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ABSTRACT

Motivation: Most functions within the cell emerge thanks to

protein–protein interactions (PPIs), yet experimental determination of

PPIs is both expensive and time-consuming. PPI networks present

significant levels of noise and incompleteness. Predicting inter-

actions using only PPI-network topology (topological prediction) is

difficult but essential when prior biological knowledge is absent or

unreliable.

Methods: Network embedding emphasizes the relations between net-

work proteins embedded in a low-dimensional space, in which protein

pairs that are closer to each other represent good candidate inter-

actions. To achieve network denoising, which boosts prediction per-

formance, we first applied minimum curvilinear embedding (MCE), and

then adopted shortest path (SP) in the reduced space to assign like-

lihood scores to candidate interactions. Furthermore, we introduce (i) a

new valid variation of MCE, named non-centred MCE (ncMCE); (ii) two

automatic strategies for selecting the appropriate embedding dimen-

sion; and (iii) two new randomized procedures for evaluating

predictions.

Results: We compared our method against several unsupervised and

supervisedly tuned embedding approaches and node neighbourhood

techniques. Despite its computational simplicity, ncMCE-SP was the

overall leader, outperforming the current methods in topological link

prediction.

Conclusion: Minimum curvilinearity is a valuable non-linear framework

that we successfully applied to the embedding of protein networks for

the unsupervised prediction of novel PPIs. The rationale for our ap-

proach is that biological and evolutionary information is imprinted in

the non-linear patterns hidden behind the protein network topology,

and can be exploited for predicting new protein links. The predicted

PPIs represent good candidates for testing in high-throughput experi-

ments or for exploitation in systems biology tools such as those used

for network-based inference and prediction of disease-related func-

tional modules.
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1 INTRODUCTION

Detection of new interactions between proteins is central to

modern biology. Its application in protein function prediction,

drug delivery control and disease diagnosis has developed along-

side a deeper understanding of the processes that occur within

the cell. One key task in systems biology is the experimental

detection of new protein–protein interactions (PPIs). However,

such experiments are time consuming and expensive. Because of

this, researchers have developed computational approaches for

predicting novel interactions (You et al., 2010), intended also to

guide wet lab experiments. The topological prediction of new

interactions is a novel and useful option based exclusively on

the structural information provided by the PPI network

(PPIN) topology. This option for prediction is particularly con-

venient when the available biological information on the proteins

being tested for interaction (seed proteins) is incomplete or un-

reliable. One of the most efficient approaches is the Functional

Similarity Weight (FSW) (Chua et al., 2006). Such method be-

longs to the large and well-established family of predictors that

are referred to as node neighbourhood techniques (Cannistraci

et al., 2013a), because to assign a likelihood score to any candi-

date interaction (i.e. a pair of non-connected proteins in the

observed PPIN), they rely on the topological properties of the

seed proteins’ neighbours. The set of candidate interactions is

then ranked. The main problem with these techniques is that

their performance is poor when applied to sparse and noisy net-

works (You et al., 2010).
In 2009, Kuchaiev et al. (2009) proposed a method for geo-

metric denoising of PPINs. The algorithm is based on the use of

multidimensional scaling (MDS) to preserve the shortest paths

(SP) between nodes in a low dimensional space. The predicted

interactions are scored according to their Euclidean distance

(ED) in the low dimensional space, following the principle that

the closer two proteins are, the higher the likelihood that they

interact (Kuchaiev et al., 2009). Although it is not explicitly men-

tioned in the article, the embedding method adopted by

Kuchaiev et al. is equivalent to Isomap (Tenenbaum et al.,

2000). In an independent study, You et al. (2010) proposed a

hybrid strategy based on network embedding to assign predic-

tion scores to candidate interactions. They exploited the notion

that a PPIN—or theoretically, any network—lies on a low di-

mensional manifold shaped in a high-dimensional space. The

shape of the manifold and the associated topology are deter-

mined by the constraints imposed on the protein interactions

through biological evolution. You et al. used a renowned mani-

fold-embedding algorithm, Isomap (Tenenbaum et al., 2000), to
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embed the PPIN in a space of reduced dimensionality. Then,
they applied FSW to the embedded network (pruned according
to a cut-off on the ED) to assign likelihood scores to the candi-

date interactions. In general, the embedding strategy offers two
advantages: (i) the topological prediction performance is im-
proved even when networks are sparse and noisy; and (ii) the

computational time is reduced because the time required for the
network embedding is much lower than that required by node

neighbourhood techniques for computing the topological prop-
erties of each candidate interaction. A disadvantage is that if the
network is not a unique connected component, only the largest

connected component can be considered for embedding
(Kuchaiev et al., 2009).
Here, we introduce several variations of these approaches that

all together offer a new solution for topological link prediction
by network embedding. The first variation uses minimum curvi-

linear embedding (MCE) (Cannistraci et al., 2010) and its non-
centred variant, ncMCE (which is introduced for the first time),
to project the network on the reduced dimensionality space.

MCE is a parameter-free algorithm designed for the unsuper-
vised exploration of high-dimensional datasets by non-linear di-
mension reduction (Cannistraci et al., 2010). Recently, MCE

ranked first among 12 different approaches (evaluated on 10
diverse datasets) in a study on the stage prediction of embryonic

stem cell differentiation from genome-wide expression data
(Zagar et al., 2011). This proof of power and robustness moti-
vated us to test its performance in the context of PPI prediction

by network embedding. In the second variation, we use the SP
distance (instead of the ED, as in Kuchaiev et al. and You et al.)
over the network embedded in the reduced space to assign the

likelihood scores to the candidate interactions. The method pro-
posed here undoubtedly presents a novel combination of steps.

We prove that the combination of ncMCE/MCE and SP
achieves excellent results, boosting the separation between
good and bad candidate links.

