
Vol. 29 no. 13 2013, pages 1631–1637
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btt197

Gene expression Advance Access publication May 14, 2013

Updating RNA-Seq analyses after re-annotation
Adam Roberts1, Lorian Schaeffer2 and Lior Pachter1,2,3,*
1Department of Computer Science, 2Department of Molecular and Cell Biology and 3Department of Mathematics,
University of Calofornia Berkeley, Berkeley, CA 94720, USA

Associate Editor: Ivo Hofacker

ABSTRACT

The estimation of isoform abundances from RNA-Seq data requires a

time-intensive step of mapping reads to either an assembled or

previously annotated transcriptome, followed by an optimization pro-

cedure for deconvolution of multi-mapping reads. These procedures

are essential for downstream analysis such as differential expression.

In cases where it is desirable to adjust the underlying annotation, for

example, on the discovery of novel isoforms or errors in existing an-

notations, current pipelines must be rerun from scratch. This makes it

difficult to update abundance estimates after re-annotation, or to ex-

plore the effect of changes in the transcriptome on analyses. We pre-

sent a novel efficient algorithm for updating abundance estimates from

RNA-Seq experiments on re-annotation that does not require re-ana-

lysis of the entire dataset. Our approach is based on a fast partitioning

algorithm for identifying transcripts whose abundances may depend

on the added or deleted isoforms, and on a fast follow-up approach

to re-estimating abundances for all transcripts. We demonstrate the

effectiveness of our methods by showing how to synchronize RNA-

Seq abundance estimates with the daily RefSeq incremental updates.

Thus, we provide a practical approach to maintaining relevant data-

bases of RNA-Seq derived abundance estimates even as annotations

are being constantly revised.

Availability and implementation: Our methods are implemented in

software called ReXpress and are freely available, together with

source code, at http://bio.math.berkeley.edu/ReXpress/.

Contact: lpachter@math.berkeley.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Two major bottlenecks in RNA-Seq analysis are the mapping

of reads to transcripts, which is a prerequisite for quantification
and differential analysis, and abundance estimation following
mapping. The latter step is particularly complex when multi-

mapping reads need to be resolved, which is necessary for
estimating isoform-level abundances, or when genes have been
duplicated (Trapnell et al., 2012). Popular programs for multi-

read assignment, such as Cufflinks (Trapnell et al., 2010) and
RSEM (Li and Dewey, 2011), have large memory and time

requirements [see Fig. 1 of (Roberts and Pachter, 2013)].
Alternative approaches, such as eXpress (Roberts and Pachter,
2013), which uses a streaming algorithm for assignment, are

faster with a low-memory footprint but must still re-process all

the data from scratch when the underlying annotation is ad-

justed. For large datasets, such as the 3.5 billion reads of

(Graveley et al., 2010), a complete run of read mapping with

Bowtie, followed by abundance estimation with eXpress, takes

11 days (with 44 cores used for the mapping).
In cases where an annotation of transcripts in a genome

may change after mapping, current analysis pipelines require

re-mapping of all reads followed by a complete recomputation of

abundances (Schultheiss et al., 2011;Trapnell et al., 2013).This has

made it time-consuming and impractical todetermine the effects of

the addition of possibly novel transcripts on results or the impact

of removal of transcripts that appear to be incorrect. Moreover,

in cases of model organisms, it has resulted in the ‘freezing’ of

analyses with respect to specific annotation sets, even though

re-annotation efforts are resulting in continuous changes to ‘refer-

ence’ transcriptomes (Ouzouonis and Karp, 2002).
The problem we solve in this article is how to update quanti-

fication of transcript abundances in cases where annotations

change, without remapping all reads to all transcripts and run-

ning abundance estimation procedures from scratch. This prob-

lem is non-trivial for two reasons:

(1) Multi-mapping: Frequently reads map to multiple tran-

scripts, and therefore the removal or addition of tran-

scripts may change the posterior probabilities associated

to read mappings. In particular, the addition of a single

transcript may require re-quantification of many other

related transcripts.

