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ABSTRACT

Motivation: The importance of fast and affordable DNA sequencing

methods for current day life sciences, medicine and biotechnology is

hard to overstate. A major player is Ion Torrent, a pyrosequencing-like

technology which produces flowgrams – sequences of incorporation

values – which are converted into nucleotide sequences by a base-

calling algorithm. Because of its exploitation of ubiquitous semicon-

ductor technology and innovation in chemistry, Ion Torrent has been

gaining popularity since its debut in 2011. Despite the advantages,

however, Ion Torrent read accuracy remains a significant concern.

Results: We present FlowgramFixer, a new algorithm for converting

flowgrams into reads. Our key observation is that the incorporation

signals of neighboring flows, even after normalization and phase cor-

rection, carry considerable mutual information and are important in

making the correct base-call. We therefore propose that base-calling

of flowgrams should be done on a read-wide level, rather than one

flow at a time. We show that this can be done in linear-time by com-

bining a state machine with a Viterbi algorithm to find the nucleotide

sequence that maximizes the likelihood of the observed flowgram.

FlowgramFixer is applicable to any flowgram-based sequencing plat-

form. We demonstrate FlowgramFixer’s superior performance on Ion

Torrent Escherichia coli data, with a 4.8% improvement in the number

of high-quality mapped reads and a 7.1% improvement in the number

of uniquely mappable reads.

Availability: Binaries and source code of FlowgramFixer are freely

available at: http://www.cs.tau.ac.il/�davidgo5/flowgramfixer.html.

Contact: davidgo5@post.tau.ac.il

1 INTRODUCTION

The importance of fast and affordable DNA sequencing methods

for current day life sciences, medicine and biotechnology is hard

to overstate. Ion Torrent’s semiconductor sequencing technol-

ogy, as implemented in its Personal Genome Machine (PGM),

has been gaining popularity as a fast and affordable sequenc-

ing platform since it’s debut in 2011 (Merriman et al., 2012;

Rothberg et al., 2011). Semiconductor sequencing has several

advantages compared with other high-throughput sequencing

platforms, including lack of optics, use of natural, unmodified

dNTP molecules and exploitation of ubiquitous semiconductor

technology. These advances make Ion Torrent a serious player in

the sequencer market, providing reads several hundred bases

long and reducing sequencing costs (Eisenstein, 2012).

Ion Torrent is a pyrosequencing-like platform, similar to 454.

In every sequencing step, or flow, the chip is washed over with a

specific nucleotide. The nucleotide in the flow is incorporated by
all consecutive complementary nucleotides ‘hanging’ at the end

of each template—this is called incorporation. Each incorpor-
ation releases an ion, so that the change in pH level indicates

whether incorporation occurred and, if so, the number of con-
secutive bases incorporated. The nucleotide that is washed

during each flow is pre-determined and is composed from several
repetitions of a shorter sequence of nucleotides known as

the ‘wash cycle’. The default wash cycle for 454 is 4 nt long:
TACG, whereas Ion Torrent’s PGM uses a more complicated

wash cycle that is 32 nt long. The resulting read is then specified
in terms of a flowgram—a sequence of incorporation values, one

for each flow. Figure 1 gives an overview of the process.
Despite its advantages, Ion Torrent read accuracy remains

a significant concern. Errors are produced during base-calling,
a process by which the noisy signal from the sequencer is con-

verted into a sequence of nucleotides. Base-calling errors can
especially pose challenges for re-sequencing projects, where

they can be confused with SNPs. In fact, a recent comparative
study found that Ion Torrent’s PGM still suffers from high–

false-positive rates in SNP calling, relative to Illumina data
(Quail et al., 2012). There is a large body of work on base-calling

algorithms [see Ledergerber and Dessimoz (2011) for a survey],

and there have been several techniques developed specifically
for pyrosequencing data (Beuf et al., 2012; Lysholm et al.,

2011; Quince et al., 2011; Quinlan et al., 2008; Vacic et al.,
2008). These techniques have mostly focused on correcting

454’s well-documented (Balzer et al., 2010) errors in long homo-
polymer runs or alignment of their flowgrams. However, there

has been little work done in correcting base-calling errors in Ion
Torrent data.
Ion Torrent’s base-calling algorithm, after performing phase-

correction and normalizing to handle signal decay, simply trans-

lates the rounded values of each flow into the corresponding
number of consecutive nucleotides. In essence, it is a memoryless

algorithm that makes a call for each flow independent of infor-
mation from previous or following flows. Our key observation is

that the signals of neighboring flows carry considerable mutual
information and are important in making the correct base-call.