2 DATA AND ALGORITHMS

2.1 Network datasets

The main datasets analysed in this work comprise four yeast
PPINs. Yeast networks are the preferred benchmark for testing
topological algorithms to predict links because of the large

amount of information available for yeast, in terms of both de-
tected interactions and Gene Ontology (GO) associations (You

et al., 2010). The PPIs in these datasets are mainly physical inter-
actions, but also include literature-curated and functional links.
Details on the characteristics of the networks are provided in

Supplementary Section I and Table S1.

2.2 Network embedding algorithms

As this work focuses on link prediction based on network top-
ology, each of the abovementioned datasets can be represented

as an undirected unweighted graph G ¼ ðV,EÞ with a set of Vj j

nodes and a set of Ej j edges, which is a set of two-element subsets

of V. Network embedding consists of finding a mapping (embed-
ding),M : V! X, where X is a set of points x1, x2, . . . , x Vj j

� �

with xi 2 R
d: i.e. each node of G is assigned a coordinate in a

space of d dimensions, such that some original topological

properties of the network are preserved in this low-dimensional

space. As explained in the Introduction, manifold embedding

algorithms can be easily adopted for network embedding, al-

though not all algorithms that learn manifolds are applicable

for this task: only those able to embed a topology starting

from a distance or adjacency matrix can be used. We chose to

compare MCE, ncMCE and Isomap (and IsomapþFSW)

against well-established unsupervised and supervisedly tuned

manifold embedding algorithms that accept a distance or adja-

cency matrix as input. The unsupervised embedding techniques

considered are Sammon mapping (a type of non-linear MDS)

(Sammon, 1969), and two force-based embedding techniques:

stochastic neighbourhood embedding (SNE) (Hinton and

Roweis, 2003) and tSNE (a variant of SNE) (van der Maaten

and Hinton, 2008). The supervisedly tuned techniques are local

MDS (Venna and Kaski, 2006) and neighbour retrieval visualiser

(NeRV) (Venna et al., 2010). These methods are also force based,

but instead of using forces based on kernels (like SNE or tSNE),

they use forces based on neighbourhood graphs (Shieh et al.,

2011). Both local MDS and NeRV require a parameter � to be

tuned between 0 and 1. In this work, we assessed the perform-

ance of these two techniques using values of � from 0 to 1 in steps

of 0.1, and took the low-dimensional coordinates that yielded the

best prediction result (see Supplementary Sections II.2 and II.3).

2.3 MCE followed by shortest-path distance

MCE is a parameter free and time-efficient unsupervised algo-

rithm for non-linear dimensionality reduction (Cannistraci et al.,

2010), which was presented as a new form of non-linear MDS

(see Algorithm 1 and Supplementary Section II.1 for details on

the original version of MCE, the innovations proposed in this

article and details on MCE’s time complexity). Here, we propose

the use of MCE for embedding a network into a space of reduced

dimensionality. MCE performs the embedding of the network

connectivity distances measured over the minimum spanning

tree (MST) of the original network. This novel MST-derived

measure of connectivity was more generally formalized in a pre-

vious study as a non-linear measure that we refer to as minimum

curvilinearity (MC), and the pairwise MC distances between

nodes of the MST give rise to the MC matrix (Cannistraci

et al., 2010).
The fact that the MST is a neighbourhood graph that can well

approximate the main network information—offering a general

summary of the network topology—has been extensively shown

in different applications (Cannistraci et al., 2010; Shaw and

Jebara, 2009; Shieh et al., 2011), and in our case, this can be

particularly useful for denoising the information present in

PPINs. In fact, the false-positive (FP) rate of currently widely

used experimental technologies is significantly high, sometimes

exceeding 60% (Kuchaiev et al., 2009).

MC tends to stress local topological distances and dilate large

connectivity distances (Cannistraci et al., 2010). A consequence is

that the use of MCE for embedding causes a sort of network

deformation when the network structure is compressed in a

reduced space of just a few dimensions. The deformation aug-

ments the separation between nodes far apart in the network

topology and maintains or reduces the distances between

nearby nodes (Cannistraci et al., 2010). This might be a point
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of weakness for network visualization because it stretches the

network shape in the reduced space. However, it is a point of

strength for link prediction because it generates a non-linear soft-

threshold effect—a type of gradual denoising (Cannistraci et al.,

2009) based on a non-linear transformation—on the network

connectivity distances measured in the reduced space. The soft-

threshold discriminates between candidate links of protein pairs

far apart in the original network topology (which earn large

score values because they are now connected by enlarged path

distances in the embedded space), and candidate links connecting

nearby proteins in the original network topology (which earn

small score values because they maintain or reinforce their topo-

logical proximity in the embedded space).
To maximally exploit the effect of such soft-thresholding, we

propose the use of the SP distance in the low-dimensional space.

As the network topology—mapped to a reduced space—should

now be sufficiently denoised by means of the MCE device, the

use of the SP (instead of the ED) appears to be a more appro-

priate way to assign distances between nodes because it obeys

the denoised network topology. This is even more reasonable

considering that each interaction is remapped in the reduced

space with a positive and definite numerical weight (see

Supplementary Section II.1 and Fig. S2). In conclusion, we

expect the SP to be a congruous measure for converting the

topological discrimination obtained by the MCE soft-threshold

effect into a value. This computational engagement between

MCE as a technique for embedding (useful for denoising net-

works affected by FP interactions) and SP for determining net-

work-connectivity distance (effective when the networks are pure

or denoised, and present few FP interactions), gives rise to a

synergy that can boost the separation between good and bad

candidate links in the ranking.

2.4 Non-centred MCE

The expression crowding problem means that after dimension

reduction, data clusters collapse on top of each other in the

reduced embedding space (van der Maaten and Hinton, 2008).

This problem has particular relevance in network embedding

because we want to avoid diverse network components collap-

sing in the same region of the reduced space, as this can cause

incorrect link predictions. For this reason, we decided to intro-

duce the ncMCE and test its performance in solving the crowd-

ing problem.