(2) Abundance estimates from RNA-Seq are relative and

not absolute: Because RNA-Seq abundance estimates

are relative, a change in the abundance estimate of a

single transcript affects all other transcripts.

Given a change in the underlying transcripts, we show that

abundance estimates can be updated by a procedure that only

involves mapping reads to a small subset of the transcripts and

re-computing assignment probabilities of multi-mapping reads

for a similarly small set (Fig. 1). This is made possible by isolat-

ing a small relevant set of transcripts using a partitioning algo-

rithm on a graph constructed from read alignments. When

abundance estimation is subsequently performed using a fast

online algorithm, the updating of estimates is particularly fast

when the change to the underlying annotation is small.
An implication of this result is that it is possible to easily

update RNA-Seq abundance estimates for annotations that are

continuously updated, as is the case with the nightly Reference

Sequence (RefSeq) updates. RefSeq is a large database of

sequences that includes widely used reference transcripts for*To whom correspondence should be addressed.
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Fig. 1. Overview of the approach: Reads are initially aligned to a set of known transcript sequences and these alignments are used to probabilistically

assign multi-mapping reads and to estimate abundances of the transcripts. The result is a set of relative abundances, for example, in fragments per

kilobase per million mapped (FPKM) units. When a new annotation is given, differences are identified. Reads are mapped to any added transcripts, and

the ambiguity graph, where vertices correspond to transcripts and edges correspond to pairs of transcripts to which reads have mapped ambiguously, is

updated (deleted transcripts in red and added transcripts in blue). The ‘affected’ transcripts whose abundance must be re-computed are obtained from a

partitioning in the graph. Finally, the subset of affected transcripts have their abundances re-computed using the relevant reads, and abundances for the

transcriptome are re-computed
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many organisms. RefSeq is updated nightly to reflect improve-

ments in annotations, and although the changes are small, we

show that they can affect abundance estimates in RNA-Seq

analyses. Our results demonstrate that it is possible, with our

algorithm, to analyze an RNA-Seq dataset by building up the

annotation one transcript at a time. In particular, our tool

ReXpress allows scientists to routinely update abundance esti-

mates for RNA-Seq analyses to reflect best possible results at

any time. Although ReXpress is designed to work with formats

produced by the eXpress RNA-Seq quantification tool, the

program is general and suitable for use with many mapping

and abundance estimation methods.

2 APPROACH AND RESULTS

2.1 The ambiguity graph

RNA-Seq quantification consists of estimating abundances for

a fixed set of transcripts from sequenced reads, i.e. given a set

of transcripts T , quantification is an estimate of abundances

�̂ ¼ f�̂tgt2T , where �t � 0 and
P

t2T �t ¼ 1 from alignments of

a set of fragments F to T .
A widely used method for quantifying abundances is by statis-

tical inference using the Expectation Maximization (EM) algo-

rithm (Li and Dewey, 2011; Roberts and Pachter, 2013; Trapnell

et al., 2010). In these methods, the likelihood function for a

generative model is maximized over the �t values given F and T .

To make the optimization tractable, a read aligner is used to

remove unlikely alignments from consideration, thus providing,

for each fragment f 2 F , a subset of likely transcripts the fragment

isderived from.Wedenote themappingbyLF!T ,whereLF!T ð f Þ

is the set of transcripts that fragment f 2 F is aligned to.
The approximation based on these alignments introduces

sparsity to the inference, and allows the likelihood function to

be factorized. This factorization can then be used to reduce

the computation necessary to update abundance estimates after

re-annotation.