We propose that base-calling of flowgrams should be done on a
read-wide level, rather than one flow at a time. To this end, we

design a linear-time method that combines a state machine with a
Viterbi algorithm to find the nucleotide sequence that maximizes

the likelihood of the observed flowgram. Our algorithm is
applicable to any flowgram-based sequencing platform and is

implemented in a publicly available tool called FlowgramFixer.
We demonstrate FlowgramFixer’s superior performance on Ion

Torrent Escherichia coli data, with a 4.8% improvement in the*To whom correspondence should be addressed.
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number of high-quality mapped reads and a 7.1% improvement

in the number of uniquely mappable reads.

2 BACKGROUND AND MOTIVATING EXAMPLES

We denote the set of possible DNA sequences by ‘nt-space’, i.e.
the space of possible combinations of the four nucleotides A, C,
G and T. The Ion Torrent platform does not provide us directly

with the read in nucleotide space, but instead, we observe the
incorporation signal at each flow. It is, therefore, useful to define

‘flow-space’, as the vector of incorporation signals (flowgram)
obtained per flow by a perfect (noiseless) sequencing process. For
example, if the flow nucleotides are two repetitions of the wash

cycle ‘ACGT’, and the sequence itself is GCCT, then the flow-
space representation is (0,0,1,0,0,2,0,1).
The actual signal is noisy; therefore, the observed flowgram is

not a sequence of integers, but rather a sequence of non-negative
real values. The noise is due to a range of artifacts. First, Ion
Torrent’s platform uses discrete time measurements from the pH

sensors at the bottom of each well to fit a theoretical physical
model of a continuous time process (nucleotide incorporation).

The process of nucleotide incorporation is random by nature and
is affected by various factors ranging from random changes of
dNTP molecule concentration to random fluctuations in fluid-

dynamics because of bubbles or turbulences. And so, the theor-
etical physical model does not capture the full complexity of the
sequencing process and does not always fit the observed signals

perfectly, resulting in noisy signal.

Second, the signal decays over time, as at each flow a small
fraction of the template clones attached to each bead are termi-
nated and no longer incorporate additional nucleotides (this phe-
nomenon is known as ‘drooping’). Thus, the actual signal

observed at each flow decays over time. Although this phenom-
enon is not by itself a source of noise, the decay of the signal
decreases the signal-to-noise ratio, making correct calling harder

as the sequencing process progresses.
Finally, some of the template clones drop out of phase as the

sequencing progresses. Even when the current nucleotide in the

flow should be incorporated by all template clones, clones might
not, by chance, incorporate it (for example, if nodNTPmolecule is
found in the physical vicinity of the template). These clones would

incorporate the nucleotide at the next flow of the same nucleotide.
Hence, the signal becomes unphased—the observed signal is a
superposition of lagged copies of the true signal, where the lags
depend on the wash cycle and the underlying sequence itself.

As the initial step of its base-calling software, Ion Torrent per-
forms phase-correction and signal decay normalization algo-
rithms. A typical flowgram, after this correction, is shown in

Figure 2. The resulting incorporation values are still noisy, and,
to convert them to nucleotide space, Ion Torrent rounds them to
the nearest integer. Although this last step is effective and scalable,

we find that it is suboptimal for several reasons.
First, rounding the signal flow-by-flow might result in an

‘impossible’ sequence of signals. Consider the following toy
example, where the first nucleotide is T and the wash cycle is

ACGT. The expected signal is (0,0,0,1)—no incorporation in the
first three flows, and an incorporation of a single nucleotide in
the fourth flow. Next, imagine that because of noise, the mea-

sured signal is (0.1,0.05,0.08,0.4). Rounding the signal would
result in (0,0,0,0). Such a flow-sequence implies that the first
nucleotide cannot be A, C, G or T—an impossibility.

However, by observing the whole sequence of incorporation
values together, we would have been able to deduce that the
fourth incorporation of 0.4 should be rounded up, not down.

Second, the probability of observing an incorporation event
depends on the incorporation signals of previous and next
flows. Assume, for example, the same flow order as before, and
assume that we have seen incorporations in the first three flows.