Here, we propose a new version of MCE as an inedited form

of non-linear-kernel principal component analysis. In this new

version, the MC matrix is interpreted as a non-linear and par-

ameter-free kernel, and MC is a non-linear and parameter-free

measure that produces a distance transformation stored in the

MC kernel (previously referred to as the MC matrix). The first

step of the new algorithm remains unaltered, while the embed-

ding of the MC kernel is now executed by singular value decom-

position (SVD) according to the following procedure: (i) centring

of the MC kernel; and (ii) SVD decomposition of the centred

MC kernel, followed by the embedding in an arbitrary dimen-

sion. An advantage of the new algorithm is that the centring of

the MC kernel can be omitted (see Algorithm 1 and

Supplementary Fig. S1). In practice, this generates a different

dimension-reduction device, which we refer to as non-centred

MCE (ncMCE). There is no universal rule for when centring

transformation should be used in the analysis. Nevertheless,

non-centring has been shown to offer several advantages

(Basnet, 1993; Jolliffe, 2002). This is particularly evident in visu-

alization tasks, when the set of points that form each cluster is

distributed around the centre of the mass in the high-dimensional

space. If we perform embedding in two dimensions after the

centring transformation, the points tend to overlap around the

origin of the first two dimensions, which is a typical example of

the crowding problem. However, in most cases, executing the

embedding without centring can significantly reduce this issue.

In addition, omission of the MC kernel centring means that

ncMCE has a time complexity of O Vj j2
� �

, and thus is more ef-

ficient than the other considered embedding techniques, such as

MCE and Isomap, that have a time complexity of O Vj j3
� �

. For

this reason, ncMCE also offers a significant computational ad-

vantage for handling very large networks (see Supplementary

Section II.1.2 and Table S2).
The new algorithm for ncMCE and MCE is available on the

website indicated in the abstract.

Algorithm 1 Minimum Curvilinear Embedding (MCE)

Input:

A, n� n adjacency matrix representation of a PPIN (n¼number of

nodes in the network);

d, the embedding dimension;

c, a Boolean specifying whether the MC kernel will be centred or

not;

Output:

X, n� d matrix whose rows are the points with coordinates in a d-

dimensional reduced space;

Description:

Extract the minimum spanning tree T out of A;

Compute the distances between all node pairs over T to obtain the

MC kernel D;

If c ¼¼ TRUE: Centre kernel D, i.e. D ¼ � 1
2 JD

2J with

J ¼ I� 1
n 11

T;

Else: Continue;

Perform ‘economy size’ singular value decomposition of

D ¼ Ud�dV
T
d ;

Return X ¼
ffiffiffiffiffiffi
�d

p
Vd

� �T
;

* MT indicates matrix transpose, I is the n� n identity matrix and 1 is a

column vector of ones.

2.5 Node neighbourhood methods

To assess interaction reliability, several node neighbourhood

techniques for link prediction have been proposed to exploit

the topology of a PPIN, such as Interaction Generality (IG1)

(Saito et al., 2002), IG2 (Saito et al., 2003) and IRAP (Chen

et al., 2005), or to predict protein function, such as the

Czekanowski-Dice Dissimilarity (CDD) (Brun et al., 2003) and

FSW (Chua et al., 2006). These techniques have also been used

to predict PPIs based on the topological properties of the neigh-

bours of candidate protein pairs (You et al., 2010). As shown in

Chen et al. (2006) and Chua et al. (2006) and mentioned in You

et al. (2010), FSW and CDD outperform IG1, IG2 and IRAP.

Because of this evidence, and considering that IG2 and IRAP are

very computationally expensive (Chen et al., 2005), we decided to

use only IG1 (as a baseline), CDD and FSW (details and
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associated formulae for these approaches appear in

Supplementary Section III).

3 METHODS

3.1 Testing the proposed innovations

3.1.1 Fraction of FPs visited by MC and SP We generated 1000

random geometric graphs (for details see section 3.1.4) with small-world

and scale-free topology, which are properties common to real biological

and PPI networks. Each network had 1000 nodes and was modelled with

levels of noise similar to those of real PPINs: around 40% false negatives

(FNs) and 60% FPs (Kuchaiev et al., 2009). We counted the fraction of

unique FPs visited out of the total number of FPs present when comput-

ing SPs between all node pairs over the entire network (first step of the

Isomap algorithm) and over the MST (first step of the MCE algorithm).

3.1.2 Solving the crowding problem Although it is not a biological

dataset, the radar signal dataset is a point of reference in machine learning

and is an important benchmark for testing the ability of embedding tech-

niques to solve the crowding problem (Shieh et al., 2011). Instead of

creating an artificial dataset, we decided to use a real one to test whether

ncMCE is able to solve the crowding problem and, as a result, better

embed networks into low dimensions. The radar signal dataset is highly

non-linear and has 351 samples characterized by two classes: good radar

signals that are highly similar, and bad radar signals that are highly dis-

similar (Shieh et al., 2011).

3.1.3 Discrimination between good and bad candidate
links Following Kuchaiev et al. (2009) and You et al. (2010), for

each of the four considered yeast networks, we fitted a non-paramet-

ric estimate to the distribution of low-dimensional distances between

connected nodes in the network p distancejoriginalð Þ and another one

to the distribution of distances between non-adjacent nodes

p distancejcandidateð Þ. We used the Mann–Whitney non-parametric test

to determine whether there was a statistically significant difference be-

tween p distancejoriginalð Þ and p distancejcandidateð Þ over the different di-

mensions of embedding.