To algorithmically leverage the sparsity of alignments, we

make use of an ‘ambiguity graph’. In this graph, vertices repre-

sent transcripts, and two vertices are connected by an edge

when there is at least one ambiguous fragment aligning to the

two transcripts. The ambiguity graph is defined formally as fol-

lows: It is the undirected graph G ¼ ðT ,EÞ, where

E ¼
S

f2F ffu, vgju, v 2 LF!T ð f Þ ^ u 6¼ vg. It is easy to show

that each of the components of G define a factorization of the

likelihood functions used in most RNA-Seq inference algorithms

(Pachter, 2011). Specifically, the set of transcripts in each com-

ponent can be considered independently when assigning ambigu-

ous fragments and computing abundances.
An example of an ambiguity graph obtained for a dataset of

60 million reads (see Methods) is shown in Supplementary

Figure S1 and summarized in Figure 2. The graph is highly

structured, and in what follows we show how this can be used

to allow for rapid updates of abundance estimates upon

re-annotation without extensive read mapping or numerical

optimization to estimate abundances.

2.2 Incremental adjustment of abundance estimates

We begin by describing the adjustments that are required to

update an RNA-Seq analysis with respect to a re-annotation.

An outline of the algorithm is provided in Figure 1. We will

assume that there already exists an initial annotation, alignments,

abundances and ambiguity graph. In our software implementa-

tion, we assume that the files are in eXpress format (Roberts and

Pachter, 2013), but eXpress itself does not have to be used to

generate the output.
Given an updated FASTA file containing a re-annotation, the

newly added and deleted transcripts are detected. In some cases,

re-annotation can involve simply renaming existing transcripts,

and this case is checked for and ignored if detected (after names/

identifiers are correctly updated). A modified transcript can

always be described in terms of a transcript deletion followed

Fig. 2. The distribution of component sizes in the ambiguity graph for the 60 hour time point in (Trapnell et al., 2010) using �30 million mapped 75bp

paired-end reads. The largest component (shown in Supplementary Fig. S1) exhibits substantial structure and the existence of many small clusters within

it is the reason for the effectiveness of the partitioning algorithm we describe to reduce the complexity of the update algorithm
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by an addition. For each difference between annotations, the

nature of the edit is recorded.
The set of reads are then aligned to the added transcripts,

and the ambiguity graph is updated with new nodes representing

these transcripts and edges induced by the new alignments.

The transcripts and alignments associated with independent

components of the ambiguity graph containing added

and deleted transcripts are extracted. The abundances for all

transcripts in these components are then re-quantified separ-

ately using the updated annotation. Finally, the new annotation,

alignments, abundances (for all transcripts) and ambiguity graph

are output to be used with the next re-annotation update. Below

is a more formal description that explains in detail the steps.

Proofs of correctness follow trivially from the factorization

of the standard likelihood function used in RNA-Seq, and are

omitted.
We require two fields from the output of an RNA-Seq quan-

tification program after it has been used to estimate abundances

for a set of transcripts T : the estimates �̂T and the ‘ambiguity

graph’ (defined in Section 2.1) of T , which we denote by

G ¼ ðT ,EÞ. We assume that T 0 consists of T with the addition

of a set of transcripts A and the deletion of a set of transcripts D

so that T 0 ¼ ðT [ AÞnD. Finally, we will need the stored align-

ments from F to T , which we denote by LF!T ¼ ff! ftjt 2 T

and f aligns to tgg.
To simplify the presentation, we explain separately the case

of adding transcripts (T 0 ¼ T [ A) and the case of deletion

(T 0 ¼ T n D). Additions and deletions can be handled in two

stages or in a single, combined pass (details omitted). For simpli-

city, we restrict the exposition to the case of addition/deletion of a

single transcript in the description below.
Given a set of transcripts T , let t 0 be a transcript with t 0=2T .

The updating of estimates when t 0 is added to the annotation is

performed as follows:

(1) Align the reads in F to t 0 and denote the subset of reads

of F that align to t 0 by F0 � F . Denote the alignments of

F0 as LF!t 0 .

(2) Extract the read alignments for the reads in F0 from LF!T
and denote as LF0!T ¼ f f! LF!T ð fÞ for all f 2 F0g.

