error bars represent respective

standard deviation
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constitute an important class of protein interactions, involved in
many cellular process. We presented a computational approach
to predict domain–peptide interactions, using available high-

throughput data. The method is an alignment-free approach
based on an efficient graph kernel. Although, here, we present
an application to SH3 domains, the method is general and can

thus be trained to predict any protein–peptide interaction for
which high-throughput data exists.
Current methods for protein–peptide interaction require often

an initial multiple alignment of the bound peptides. As this is an

error-prone process (especially in the case of SH3-domains,
where peptides are proline-rich), one risks to introduce a signifi-
cant amount of noise and obtain under performing models. In

addition, current methods are often linear models (e.g. PWMs)
and are therefore not able to represent high-order correlations
between amino acid residues. Nonlinear method exist but have to

deal with the high model complexity resulting from exponential
number of high-order correlations achievable even for relatively
short peptide sequences. If one uses the full alphabet of 20 amino

acids, it becomes hard to gain sufficient data for a correct esti-
mation of these complex models. One common solution is to use
a reduced alphabet where each letter represents an entire amino

acid class. This strategy, however, leads to inferior performance,
especially when specific amino acids are preferred at specific pos-
itions. An alternative approach is to determine important inter-

action first by using resolved 3D domain–peptide structures. The
major obstacle for the widespread application of this approach,
however, is the limited availability of such structural data.

In this article, we use a different approach. We consider an
alignment-free approach based on a graph representation of the
peptide sequence where different abstraction levels are available

in a unified way. By applying an efficient graph-kernel method,
we were able to model high-order correlations that span different
abstraction levels (e.g. a feature could represent a specific residue

that has to be three positions to the right of a hydrophobic resi-
due). The regularization provided by the SVM optimization
scheme finally ensures that the model complexity is appropriately

controlled and that only the features relevant for the task at hand
are selected. Discarding the abstraction information (experi-
ments not shown), i.e. using only the amino acid code informa-

tion, leads to statistically significantly lower sensitivity. This
confirms the intuition that using physico-chemical properties in
the feature definition can adequately model cases that would

otherwise be poorly covered by a sufficient number of sequences.
It was also important to optimize the encoding order; therefore,
we performed an experiment with different encoding order and

proposed the best order to represent our graph (see
Supplementary Fig. S6). Interestingly, the experimentally cross-
validated optimal parameters value (R ¼ 6,D ¼ 8) suggests that

high-order amino acid correlations are required to obtain the
best predictive performance, and that therefore linear models
are inadequate.

Although we have previously used the NSPDK graph-kernel
approach for clustering RNA structures (Heyne et al., 2012),
here, differently from the RNA or molecular case, we do not

have an obvious and natural way to encode information as a
graph. The guiding principle, behind the choice of the proposed
feature encoding, is to add ‘abstract information’ (like charge or

hydrophobicity) in a somewhat ‘soft’ and incremental way.

Rather than using an extended alphabet and maintaining a se-

quence encoding, the proposed graph encoding allows us to

obtain features that are increasingly specialized. We have experi-

mental evidence (see Supplementary Fig. S6) that a different

choice in the ordering of the abstract information would yield

suboptimal results, which become evident in the presence of

imbalanced data. Additionally, we have investigated the per-

formance of a string kernel (the k-mer kernel) along with other

types of kernels, applied to the pure amino-acid sequences (i.e.

without any additional information). Also, in this case, there is

an evident drop in performance (see Section ‘Comparison with

other predictive methods’ and Supplementary Fig. S7 in the

Supplementary Information).
This confirms the intuition that using physico-chemical prop-

erties in the feature definition can adequately model cases that

would otherwise be poorly covered by a sufficient number of

sequences. Interestingly, we experimentally observed that high-

order amino acid correlations are required to obtain the best

predictive performance, suggesting that linear models are inad-

equate for this application.
Another common practice is to use generative models, i.e.

models that try to capture the density distribution of the inter-

acting peptides only. We showed that using one-class approaches

is sub-optimal, even when considering models more expressive

than the commonly used linear PWMs. The average predictive

performance of a graph-kernel-based domain-specific model that

is trained in a discriminative fashion is 0.35 AUC PR compared

with 0.06 AUC PR when trained in a one-class way.

We tried to address the problem of selecting high-quality nega-

tive data. The issue is known in literature (see Ben-Hur and

Noble, 2006 and Lo et al., 2005). In the application domain of

protein–peptide interaction, it has been shown (Lo et al., 2005)

that the common practice of generating negative instances by

randomly shuffling peptide sequences simply leads to decreased

predicted performance, as these instances do not resemble real

biological sequences and are not therefore useful to determine

useful class boundaries. We note, however, decreasing perform-

ance proportional to the level of class imbalance. When the ratio

of negative instances versus positive ones is within 10-fold, we

maintain an AUC PR 0.8, but for ratios greater than 100, per-

formance drops to AUC PR 0.4 and lower (see Supplementary

Figs S8 and S9).

We showed how the flexible graph-kernel approach allows the

induction of multi-domain models. These models can leverage

experimentally verified binding interactions on related domains

and achieve high predictive performance even on domains for

which no training material was available.
Finally, we performed a genome-wide prediction of human

SH3–peptide interactions. All the learned models as well as all

the genome-wide prediction interactions are available in http://

www.bioinf.uni-freiburg.de//Software/SH3PepInt.
Our approach is general enough and can easily be applicable

to other similar domains like SH2, PDZ and so forth. As for

future work, given the computational efficiency of these models

(a single-domain model can be trained on 100K sequences in

52h), we plan to provide a comprehensive set of predictors for

all protein domains for which high-throughput data are

available.
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