3.1.4 Evaluation on random geometric graphs Random geometric

graphs (RGGs) are important because there is indication that they can be

good models for networks such as PPINs (Przulj et al., 2004). We gen-

erated RGGs by accommodating 1000 points uniformly at random in the

100-dimensional unitary cube and then connected them if and only if the

dot product (similarity) between the vectors with tails in the origin and

heads over these points was above a connectivity threshold r. We set the

threshold by ensuring that properties common to real biological networks

(small-world and scale-free topologies) and connectivity were present.

The advantage of using RGGs to test our innovations is that the sets

of true and spurious interactions are clearly defined: true interactions are

those that fulfil the threshold and spurious links are those that do not.

Based on this, we generated noise in the structure of 1000 different RGGs

(noisy networks) in amounts typical of PPINs (40% FNs and 60% FPs)

and performed a sparsification experiment in which the embedding pre-

dictors (a detailed explanation of how embedding prediction works is

given in section 3.2 and Fig. 1) were adopted to rediscover the removed

true interactions present in the generated RGG. During this test, the

networks were embedded into dimensions 1 to 10, which is the recom-

mended range for testing the performance of Isomap (You et al., 2010).

Next, we repeated the experiment to assess the performance of the embed-

ding predictors on a sparsification experiment over 1000 different RGGs

without noise (clean networks).

3.2 General prediction and GO-based evaluation

framework

The flow diagram in Figure 1 depicts the required steps for link prediction

and GO-based performance evaluation in PPINs. In the prediction phase,

the original network lying in the high-dimensional space is represented as

an adjacency matrix A with entries Ai, j ¼ 1 if nodes i and j interact and

Ai, j ¼ 0 otherwise (each of these non-adjacent pairs of nodes is con-

sidered a candidate interaction). Next, the network is embedded into a

reduced space (initially of dimension 1) where both the original network

links and the candidate edges are scored by means of either ED (as in

Kuchaiev et al. and You et al.) or SP (our proposed variation, see section

2.3). Both sets of links are then ranked (see table of scored interactions in

Fig. 1). A criterion (based on the ranked list) is used to automatically

determine an appropriate dimension into which the network should be

embedded (see sections 3.3 and 4). If the criterion is not fulfilled, the

above procedure is repeated for a higher dimension, otherwise it stops

and a list is output using only the ranked candidate interactions (see table

of scored candidate interactions in Fig. 1). The code that takes A as input

and provides the scored list of candidates as the output is available on the

website provided in the abstract.

The evaluation phase is specific to PPINs and follows the same gene

ontology (GO) strategy adopted in past studies (Chen et al., 2005, 2006;

Saito et al., 2002, 2003; You et al., 2010). The proteins involved in the

interactions from the candidate list are annotated via GO terms (molecu-

lar function or MF, biological process or BP, and cellular compartment

or CC). If the terms associated with a protein pair have a high Wang’s

GO semantic similarity (see Supplementary Section IV.2), the PPI is

Fig. 1. Link prediction and performance evaluation in PPINs. The com-

ponents in red correspond to the novel features proposed in this study
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considered to be biologically relevant (marked with a Yes in the table in

Fig. 1) and is used to quantify the precision of the predictors. GO is used to

assess how precisely the prediction techniques place candidate interactions

that are likely to be real at the top of the ranking list (You et al., 2010). A

recursive procedure is applied to create a precision curve. Each time, an

increasing fraction of candidate PPIs (the first 100, the first 200 and so on)

is taken from the top of the list of ranked candidate interactions for con-

sideration. The fraction of candidate interactions that are relevant to GO

generates a point on a precision curve. Conventionally, a number of top-

ranked candidate links, equivalent to 10% of the links in the original net-

work, is used to compute the entire precision curve (You et al., 2010). We

also examine the curve generated for a number of candidates equal to

100% of the original network links (see Supplementary Section IV). The

area under the precision curve (AUP)—normalized with respect to the x-

axis so that it ranges from 0 to 1—summarizes the performance of the

prediction technique for a given network. Precision and AUP are the pre-

ferred statistics (Chen et al., 2005, 2006; Saito et al., 2002, 2003; You et al.,

2010) for evaluating the predicted links in biological networks, owing to

their noisy nature. Having a non-adjacent pair of proteins in PPINs does

not mean they cannot interact at all, and we cannot label the missing

interaction as a TN. It is quite possible that these proteins have not yet

been tested for interaction, or that it is experimentally difficult to do so (see

Supplementary Section IV). As a result, performance statistics that do not

rely on the number of TNs, such as Precision, are more suitable in this

context than others, such as the AUC.

We also propose an innovative strategy for evaluating the performance

of a link prediction technique at different levels of random sparsification

of the original PPIN. Given a network G ¼ ðV,EÞ, we generated an initial

set of 50 sparsified networks by removing a fixed portion of links

e ¼ 0:1 Ej j(10% of links) uniformly at random from the original topology

(sparsification process). Then, we generated a second set of 50 sparsified

networks by removing the same fixed amount of links, e, uniformly at

random from the networks sparsified in the previous step (a total of 20%

of links removed). This process was repeated several times up to the point

where network connectivity was lost. The AUP of each prediction tech-

nique was computed for each percentage (proportion of links removed)

for the 50 networks, and the average AUP is reported as a sparsification

curve. In addition, the area under this sparsification curve is useful for

quantifying the robustness of a technique as a function of the network

sparsity, which is one of the main issues for current link predictors (You

et al., 2010).

Some GO annotations may be subject to experimental bias or come

from not very reliable sources (Rhee et al., 2008). To address this issue,

and as an additional verification of the candidate interactions proposed by

the best techniques, we performed what we call an in-silico validation. We

took the top 100 candidate interactions proposed by the best techniques

and intersected them with the entire STRINGDatabase (Szklarczyk et al.,

2011) in March 2013. STRING is the most complete compendium of PPIs

found in the literature, experiments, coexpression, etc. Given a list of pro-

teins, it finds the interactions between them along with an assigned confi-

dence value based on the available evidence that they exist. The output of

this validation was used to compute (i) the number of protein pairs vali-

dated for each network out of the top 100; (ii) the average STRING con-

fidence along with its standard deviation; and (iii) the average GO

confidence along with its standard deviation. Note that this validation

was carried out for candidate interactions only, and the PPIs of the used

main network datasets were not considered in this analysis. Therefore, the

overlap between the studied networks and STRING is unlikely to influence

the results (see Supplementary Section I).