In addition, denote by S ¼
S

f2F0 LF!T ð fÞ the set of tran-

scripts in T that appear in LF0!T.

(3) Create the updated ambiguity graph

G0 ¼ ðT [ t 0,E [ fft 0, vg for all v 2 SgÞ.

(4) Let B ¼ ft : f is in the same component as t 0; t 6¼ t 0}.

Extract the alignments in LF!T that consist of a read

mapping to a transcript in B as LF!B ¼ ff! LF!T ð f Þ

for all f 2 FjLF!T ð f Þ � Bg.

(5) Merge the alignments to create LF!B[t 0 ¼ LF!B [ LF!t 0 .

(6) Perform quantification on the set of transcripts B [ t 0

using the alignments LF!B[t 0 . This produces a set of

estimates f�̂0tgt2B[t 0 .

(7) Compute �̂TB ¼
P

t2B

�̂Tt . Set �̂
T
0

t ¼ �̂
T
B � �̂

0
t for all t 2 B [ t

0.

Deletion is performed via a similar procedure. Let t 0 be a

transcript with t 0 2 T .

(1) Let B be the component in G that contains t 0.

(2) Extract the alignments from LF!T that contain reads

mapping to transcripts in B, denoted by LF!B ¼

ff! LF!T ð f Þ for all f 2 FjLF!T ð f Þ � Bg.

(3) Remove the alignments of reads to t 0 from LF!B as

LF!Bnt0 ¼ ff! LF!Bð f Þnt
0 for all f 2 Fg.

(4) Perform quantification on the set of transcripts Bnt 0 using

the alignment file LF!Bnt0 . This produces a set of estimates

f�̂0tgt2Bnt 0 .

(5) Compute �̂TB ¼
P

t2B �̂
T
t . Set �̂

T
0

t ¼ �̂
T
B � �̂

0
t for all t 2 Bnt

0.

(6) Create the updated ambiguity graph G0 ¼ ðT nt 0,Enfft 0, vg

for all v 2 BgÞ.

Note that in the rare case when there is a change in the total

number of aligned fragments after the addition or deletion of a

target, an additional step is required to renormalize the relative

abundances between components. This step is trivial and fast,

and the details are omitted.

2.3 Improving performance by approximating the

affected set

There is another issue that can hurt performance in practice: the

affected component B can be large (Fig. 2 and Supplementary

Fig. S1). In typical RNA-Seq experiments, as much as one-fifth

of all transcripts can lie in a single component of the ambiguity

graph (Roberts and Pachter, 2013). This component typically

consists of large gene families and multiple isoform genes that

share common sequence. To improve performance, it is therefore

desirable to restrict the re-quantification to a smaller subset with-

out sacrificing important information in the form of fragment

alignments. We do this by partitioning a weighted generalization

of the ambiguity graph, obtained by the addition of edge weights

representing the number of ambiguous alignments between each

pair of transcripts. For a given mapping LF!T and induced

ambiguity graph G, we let the weight between two transcripts u, v

be wðfu, vgÞ ¼
P

f2F 1ðfu, vg � LF!T ð f ÞÞ. Given these weights,

we wish to partition around t 0 such that the total weight of

edges crossing the partition cut is small compared with the

weight of edges inside the block. Moreover, it is desirable that

the block containing t 0 is small.
Many sophisticated objective functions and algorithms exist

for partitioning graphs (Bichot and Siarry, 2011). A detailed

exploration of the applications of these methods to our problem

is outside the scope of this article. Instead, to demonstrate the

feasibility of a partitioning scheme for improving the perform-

ance of our method with large components, we chose to use the

greedy approach outlined below, which is motivated by the

objective of removing edges that correspond to the ‘least inform-

ative’ alignments.
First, we define the density of a block S, d(S), as the total weight

of edges incident to a node in the block and a node outside of the

block divided by the total weight of edges incident to the nodes in

the block. Intuitively, this is the ratio of edges crossing the cut to

all of the edges incident to nodes in the block. Formally,

dðSÞ ¼

P

u2S, v2 �S

wðu, vÞ

P

u2S, v2 �S

wðu, vÞ þ
P

u2S;v2S

wðu, vÞ
:
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Our objective is to find, for a given transcript t 0, a block S that
contains t such that d ðSÞ5� for a given threshold 05� � 1.
We do so using the following greedy update.