This implies that the sequence starts with ACG, and that the next
base in the sequence is not G (otherwise we would have seen two
incorporation events in the third flow). Therefore, there are three

possible candidates for the next nucleotide—A, C and T. Next,
assume a different scenario—an incorporation event happened
only in the second flow, with no incorporation in the first and

third flows. In this case, the sequence starts with C, and the second
nucleotide cannot be G (otherwise we would have seen an incorp-
oration in the third flow), and it cannot be C (otherwise we would
have seen two incorporations in the second flow).Hence, there are

only two candidates for the next nucleotide—A and T. In the first
scenario, the previous probability of observing an incorporation
in the fourth flow is 1

3, as T is one of three possible nucleotides,

whereas in the second scenario, the previous probability is 1
2, as

T is one of only two possible nucleotides. Simply rounding the
signal at each flow to the nearest integer ignores the previous

probability obtained by considering the incorporations at previ-
ous flows. Future flows also carry useful information regarding a
current flow in a similar manner.

Fig. 1. Ion sequencing work flow. The overall workflow is shown in (a).

A genome library is prepared by fragmenting and size-selecting DNA,

followed by the ligation of forward and reverse adapters (b). Each adap-

ter-ligated template is clonally amplified onto a bead, so that each bead

contains many copies of the same DNA template (c). Sequence on the

chip, sequencing primers and DNA polymerase are then bound to the

beads, which are pipetted into wells on the chip (d). The chip is then

repeatedly flooded by nucleotides, which, when binding to the comple-

mentary nucleotide on a template, release an ion. At each flow, the elec-

trical signal at each well is measured, indicating the number of

incorporations [Figure adapted from Rothberg et al. (2011)]
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Finally, rounding signals ignores other previous information

regarding the genome, such as GC-content and the lower frequen-

cies of longer homopolymers. One can think of the rounding

method as setting a threshold of 0.5 and calling an incorporation

event when the incorporation signal is higher than the threshold.

When sequencing genomes that are known to be GC-rich, it is

reasonable to use different thresholds for flows with different

washed nucleotides. For example, when the flow is either G or

C, an incorporation event is more likely before observing the

signal, compared with flows of A or T. Similarly, longer homo-

polymers are less likely; therefore, the threshold for calling 0mer

versus 1mer need not be the same threshold as the one used in

calling 5mer versus 6mer [similar to what is done for 454 reads by

Quinlan et al. (2008) and others].

3 METHODS

Motivated by the examples of the previous section, we develop a method

that finds a nucleotide sequence that maximizes the likelihood of the

observed flowgram. We start by describing the underlying state machine

that captures the sequencing process. We then define the distributions

necessary for calculating the likelihood. Finally, we describe two dynamic

programming algorithms—a Viterbi algorithm to find the maximum like-

lihood nucleotide sequence, and a forward algorithm to obtain max-

imum-likelihood estimates of the noise-model parameters.

3.1 State machine model

To connect flow-space and nucleotide-space, one can ask, at each flow,

what are the different possibilities for the next nucleotide. For instance,

at the first flow, we have no information at all, and the first base of the

sequence could be A, C, G or T. If the first flow presents no incorpor-

ation, the possible candidates become C, G and T and so forth. This

process is illustrated on our previous toy example in Table 1.

More generally, we define a deterministic state machine (Hopcroft and

Ullman, 1979). There are 15 states, corresponding to the 24 � 1 ¼ 15

possible sets of candidate nucleotides. Each state represents the possible

nucleotides for the next position, in nucleotide-space. It is convenient to

think of the binary representation of the number as indicating which

nucleotides are candidates, or, alternatively, as an actual set containing

the appropriate subset of base letters. The initial state is fA,C,G,Tg.

Given a flow nucleotide, a state s can transition to at most two states,

one where an incorporation occurs, denoted sþ, and one where no

incorporation occurs, denoted s�. For example, when the state is

s ¼ fA,C,Tg, and the flow nucleotide is A, the next state can be either

sþ ¼ fC,G,Tg (if there is an incorporation event, A is now the only non-

candidate) or s� ¼ fC,Tg (if there is no incorporation event, A is no

longer a candidate). When the flow nucleotide is not one of the candidates

given by the current state, there is no incorporation transition. Thus, each

state has at most eight outgoing transitions.

A path in the state machine is a sequence of transitions from the initial

state. Given a wash cycle, a flow-sequence defines a path in the state

machine in the obvious manner. Figure 3 illustrates the transitions of a

state machine on a simple wash cycle.