3.3 The AUC criterion for dimension determination

The AUC criterion is designed to work in combination with any network

embedding algorithm adopted for link prediction: it automatically deter-

mines the dimension into which the network should be embedded (see

Supplementary Section II.4.1 for details). For a certain dimension of

embedding, the prediction procedure (Fig. 1) assigns a likelihood score

to each interaction (low scores correspond to interactions that are likely

to occur and high scores to interactions that are not). The scores are

computed for both the original interactions in the network (O) and the

candidate interactions (C), which are all those protein pairs that were not

linked in the input network.

The scored O and C interactions generate two distance distributions

(see Supplementary Fig. S7 for an example). As suggested by Kuchaiev,

You and their teams, we can vary a cut-off ", from 0 up to the maximum

distance of the two distributions, so that all protein pairs with scores

below " are considered positives and all protein pairs with scores above

" are considered negatives (Supplementary Fig. S7). Kuchaiev et al. and

You et al. suggest that by taking the original network PPIs as our positive

set, we can compute the number of TPs, FNs, FPs and TNs at each " cut.

This will yield a pair (1-Specificity, Sensitivity) that, measured for the

entire " range, generates a Receiver Operating Characteristic curve

(ROC) and an Area Under the ROC Curve (AUC) that characterizes

the performance for the current dimension (Supplementary Fig. S7). Both

research groups showed that the AUCs for different dimensions were

very similar and the increase in the AUC value tended to vanish for

higher dimensions; thus, they considered a fixed dimension of 5 and 10

respectively for their experiments (You et al., 2010). We took advantage

of this finding (Supplementary Fig. S7) by computing the AUC for each

dimension, starting with dimension 1 and continuing until the difference

between the AUC of one dimension and the next was less than 1E-3. In

several tests, we found that 1E-3 represents such a small difference be-

tween AUCs that we can consider it not significant; thus, the last AUC is

considered appropriate to identify the dimension for embedding. We then

took the scored candidate interactions given by this dimension for the

final evaluation of the method used.

3.4 The resolution criterion for dimension determination

One of the motivations for proposing a second criterion was that the AUC

criterion considers the original network as a sort of gold standard, when in

reality it includes several false interactions (You et al., 2010). The new

criterion for dimension determination is based on the idea that the greater

the difference between likelihood score values, the better they discriminate

between good candidates and bad candidates in the ranking. Thus, we

need to define a measure of the resolution of the score values provided by

each dimension, such that the higher themeasure, the higher the resolution

and the more we should consider this dimension as correct for embedding.

The measure we use for dimension determination is as follows:

ResolAll ¼
�ðunique scoresð ÞÞ

Dim
ð1Þ

This formula takes all of the unique score values of the candidate

interactions in dimension Dim, computes its standard deviation � and

divides it by Dim. The unique score values give us an indication of the

Dim’s resolution. We then determine the quality of that resolution by

computing �, which quantifies the variation between the unique score

values. Finally, the division by Dim penalizes the higher dimensions,

which have been shown not to provide any relevant increase in perform-

ance (You et al., 2010). We specifically designed this criterion to fit with

the quality of MCE, which provides more of a soft-threshold effect in low

dimensions. This is why we only tested the resolution criterion in com-

bination with MCE. We also applied a variation of Equation (1) to check

whether dimension determination using only the ranked interactions be-

tween 0 and 100 would generate a better AUP. The difference between

Equation (1) and (2) is that in (2) we compute � on the unique scores

from the top 100 candidate protein pairs:

Resol100 ¼
�ðunique scores1 to 100ð ÞÞ

Dim
ð2Þ
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4 RESULTS AND DISCUSSION

4.1 Fraction of FPs visited by MC and SP

The results presented in Supplementary Figure S3 for the artifi-

cial networks (RGGs) suggests that the estimate of non-linear

connectivity measure using the MST (i.e. MC) takes into account

only a small proportion of FPs, offering a denoised estimate of

the network connectivity. In contrast, using the SP over the

entire noisy network counts all FPs at least once, which intro-

duces a lot of noise into the link prediction process. The same

investigation was conducted on the four yeast networks, in which

the FP links were identified using the same GO-based strategy

mentioned in section 3.2. The outcome of this second analysis

(Supplementary Fig. S3) converged to the same result obtained

for the artificial networks. These findings support the hypothesis

that MCE should be a powerful tool for link prediction in noisy

networks. In fact, as noisier networks present more FP inter-

actions, the use of ncMCE/MCE in such cases should produce

an even greater increase in performance over the use of Isomap.

As current PPINs are sparse and noisy (You et al., 2010), the use

of ncMCE/MCE instead of Isomap should offer clear advan-

tages in network denoising and link prediction in the reduced

space. A proof of this is provided in the computational experi-

ment on RGGs discussed in section 4.4.

4.2 Solving the crowding problem

The ncMCE (Fig. 2A) offered the best embedding of the radar

signal dataset and attained high linearization (Fig. 2E) in both

the first (AUC¼ 0.95) and the second dimensions (AUC¼ 0.96).