(1) Begin with S ¼ ft 0g.

(2) Iteratively add node u ¼ argmaxu2T wðft
0, ugÞ to S until

dðSÞ5�.

It is easy to show that for any valid �, this algorithm will

terminate. As we show below in Section 2.4, the method is
empirically both fast and accurate.

2.4 Accuracy of partitioning approximation

To validate the performance of our greedy partitioning algo-

rithm, we randomly selected with replacement 250 transcripts
from the largest partition (3898 transcripts) in the RefSeq anno-
tation and simulated their addition at some earlier date. We used

the set of reads produced for (Trapnell et al., 2010), which con-
sisted of RNA-Seq performed on C212, a mouse moblast cell
line. Each selected transcript was removed from the FASTA,

alignment file and ambiguity graph, and was then re-added
using a single step of our algorithm. We show the results of

this update using 20 different values of � in Supplementary
Figure S2. There is a clear tradeoff between the accuracy of
the approximation and the size of the resulting block selected

by different values of �. We note that for �50:1, the correlation
is already reasonably close to the accuracy of the eXpress algo-

rithm demonstrated in (Roberts and Pachter, 2013).

2.5 Application to RefSeq incremental update

To demonstrate the effectiveness of our approach, we applied it to

the same largeC2C12RNA-Seq dataset as used above. These data
were first analyzed in 2010, but since then the mouse RefSeq an-
notation has been updated numerous times. Specifically, as a

proof-of-concept, we applied ReXpress (our implementation of
the methods above) to 34 days of the RefSeq incremental update

(RIU), which is a daily update of the RefSeq annotation database
(see Methods, Fig. 3a).
Using 24 free cores, 644min were required for the initial

Bowtie2 alignment, 505min for 20 repetitions of abundance
estimation with eXpress and 11min for building the ambiguity
graph. Across the entire month of RefSeq updates, a size 3910

component was affected seven times, while components of size 15
or less were affected 37 times.
Each subsequent update required, on average, 55min to

complete our re-annotation pipeline. This is compared with the
�644þ 505¼ 1149min that would be required for alignment and

abundance estimation from scratch with Bowtie2 and eXpress
after each re-annotation.
The abundance estimates for the final time point had a

Spearman rank correlation of R2 ¼ 0:994 with those calculated
from scratch (Supplementary Fig. S3). The small discrepancy is
due to the fact that the online EM method in eXpress approxi-

mates the maximum likelihood solution, and therefore is not
expected to be exact.

Because some of the transcripts added and deleted over the
time period affected the large components in the ambiguity
graph, we also ran the analysis using the greedy partitioning

scheme described above (� ¼ 0:1). While the speed of the updates

was greatly improved by the partitioning by reducing the size

of the (approximate) affected components (Fig. 3b), the results

were nearly identical (Supplementary Fig. S4).

3 METHODS

3.1 Datasets

The annotations used for mouse were based on RefSeq. The RefSeq

database is updated incrementally every night at 3:30 EST. All updates

over the 34-day period between November 9 and December 13, 2012 were

used for this analysis. The RNA-Seq data used was based on (Trapnell

et al., 2010). We restricted ourselves to analysis of the 60 hour time point,

for which 60 million reads were available.

3.2 Read mapping

Reads were mapped with Bowtie2 version 2.1.0 (Langmead and Salzberg,

2012) using the parameters -k 1000, –rdg 6,5, –rfg 6,5, –score-min

L,-0.6,-0.4, –no-discordant and –no-mixed. With these options, 47% of

the reads were mapped concordantly.