3.2 Problem formulation

Let O ¼ o1, . . . on denote the observed (normalized and phase-corrected)

incorporation values, with F ¼ f1, . . . , fn being the true (noiseless) values

in flow-space. F defines a path in the state machine,

Fig. 2. Typical flowgram.We show the normalized and phase-corrected signal of a single flowgram. The actual nucleotide in each flow is indicated by the

appropriate letter. Ideal signals are expected to be integers, indicating exactly how many nucleotides were incorporated during each flow. However, the

actual signal at each flow is noisy, and the noise increases as the sequencing process advances

Table 1. Representing the set of possible nucleotides after each flow

Flow No. Flow

nucleotide

Candidates Remaining

sequence

Signal

1 A ACGT GCCT 0

2 C CGT GCCT 0

3 G GT GCCT 1

4 T ACT CCT 0

5 A AC CCT 0

6 C C T 2

7 G AGT T 0

8 T AT — 1

Note: Here, the wash cycle is ACGT and the sequenced string is GCCT. Initially,

any nucleotide is possible—the candidates are ACGT. The first flow (A) produces

no incorporation signal; therefore, the candidates for the next nucleotide are CGT.

After an incorporation event, as in flows 3 and 6, the candidate nucleotides for the

next base in the sequence are all the nucleotides except for the one that was just

incorporated.
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S ¼ s0, s1, . . . , sn, snþ1, where si is the state after the application of flow fi.

We let s0 be the initial state before any incorporations, i.e.

s0 ¼ fA,C,G,Tg. The likelihood of the flows F given the observed

values O is given by:

LðFjOÞ ¼
Yn
i¼1

Pðsi�1 ! siÞ’�, iðoijfiÞ�

�
�
Ifsþi�1 ¼ sigIf fi40g�ð fiÞ þ Ifs�i�1 ¼ sigIffi ¼ 0g

�
,

where Pðsi�1 ! siÞ is the probability of transition from state si�1 to state

si, � is a previous distribution over the lengths of homopolymers in the

genome and ’�, i is the probability density at flow i of oi given that the

number of incorporations is fi, governed by a set of parameters �.

The indicator functions I, in the second line of the equation, are used

to determine whether the state transition dictates an incorporation event,

and whether the incorporation value fi matches the incorporation value

dictated by the state transition. Thus, impossible state transitions, or

incorporation values that are impossible, given the state transition get a

likelihood of 0. For example, if s�i ¼ siþ1, then fi must be 0, otherwise the

likelihood is 0.

For ease of notation, we define the distribution of fi, conditional on the

state transition:

�0ðfijsi, siþ1Þ ¼
Iffi ¼ 0g siþ1 ¼ s�i
�ð fiÞ siþ1 ¼ sþi
0 otherwise

8<
:

�0 replaces both the indicator functions and the previous �. It is also

defined for all state pairs, yielding 0 when the state pair is not a pair of

legitimate consecutive states. Using this notation, we can rewrite the like-

lihood equation:

LðFjOÞ ¼
Yn
i¼1

Pðsi�1 ! siÞ�
0ðfijsi�1, siÞ 4’�, iðoijfiÞ:

We now proceed to define the three distributions necessary to evaluate

this equation.

3.2.1 Transition probabilities The probability of transitioning from

one state to the next depends on the size of the state (number of candidate

nucleotides) and the probability of observing a given nucleotide in the

genome. These depend on the nucleotide used in the i’th flow, which we

denote as wi.

Given pGC, the probability of observing a G or C nucleotide in the

genome in question (i.e. the GC-content of the genome), we denote

pC ¼ pG ¼
1
2 pGC and pA ¼ pT ¼

1
2�

1
2 pGC the probabilities of individual

nucleotide types. When the GC-content of the genome is not known,

we use pGC ¼ 0:5.
The transition probabilities are then given by:

Pðs! sþÞ ¼

pwiP
x2s

px
wi 2 s

0 wi =2 s

8<
: :

Pðs! s�Þ ¼ 1� PðSiþ1 ¼ sþjSi ¼ sÞ

For the simple case of pGC ¼ 0:5, we get:

PðSiþ1 ¼ sþjSi ¼ sÞ ¼
1
jsj wi 2 s
0 wi =2 s

:

�

Note that invalid transitions have zero probability, e.g. an incorporation

of a T in state fA,C,Gg is impossible and has zero probability because

wi ¼ T =2 fA,C,Gg. In this case s� ¼ s, as no incorporation leaves the

state machine at the same state. Similarly, the incorporation of a T in

state fTg is much more likely than in state fA,C,G,Tg. Thus, these

probabilities capture most of the intuition presented in the motivating

examples of Section 2.

3.2.2 Homopolymer length distribution (�) The likelihood frame-

work allows for an easy integration of �, the previous information

regarding the distribution of homopolymers’ lengths in the genome.