The ROC curve is used to evaluate the discrimination power

along a dimension of projection: if the dimension offers a

linear discrimination between the good and bad signals, the re-

spective AUC will be 1. We also tested the performance of

Isomap, which is a reference algorithm for non-linear dimension

reduction, but its embedding was highly crowded (Fig. 2C).
In contrast, Tree Preserving Embedding (TPE) (Shieh et al.,

2011)—a recent parameter-free algorithm for non-linear dimen-

sion reduction—produced non-linear discrimination (good sig-

nals in the centre and bad signals on the periphery) of the

clusters around the origin of the axis (Fig. 2D). This demon-

strates that TPE can address the crowding problem but cannot

solve the non-linearity of the dataset. MCE solved the non-lin-

earity in the second dimension (Fig. 2E), but only partially ad-

dressed the crowding problem (Fig. 2B). The only algorithm that

was able to simultaneously solve both the non-linearity and the

crowding problem in this dataset was ncMCE (Fig. 2A and E).

Interestingly, on the basis of the embedding offered by ncMCE

and MCE, one might speculate that the high dissimilarity be-

tween the bad radar signals pointed out in previous studies

(Shieh et al., 2011) could be interpreted as the presence of at

least two different kinds of bad radar signal clusters that are

difficult to embed due to their high non-linearity (elongated

and/or irregular high-dimensional structure). The possible dif-

ferent bad-signal clusters are indicated in grey and black in

Figure 2. Finally, whereas only a few seconds were needed to

run ncMCE, MCE and Isomap, TPE took several hours to

embed this small dataset, and its current implementation can

be prohibitively slow for large datasets. As TPE is inefficient

for embedding networks composed of thousands of nodes, we
could not evaluate its performance in the present study.

4.3 Discrimination between good and bad candidate links

Given the embedding of any PPIN, if the hypothesis that nodes
closer to each other in the reduced space are more likely to inter-

act is true, the network-link distribution p distancejoriginalð Þ

should have higher peakedness (kurtosis) than the candidate-

link distribution p distancejcandidateð Þ; in addition, p distancejð

original) should be shifted towards zero. The results in
Figure 3 and Supplementary Figure S4 show that in all networks,

ncMCE-SP had the highest kurtosis and shift towards zero.
Moreover, links from the original network topology that are
distant from the origin are likely to represent false positives,

while non-adjacent nodes whose distance is close to zero are
good candidates for interaction.
Furthermore, Supplementary Figure S4 shows that in the four

considered networks, there was a statistically significant differ-
ence between p distancejoriginalð Þ and p distancejcandidateð Þ. This
significant difference was conserved across the different dimen-

sions, and was much larger when the SP scoring technique was
used in the reduced space. This indicates that SP should work
better than ED for scoring proximity distances between network

nodes (proteins) in the reduced space.

Fig. 2. Embedding of the radar signal dataset. The red spots indicate

good radar signals. The grey and black spots indicate bad radar signals,

which might be interpreted as two diverse sub-categories of bad signals.

(A) ncMCE. (B) MCE. (C) Isomap. (D) TPE. (E) ROC and respective

AUC computed for evaluating the linear discrimination performance of

the first (Dim1) and second (Dim2) dimensions. The evaluation was re-

peated for each of the four techniques on the two dimensions of embed-

ding. To facilitate the visualization, we do not report the ROC for TPE

due to its poor performance
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4.4 Evaluation on random geometric graphs

Figure 4A–C shows that the two variations of MCE (especially

ncMCE-SP using dimension one) were the strongest approaches

for re-predicting true interactions in 1000 RGGs with similar

levels of noise to those in real protein networks. Next,

Figure 4D–F shows that when we repeated this experiment in

1000 RGGs without noise, ncMCE-SP still had the best perform-

ance (using dimension 1), but Isomap-SP came significantly

closer. However, as our RGGs are sparse, the number of candi-

date links is very large compared with the number of links

deleted during sparsification. In such conditions, link prediction

is generally a difficult task, and this justifies the low precision

values in Figure 4 (see Supplementary Section II.1.1 for more

details). Altogether, these results indicate that (i) the use of

ncMCE presents a clear advantage over MCE; (ii) the lower

dimensions (especially dimension 1 for ncMCE) are very effective

when using ncMCE/MCE-based algorithms; (iii) the gap be-

tween ncMCE-SP and Isomap-SP increases in the presence of

noise, which especially encourages the use of ncMCE-based al-

gorithms in noisy networks such as PPINs; and (iv) the use of SP

(to assess the scoring in the reduced space) generally offers a clear

advantage over the use of ED. RGGs are crucial for designing a

ground-truth evaluation that allows us to directly observe the

effect of introducing noise (false interactions) in the re-prediction

of the real/original network topology. Because GO-free evalu-

ations are essential for demonstrating the performance of link

predictors in the absence and presence of network noise, the

findings here are our first important results.

4.5 Evaluation using gene ontology

The novel approach we propose is based on the intuition that

network embedding by ncMCE/MCE combined with the SP

connectivity distance in the reduced space can boost the perform-

ance in topological prediction of candidate PPIs. In Figure 5, we

provide experimental confirmation of our intuition (see

Supplementary Figs S11, S12 and S13, where we show that

even when the Molecular Function GO category is excluded,

when a wider candidate list of interactions is included in the

evaluation or when proteins involved in large complexes are

removed from the analysis, in general, our proposed approaches

outperform the others). MCE and ncMCE combined with SP

outperformed both Isomap and pure SP (computed on the ori-

ginal network without embedding) in all networks. Isomap

Fig. 4. Sparsification and reprediction of random geometric graphs. Mean re-prediction precision of true-positive interactions for different sparsification

levels of noisy networks with 60% false-positive interactions in their original topology: embedding dimensions 1 (A) and 4 (B) are displayed. The

standard error bar is reported for each point. Analogous plots for clean networks (which do not present false-positive interactions in their original

topology) are reported again for dimensions 1 (D) and 4 (E). The Area under the Mean Precision Curve is reported for each dimension of embedding,

considering the re-prediction of true-positive interactions in noisy (C) and clean (F) networks. The arrow indicates the overall best performance (given by

ncMCE-SP in dimension one). The percentage improvement in respect to the best Isomap (ISO-SP) performance is reported

Fig. 3. Discrimination between original network and candidate PPIs.