3.3 Abundance estimation

Abundances were estimated with eXpress version 1.3.0 (Roberts and

Pachter, 2013), initially using no optional parameters and then the

–aux-param-file for re-estimation using previously computed auxiliary

parameters after editing of the annotation. A forgetting factor of 0.85

(the default) was used for the full dataset and 0.75 used for the smaller

update datasets.

3.4 Software

The methods have been implemented in a software program called

ReXpress. ReXpress is a Python script that takes as input an annotation

and its update, reads, their alignments to the initial annotation, abun-

dance estimates and the ambiguity graph. It outputs updated versions of

all of the input (Fig. 1 for exact files input and output). ReXpress makes

heavy use of pySAM (pySAM, 2012; Li et al., 2009) and is based on

Bowtie2 and eXpress for quantification (Roberts and Pachter, 2013),

although many alignment and quantification tools can be substituted.

4 CONCLUSION

Despite the difficulties in storing, processing and distribution of

high-throughput sequence data (Sboner et al., 2011), repositories

such as the Gene Expression Omnibus have led to an explosion

in publicly available genome-wide expression data. However, nu-

merous technical challenges that arise in re-using data have lim-

ited the utility of publicly archived RNA-Seq reads (Rung and

Brazma, 2013).

Our results show that it is possible to efficiently update RNA-

Seq abundance estimates on re-annotation, thus removing a

major obstacle to re-using publicly available data. This should

prove to be particularly useful in newly sequenced organisms

whose annotations are not stable and undergo periodic revision,

and also in human cancer transcriptomics where structural alter-

ations can be tumor specific (Asmann et al., 2012; Yorukoglu

et al., 2012). We also believe that ReXpress will be particularly

useful for sequencing centers providing analysis services. Instead

of producing one-time output, it should now be possible to refresh

analyses as annotations improve, without expensive hardware or

compute time needed as user bases and datasets grow.
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Other applications of our work include a randomized ap-

proach to optimization of transcriptome assembly in conjunction

with abundance estimation (Li and Jiang, 2012; Li et al., 2011;

Mezlini et al., 2013), and the development of an RNA-Seq quan-

tification database for publicly available datasets that is auto-

matically updated as annotations improve.

Moreover, our work on component identification in and par-

titioning of the ambiguity graph can be used to develop more

efficient batch methods for abundance estimation. A recurring

issue in the commonly used batch EM solutions (Li and Dewey,

2011; Trapnell et al., 2010) is the necessity of iterating over a

large number of reads, which has a memory bottleneck as shown

in (Roberts and Pachter, 2013). Trapnell et al. (2010) attempts to

avoid the bottleneck by treating all genomic loci as independent

blocks and using a heuristic ‘rescue method’ to partially correct

for the approximation. A better solution for the memory bottle-

neck in the batch method is to iterate over approximately inde-

pendent partitions of the ambiguity graph whose associated

reads can be fit into memory. Because most components are

often small, only the largest will need to be partitioned as in

our method above. The blocks can then be processed in parallel

only a single machine or distributed over a cluster.

Finally, in conjunction with the streaming algorithm for quan-

tification in (Roberts and Pachter, 2013), the present method

(a)

(b)

Fig. 3. (a) Updates to the mouse RefSeq transcriptome over the course of 34 days. Transcripts that kept the same name but changed sequence were

treated as an addition and a deletion. (b) ReXpress run time, in minutes, on each RefSeq update, with and without partitioning. Initial run time consists

of Bowtie2 alignment time (24 cores) and eXpress abundance estimation time (3 cores), without ReXpress. Partitioning was done when a changed

transcript was part of a component larger than 300 transcripts, which occurred seven times over the 34-day period
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provides an online algorithm in both the reads and the targets in
any setting where probabilistic assignment of multi-mapping
reads is a bottleneck in analysis of high-throughput sequencing
data.
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