One appropriate prior that we use is the geometric distribution:

Pðfi ¼ mÞ ¼ pm�1wi
ð1� pwi

Þ, where pwi
is the proportion of the current

flow nucleotide wi in the genome. If no previous information exists

on the GC-content of the genome, as is the case for the standard 454

base-calling algorithm (Ledergerber and Dessimoz, 2011), then pwi
can be

set to 1
4. Another possibility is to use the non-informative flat prior.

Although the flat prior is an improper prior, for all practical purposes

it can be used in this scenario. The immediate interpretation of this

prior is that we have no information at all regarding the distribution

of homopolymer sizes. Alternatively, other priors can be specified, for

example, an empirical Bayes prior as in Quinlan et al. (2008).

3.2.3 Noise model (’�, i) Finally, we specify the noise model. We

denote the standard deviation of the noise model at flow i by �i, and

ACGTstart

CGT

GT AGT

T ACT AT

AC ACG A

CGCGTC

GT AGT G

ATACTT

+/-A

C

G

T

A

C

G

Flow nucleotide

Fig. 3. Illustration of state machine transitions. In this example, the flow

is composed of repetitions of the wash cycle ACGT and the state machine

starts from the state {A,C,G,T}. Each layer of the figure illustrates the

possible states at that flow index. Incorporation and no incorporation

transitions are marked by solid and dashed edges, respectively. Note that

nodes with a single nucleotide dictate incorporation in the next flow and

have no outgoing dashed edges
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we denote � the set of parameters that governs the behavior of �i. Let ’�, i
be the probability density function at flow i given the parameters �.

Hence, ’�, iðoi 4j 4fiÞ is the probability density of oi given that the

number of incorporations is fi, that the flow cycle is i and that the

parameter set is �.

We assume a double exponential distribution around the true number

of incorporated nucleotides, i.e. the probability density of observing the

incorporation value oi when the true number of incorporations is fi and

the flow cycle is i is given by:

1ffiffiffi
2
p
�i
e
�

ffiffi
2
p
jfi�oi j

�i :

Note the non-standard parameterization using the standard deviation

instead of the usual rate parameter. We use this parameterization to

allow easy interpretation of the parameters in terms of standard devi-

ations. To allow �i to increase with the progression of the sequencing

process, we assume a linear dependency of �i on the flow cycle index i:

�i ¼ �0 þ �1i,

where �0 is the intercept term, giving the standard deviation at the first

flow cycle, and �1 is the trend term, giving the increment in the standard

deviation of the noise from one flow cycle to the next. Thus, � ¼ ð�0,�1Þ.

Although richer noise models are conceivable, a simple noise model is

required to maintain a reasonable running time.

3.3 Dynamic programming algorithms

Having fully defined the likelihood function (given a set of noise model

parameters �), we now seek to find the series of true incorporation values

(F) that would maximize the likelihood of the observed incorporation

values (O). To this end, we apply the standard Viterbi dynamic program-

ming algorithm (Durbin et al., 1998). The Viterbi algorithmworks by con-

structing a table where each element Vi, j is the maximum log-likelihood

of observing flows o1, . . . , oi, given that the last state of the state machine

is si ¼ j. The maximum log-likelihood of O is then given by the

argmaxs2S Vs, n, where S is the set of 15 possible states.

To construct the table, we apply the standard Viterbi recurrence rela-

tion to the log our likelihood function:

Viþ1, j ¼ max
s2S, f2Zþ

Vi, s þ logPðs! jÞ

þ log�0ð f js, jÞ þ log’�, iðoi j f Þ,

Intuitively, we wish to compute the log-likelihood of the max-likelihood

path of length iþ 1 ending at state j, given the log-likelihoods of the max-

likelihood paths ending at the previous flow i (given by Vi, 1, . . . ,Vi, 15).

We iterate over all possible previous states and all possible incorporation

values and for each such pair ðs, fÞ update the log-likelihood to account

for the additional state transition, the additional flow value and the add-

itional observed value. We then set Viþ1, j to be maximal value over all

such pairs.

However, whenever s0 =2 sþ, s� the probability Pðs! s0Þ is 0. This is the

case for most state pairs and can be used to greatly accelerate the algo-

rithm. Specifically, it is enough for the recurrence to only consider values

of s such that j 2 fsþ, s�g. Moreover, not all values of f are possible for

all state transitions. If j ¼ sþi , then f 6¼ 0, and if j ¼ s�i , then f¼ 0. Given

these simplifications, we can rewrite the recurrence as

Vþiþ1, j ¼ max
s s:t: sþ¼j, f40

Vi, s þ logPðs! jÞ

þ log�ðfÞ þ log’�, iðoij f Þ,

V�iþ1, j ¼ max
s s:t: s�¼j

Vi, s þ logPðs! jÞ

þ log’�, iðoij0Þ,

Viþ1, j ¼ maxfVþiþ1, j,V
�
iþ1, jg

That is, we optimize separately for the case of incorporation (Vþiþ1, j)

and for the case of no incorporation (V�iþ1, j), taking the maximal value

of the two.