Distribution of shortest-path scores in the reduced space (dimension 3

displayed) for Ben-Hur and Noble 2005 dataset. Network links p(dis-

tancejoriginal) (solid line) and candidate links p(distancejcandidate)

(dashed line) after (A) ncMCE and (B) Isomap network embedding.

The insets show the distribution of Euclidean distance scores
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performed even worse than pure SP in the first network. Besides,

the simulation in Figure 5 suggests that in general ncMCE-SP

slightly outperforms MCE-SP; and Supplementary Figure S6

shows that ncMCE-SP even outperfomed IsomapþFSW.

In addition to the above results, there is evidence (Fig. 6) that

although we used several advanced techniques for dimensionality

reduction (both unsupervised and supervisedly tuned), ncMCE-

SP remained the overall leader, which represents our second im-

portant finding. Surprisingly, we discovered that even though

local MDS and NeRV were supervisedly tuned to achieve their

best performance, they could not equal ncMCE-SP. This result

suggests that force-based methods for embedding are not appro-

priate in this context, at least when combined with ED or SP in

the reduced space. The reason for their poor performance is that

these algorithms perform an embedding that finely preserves the

network topology, thus also preserving the noise. In contrast,

ncMCE provides a soft-threshold effect (discussed in Section

2.3), which boosts the separation between good and bad candi-

date links in the ranking.

For completeness, we compared ncMCE-SP with FSW and

CDD, two of the most efficient node neighbourhood techniques

(You et al., 2010). ncMCE-SP ranked first, with a notable im-

provement, in the first two networks (Ben-Hur and Noble 2005;

Chen et al. 2006; Supplementary Fig. S9), and second in the third
network (You et al. 2010 sparse, Supplementary Fig. S9). In the

fourth network, all of the techniques produced similar perform-
ances (You et al. 2010 dense, Supplementary Fig. S9). According

to the minimum precision curve attained in the four different
networks, ncMCE-SP was also the most robust technique

(Robustness comparison, Supplementary Fig. S9). FSW ranked
first in the third network, while in the first two networks its

performance was similar to that of CDD. Given these results,
we can conclude that ncMCE-SP offers a general improvement,

particularly in robustness, compared with the other techniques.

4.6 Testing the criteria for dimension determination

Another important variation we introduce here is the use of two

diverse criteria for automatically selecting the congruous dimen-
sion into which the network should be embedded. So far, in the

simulation showed in Figures 5 and 6, we used the AUC criter-
ion, which was designed to work with any algorithm for embed-

ding. Unlike the AUC criterion, the resolution criterion was
designed to fit better with MCE, which provides more of a

soft-threshold effect (thus stronger denoising) in the lowest
dimensions.
This is experimentally confirmed in Supplementary Figure

S8A, where the peaks of the resolution criteria (both ResAll

and Res100) are always in one of the first two reduced dimen-

sions. From Supplementary Figure S8B, we gather that the AUC
criterion and the ResAll criterion selected the same dimensions,

and thus show equal precisions. However, in terms of robustness
(Supplementary Fig. S8C), the Res100 criterion slightly outper-

formed the others. These results corroborate our intuition to
invent a new and radically different criterion based on the reso-

lution of the unique score values, which is an easy and time-
efficient strategy.

4.7 Network sparsification evaluation

To present a more refined vision of the potential offered by
topological link-prediction techniques, we introduce a new evalu-

ation strategy called network sparsification experiment (see sec-
tion 3.2 for details). This approach was used to generate the

results shown in Figure 7, which compares the main embedding
techniques (ncMCE, MCE and Isomap) and the reference node

neighbourhood techniques (FWS, CDD, IG1 and SP). All of the
embedding methods were tested in combination with the same

distance (SP) to measure candidate-link likelihood in the reduced
space. Figure 7A and B display the sparsification curves of the

first two networks for ncMCE-R (R indicates the use of the
resolution criterion) and FSW that were the highest ranked

methods overall in their respective categories. Although
ncMCE-A (A indicates the use of the AUC criterion) attained

the same result as ncMCE-R in each network, for the sake of
clarity, we display only the curve of the latter. The methods were

ranked considering the area under the sparsification curve

(AUS). To evaluate the general performance of the methods,
we considered the minimum AUS performance of each method

for all networks (Fig. 7C).
A special variation of this experiment was performed on each

network (Supplementary Fig. S5) to investigate whether the ex-

traction of different MSTs from the networks resulted in

Fig. 5. Performance comparison between ncMCE, MCE, Isomap and

pure SP computed in the high-dimensional space. The x-axis indicates

how many interactions are taken from the top of the candidate inter-

action list (sorted decreasingly by score), and the y-axis indicates the

precision of the technique for that portion of protein pairs. Solid lines

indicate the use of the SP in the reduced space to assign scores and dashed

lines the use of the ED
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important changes in ncMCE performance. This is a possibility

because all of the network links have a weighting value of 1. For

this test, only ncMCE was used because it generally outper-

formed MCE, as shown in Figures 5 and 6. Here, for each per-

centage of link deletions, 100 different MSTs were extracted (by

random initialization). The AUPs attained by the different

ncMCEs (each of which uses a different MST) were averaged

and their standard error bars included in the sparsification curve.