In theory, one still needs to iterate over all possible value of f when

computing Vþiþ1, j. However, one can assume that all homopolymers

are shorter than a certain length M. The Ion Torrent software sets

M¼ 13. As the running time of the algorithm is linear in M, we chose

an adaptive approach; we set a different value for each flow, given by

Mi ¼ maxf oid e þ 2, 4g. This reduces the value of Mi for most flows, thus

greatly reducing the overall running time.

To obtain the maximum likelihood path, one only has to keep track of

the values of s and f that are used to maximize each recurrence. We can

then start with the optimal last state (argmaxs2S Vs, n) and work our way

backward using the standard dynamic programming backtracking

procedure.

The running time of the algorithm is linear in n. The dynamic pro-

gramming table contains n rows and jSj ¼ 15 columns. To compute the

value of each cell, we must consider two values for s and Mi values for f.

The backtracking algorithm is also linear in the size of the table.

Therefore, the time complexity of the algorithm is O(nM), where

M ¼ maxMi. The space complexity is O(n), which is the size of the table.

3.3.1 Estimating the noise-model parameters The likelihood of a

set of noise model parameters � can be calculated efficiently using the

forward algorithm (Durbin et al., 1998); thus, the maximum likelihood

estimators of the parameters can be used in the Viterbi. The forward

algorithm is similar in spirit to the Viterbi algorithm. Given a value of

the parameter set �, we define Li, jð�Þ as the likelihood of observing flows

o1, . . . , oi, given that the last state of the state machine is si ¼ j. The

likelihood of the specific set of parameters � is then given by

Lð�Þ ¼
P

s2S Ls, nð�Þ.

A table is constructed in a similar manner to the Viterbi algorithm,

with the major differences being using likelihoods instead of log likeli-

hoods and summing over all previous states rather than using only the

maximal previous state:

Liþ1, jð�Þ ¼
X

s2S, f2Zþ

Li, sð�ÞPðs! jÞ �

�0ð f j s, jÞ’�, iðoij f Þ:

As in the case of the Viterbi algorithm, the specific state machine set-up

enables faster computations by taking into account only possible state

transitions and possible incorporation values.

As the likelihood of a set of parameters � can be computed by the

aforementioned forward algorithm, a reasonable approach would be

finding the maximum likelihood estimator of � and plugging it into the

Viterbi algorithm. Although this approach is appealing, for every value of

�, the likelihood needs to be re-evaluated, resulting in a considerable

increase in running time. We, therefore, suggest applying this procedure

to a subset of flowgrams and use the mean value of � as the parameter for

the rest of the flowgrams. The maximization itself can be carried out

using an exhaustive grid search. However, we found that using the

greedy algorithm obtained similar results to the grid search (results not

shown) while requiring only a fraction of the likelihood evaluations. Both

methods are implemented in FlowgramFixer.

3.3.2 Relationship to a hidden Markov model Finally, we wish to

note the resemblance of our method to a hidden Markov model (HMM)

technique (Baum and Petrie, 1966). In fact, our model can be expressed as

an HMM by representing every consecutive pair of states as a single-

hidden state and constructing transition and emission probabilities

accordingly. However, we find the presentation via state machine to be

more intuitive and straightforward.
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4 RESULTS

We demonstrate our method using a publicly available dataset

from Ion Torrent’s webpage, namely, C11-278. C11-278 is a re-
sequencing experiment of E.coli DH10B, using the PGM with an

Ion 318 chip.
We extracted the normalized and phase-corrected incorpor-

ation signals from the SFF files. The file contained 6 742 759
flowgrams and 1.65Gb, respectively. The PGM was run using

a wash cycle of 32 bases:

TACGTACGTCTGAGCATCGATCGATGTACAGC,

and used 520 flows. We note this is the default Ion Torrent wash
cycle.

We first ran the default calling algorithm, which is equivalent
to rounding the signals in the SFF file. We use this algorithm as a

baseline for our comparisons. We then ran FlowgramFixer,
which took �4h on a single CPU (Xeon E7-8837 @

2.67GHz) with inconsequential memory use (510Mb). This

run included a preliminary step of estimating the optimal
noise-model parameters for a subset of 20 384 flowgrams, using

a greedy algorithm, computing the mean intercept and trend and
running the Viterbi on the entire dataset using the mean param-

eters. To ensure reproducibility, the subset of flowgrams we used

originated from a 200-by-200 wells region from the chip, which
were pre-specified by Ion Torrent and available on their website

as an exploratory dataset. The mean intercept and trend were

0.0377 and 1:766� 10�4, respectively.
The output of each algorithm is a list of integer-valued

flowgrams, which we converted to reads and aligned to the ref-

erence with bowtie2 (Langmead and Salzberg, 2012) using de-

fault parameters.
First, we compared the number of uniquely aligned reads. The

baseline rounding method yielded 3 537723 uniquely mapped
reads, whereas FlowgramFixer yielded 3 788697—an increase

of 250 974 reads (7.1%). Second, we counted how many reads
(hard clipped at 200 bp) were mapped uniquely with high-

mapping quality (Table 2). FlowgramFixer outperformed the

baseline rounding method for all quality thresholds, with a
2.8–4.8% increase in the number of high-quality aligned reads.

We wanted to study the effect of the position along the wash
cycle on error rates. For each flowgram corrected by the baseline

method, we converted the aligned-to part of the reference
genome to a flowgram and noted the flow positions that had

a mismatch. We then averaged the error rates of flows that

are identical mod 32 (the length of the wash cycle) (Fig. 4). It

is evident that different positions along the wash cycle display

remarkably different error rates. This can partially be explained

by patterns in the wash cycle. For example, positions 9–11

contain the nucleotides T, C and T. Because of the first T, the

probability of observing incorporation at the second T is much

lower; therefore, more flows have no incorporations. As no

incorporations are easier to call, the error rate at the second T

is much lower as well. A similar situation occurs at positions

25–27, containing T, G and T. Positions 11 and 27 are high-

lighted in red in Figure 4.

The opposite effect can also be observed, such as the A at

position 13. As there is a large gap between the appearance of

the previous A (position 6), there is a higher probability of in-

corporation and, hence, of error. A similar situation occurs with

the C at position 29. These positions are highlighted in green in

Figure 4.
Next, we investigated the dependence of the error rate on the

flow position. The average error-rates per flow of the rounding

algorithm are portrayed in Figure 5. It is clear that the vast

majority of errors occur at the ends of the flowgrams, and that

such a high-error rate renders the ends of Ion Torrent reads

useless. As this is the case for most, if not all, high-throughput

sequencing technologies, most real-life applications involve a

step of ‘clipping’—removing the 30-end of each read—either by

setting a pre-defined length (hard clipping) or using a reference

genome to determine the optimal cut-off point (soft clipping).
We, therefore, applied soft clipping to the 30-end of each read

using bowtie2 (using the local parameter) and re-estimated the
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Fig. 4. Dependence of error rate on wash cycle. Average error rates along

the 32-nt long wash cycle, for the rounding method. The actual nucleotide

in each flow is indicated by the corresponding letter. We used the first 320

flows to calculate the rates and discarded the first cycle to cancel the effect

of the sequencing adapter. Note the high dependence of the error rate on

the position in the wash cycle—positions 13 and 27 (colored red) display a

considerably low error rate, whereas positions 11 and 29 (colored green)

display a considerably high error rate. These changes in error rate can be

partially explained by patterns in the wash cycle

Table 2. Number of reads (hard clipped at 200bp) mapping with quality

above the given thresholds

MAPQ � 20 MAPQ � 30 MAPQ � 40

Baseline 5 463 391 4 867523 4 857 829

FlowgramFixer 5 617 599 5 098930 5 088 117

Difference 154 208 231407 230 288

Improvement (%) 2.8 4.8 4.7

Note: We used 20, 30 and 40 as MAPQ thresholds, corresponding to mis-alignment

probabilities of 0.01, 0.001 and 0.0001, respectively. FlowgramFixer is able to

accurately map up to 4.8% more reads than the baseline.
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per-flow error rates. The rounding algorithm had an average

error rate of 0.88% per flow (Fig. 6). We note that this is prob-

ably the most common pipeline used in re-sequencing experi-

ments. Running FlowgramFixer yielded an average error rate

of 0.7%, a reduction of � 21% compared with the baseline.

To test the robustness of this analysis to the choice of clipping

method, we also tried hard clipping the reads at 200 and 300nt.