The standard error bars for the ncMCE’s sparsification curves

(Supplementary Fig. S5) show that the difference in the perform-

ance of ncMCE when using different MSTs was negligible.
In general, MCE-based embedding techniques (red bins in the

histogram, Fig. 7C) outperformed the node neighbourhood tech-

niques (green bins in the histogram, Fig. 7C), and ncMCE was

again the best method. Taken together, our experiments suggest

that ncMCE-SP might represent a new benchmark for robust-

ness in the topological prediction of PPIs, and this is the third

main result of our study.
As a further investigation, starting with the final set of

sparsified networks generated in the previous experiment, we

re-densified their topologies by random addition of links and

applied two approaches (ncMCE-R and FSW) at each percent-

age of densification. As we can see in Figure 7A and B, this

process was unable to re-create a meaningful topology that

might have been shaped by evolutionary features in the history

of the protein interactome. If a topology analogous to the ori-

ginal had been recovered, the prediction techniques would have

been able to achieve a performance comparable with that

reached before network sparsification.
This finding emphasises the presence of preferential bio-infor-

mation in the PPIN topology that cannot be modelled by uni-

form random sampling of new interactions. Therefore, the simple

unweighted topology can be highly informative for different pur-

poses, one of them being the prediction of new interactions or

alternatively, as recently shown, the structural controllability of

any complex network (Liu et al., 2011).

4.8 In silico validation

As mentioned in the Introduction, the experimental detection of

PPIs can be very expensive in terms of both time and money. The

computational approaches we investigated to predict novel inter-

actions are meant to guide wet-lab experiments rather than to

complete the interactome of the organism under study.

Currently, the Y2H validation of 100 protein pairs can represent

Fig. 6. ncMCE-SP against advanced unsupervised and supervisedly

tuned embedding techniques. The x-axis indicates how many interactions

are taken from the top of the candidate interaction list (sorted by decreas-

ing score), and the y-axis indicates the precision of the technique for that

portion of protein pairs. Solid lines represent the performance of tech-

niques that use SP in the reduced space to assign scores and dashed lines

represent techniques that use ED. Although ncMCE-SP (red solid line) is

an unsupervised approach, it appears on both sides for reference

Fig. 7. Network sparsification and redensification. (A and B)

Sparsification curves (solid line) and redensification curves (dashed

line). The arrows indicate the direction of the simulation (right for spar-

sification and left for redensification) as a function of the average node

degree. Each point on the curves is obtained as the average AUP on 50

random sparsified or redensified networks, and the standard error bar is

reported. (C) Sparsification robustness is useful for quantifying the ro-

bustness of a technique as a function of the network sparsity. It is com-

puted as the minimum area under the sparsification curve (AUS) among

all networks. The red bins indicate MCE-based methods; the green bins

indicate neighbourhood-based methods; the blue bins indicate Isomap-

based methods; and the violet bin indicates the pure SP directly applied

on the network
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a challenging upper limit to simulate a real scenario for the
budget of many labs. We decided to suggest different sets of
candidate interactions to test in wet-lab experiments, and we

report the evaluations for different thresholds: 20, 40, 60, 80
and 100. We executed an in-silico validation to verify the quality
of the candidate interactions proposed by the best techniques.

The top 100 ranked interactions for ncMCE-SP-Res100 and FSW
were tested on the STRING database, which is the most com-
plete PPI database. The results for the different thresholds are

reported in Supplementary Figure S10E. ncMCE-SP-Res100 at-
tained promising results in this last test, surpassing FSW for GO
precision (Supplementary Fig. S10A and D), GO robustness

(Supplementary Fig. S10B) and STRING confidence robustness
(Supplementary Fig. S10C and D).
The list of the top 100 candidate interactions ranked by

ncMCE-SP-Res100 is reported for each of the analysed networks
in Supplementary Table S1 and the respective list for FSW in

Supplementary Table S2. GO semantic similarities and STRING
confidence values are also included. To search for the biological
information related to the interactions predicted by ncMCE-SP-

Res100 and validated in STRING, for each network we per-
formed a pathway enrichment analysis using DAVID
Bioinformatics Resources 6.7 (Huang da et al., 2009a, b). For

each network, the list of proteins involved in the predicted and
validated interactions was tested against all network proteins as
background. This kind of background choice was motivated by

the fact that it tends to produce more conservative P-values and,
in fact, a general guideline for the enrichment analysis is to use a
narrowed-down list of genes instead of all genes in the genome

(Huang da et al., 2009a, b). In addition, the Benjamini correction
for multiple hypotheses test was applied. The results of the ana-

lysis (reported in Supplementary Table S3) emphasize that the
lists of predicted and STRING-validated protein interactions
have significant biological meaning in at least one pathway for

each of the investigated networks. Interestingly, the predicted
proteins were involved in cellular processes (e.g. cell cycle), nu-
cleotide metabolism (e.g. pyrimidine and purine metabolism) and

genetic information processes (e.g. RNA polymerase and RNA
degradation). This evidence suggests that the proposed method
predicted interactions in different network modules that are

related to significant and heterogeneous pathways in yeast.

5 CONCLUSIONS AND PERSPECTIVE

Considering the difficulty of dealing with sparse and noisy pro-
tein networks (You et al., 2010), our results represent a promis-

ing achievement and encouragement to further the investigation
of network embedding techniques for topological prediction of
candidate protein interactions. In our tests, the ncMCE showed

enhanced performance in network embedding-based link predic-
tion compared with the other dimension-reduction algorithms.
In addition, ncMCE has a time complexity of only O Vj j2

� �
—

which is lower than the complexity of the other considered ma-
chine learning techniques—and is a valid candidate for handling
very large networks. Finally, our experiments revealed that the

shortest path works significantly better than the Euclidean dis-
tance for scoring proximity distances between network nodes
(proteins) embedded in the reduced space. We envision that net-

work-embedding techniques for predicting novel PPIs might play

an important role in the development of systems biology tools,

such as those used for network-based inference of disease-related

functional modules and pathways (Cannistraci et al., 2013b). The

real biological interactions could be complemented with the in-
silico predicted ones to boost the inference of the functional

modules. In the near future, this last point will become increas-

ingly important for patient classification, diagnosis of disease

progression and planning of therapeutic approaches in persona-

lized medicine (Ammirati et al., 2012).
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