In these cases, FlowgramFixer reduced the error rate by 17 and
21%, respectively.
We then compared the error rates of the two methods, per

position (Fig. 7). Although the maximum obtained difference is
as high as 3.4%, there are other positions where rounding actu-
ally does slightly better than FlowgramFixer. We believe that this

may be because the variability in the noise at some positions of
the wash cycle increases as the sequencing process progresses.
We discuss possible solutions in Section 5.

5 DISCUSSION

We have focused on developing a general inference framework
without making it overly reliant on the current intricacies of Ion
Torrent’s platform. However, there are several possible exten-

sions that, although making the approach less robust to technol-
ogy changes, could improve its performance on today’s datasets.
We discuss several such ideas later in the text.

Our noise model relies on a intercept and trend model for the
standard deviation (SD) parameter. One might suggest richer
models, including more complicated dependency of the SD on

the flow index, dependency of the SD on the number of incor-
porated nucleotides and a dependency on the position along the

basic 32-nt wash cycle. We briefly experimented with these ideas
and were not able to find a richer model that improved the re-
sults while maintaining a reasonable running time. However,

exploring these ideas further seems worthwhile. Additionally,
we suggest that additional accuracy gains might be gained by
adding a spatial structure to the noise model, as nearby wells

experience similar artifacts during the sequencing process.
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Fig. 7. Error rate difference between the rounding method and

FlowgramFixer (baseline error rate � FlowgramFixer error rate). The

average difference of error rate grows as the sequencing process pro-

gresses, as expected because of the noisier signal obtained at later

flows. Although at some flows, the error rate decreases by as much as

3.4%, at other flows the error rate actually increases. Interestingly, the

error rate difference also displays a dependency on the position in the

wash cycle
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Fig. 6. Per-flow error rates of the rounding algorithm, using soft clipping.

As expected, the error rate increases as the sequencing process progresses,

even after clipping. The dependency of the error rate on the position in

the wash cycle is also evident. Similarly to Figure 4, flows that are 11th or

27th within a cycle (marked red) display a considerably lower error rate,

whereas flows that are 13th within a cycle (marked green) display con-

siderably higher error rates
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Fig. 5. Per-flow error rates of the default calling algorithm used as a

baseline for comparison. The error rate clearly increases with the flow

number, with a dramatic increase beginning around flow 380

i350

D.Golan and P.Medvedev



Our approach has the advantage that phase correction is done
by Ion Torrent’s software before our analysis, thus reducing
running times. However, one can think of combining the phasing
and the calling algorithms into one probabilistic framework.

Such a framework could help eliminate some of the artifacts
introduced by the phasing algorithm and improve the quality
of both the phasing and base-calling.

The use of smarter priors and better parameters can also
improve the accuracy. Some Ion Torrent reads contain test frag-
ments of pre-determined DNA sequence, which can be used to

optimize parameter values, such as our �. Furthermore, our max-
imum-likelihood framework allows for easy inclusion of priors
on GC-content and homopolymer lengths. We suspect that

incorporating an empirical Bayes before as in Quinlan et al.
(2008) would increase the accuracy of our method. The impact
of such priors would be greatest for genomes where the GC-
content is different from 0.5, unlike E.coli.

The dynamic programming approach allows for other relevant
extensions. For example, a forward–backward algorithm, similar
to the forward algorithm, can be used to compute the marginal

distributions of the flow values and derive statistically sound
quality scores.
Finally, we note that our approach is embarrassingly paral-

lelizable and low-memory. We, therefore, believe it could be run
in a matter of minutes on a multi-core machine. Moreover, if
incorporated into the Ion Torrent pipeline, it could be run ‘live’
as the sequencing process happens, making the running time

inconsequential. In fact, the running time of our algorithm is
similar to the running time of the subsequent alignment step;
therefore, we believe that as long as the running time of our

method remains reasonable, it should not be a bottleneck for
end-users.

6 CONCLUSION

Although we are encouraged by the results of FlowgramFixer
presented here, we recognize the quick pace at which technology
evolves. As Ion Torrent continues to improve its sequencing

technology (e.g. its new Ion Proton sequencing platform), it is
likely that important parameters, such as the wash cycle, will
evolve and the specific error profiles we observe today will

evolve as well. However, we believe our major innovation—
that inference should and could be done efficiently on the
whole flowgram rather than flow-by-flow—will remain relevant

for any future flowgram-based technology. Such technologies
have been a major workhorse of the scientific community for
several years, and it is likely they would remain relevant in
upcoming years.
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