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ABSTRACT

Motivation: High-spatial resolution imaging datasets of mammalian

brains have recently become available in unprecedented amounts.

Images now reveal highly complex patterns of gene expression

varying on multiple scales. The challenge in analyzing these images

is both in extracting the patterns that are most relevant functionally

and in providing a meaningful representation that allows neuroscien-

tists to interpret the extracted patterns.

Results: Here, we present FuncISH—a method to learn functional

representations of neural in situ hybridization (ISH) images. We repre-

sent images using a histogram of local descriptors in several scales,

and we use this representation to learn detectors of functional (GO)

categories for every image. As a result, each image is represented

as a point in a low-dimensional space whose axes correspond to

meaningful functional annotations. The resulting representations

define similarities between ISH images that can be easily explained

by functional categories. We applied our method to the genomic set of

mouse neural ISH images available at the Allen Brain Atlas, finding that

most neural biological processes can be inferred from spatial expres-

sion patterns with high accuracy. Using functional representations, we

predict several gene interaction properties, such as protein–protein

interactions and cell-type specificity, more accurately than competing

methods based on global correlations. We used FuncISH to identify

similar expression patterns of GABAergic neuronal markers that were

not previously identified and to infer new gene function based on

image–image similarities.

Contact: noalis@gmail.com

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

In recent years, high-resolution expression data measured in

mammalian brains became available in quantities and qualities
never witnessed before (Henry and Hohmann, 2012; Lein et al.,

2007; Ng et al., 2009), calling for new ways to analyze neural
gene expression images. Most existing methods for bio-imaging

analysis were developed to handle data with different character-
istics, like Drosophila embryos (Frise et al., 2010; Peng et al.,

2007; Pruteanu-Malinici et al., 2011) or cellular imagery
(Coelho et al., 2010; Peng et al., 2010). The mammalian brain,

composed of billions of neurons and glia, is organized in highly
complex anatomical structures and poses new challenges for

analysis. Current approaches for analyzing brain images are
based on smooth non-linear transformations to a reference

atlas (Davis and Eddy, 2009; Hawrylycz et al., 2011) and may

be insensitive to fine local patterns like those emerging from the

layered structure of the cerebellum or the spatial distribution

of cortical interneurons.
Another challenge for automatic analysis of biological images

lies in providing human interpretable analysis. Most machine-

vision approaches are developed for tasks in analysis of natural

images, like object recognition. In such tasks, humans can under-

stand the scene effortlessly and infer complex relations between

objects easily. In bio-imaging, however, the goal of image ana-

lysis is often to reveal features and structures that are hardly seen

even by experts. It is, therefore, important that an image analysis

approach provides meaningful interpretation to any patterns or

structures that it detects.
Here, we develop a method to learn functional representations

of expression images by using predefined functional ontologies.

This approach has two main advantages, accuracy and interpret-

ability, and it builds on a growing body of work in object

recognition in natural images, showing how images can be rep-

resented using the activations of a large set of detectors (Deng

et al., 2011; Li et al., 2010a, b; Malisiewicz, 2012; Malisiewicz

et al., 2011; Torresani et al., 2010). For object recognition, the

detectors may include common objects, like a detector for

the presence of a chair, a mug or a door. Here, we show how

to adapt this idea to represent gene expression images, by train-

ing a large set of detectors, each corresponding to a known func-

tional category, like axon guidance or glutamatergic receptors.

Once this representation is trained, every gene is represented as

a point in a low-dimensional space whose axes correspond to

functional meaningful categories.

We describe in Section 2.2 how to learn functional represen-

tations in a discriminative way and demonstrate the effectiveness

of the approach on in situ hybridization (ISH) gene expression

images of the adult mouse brain collected by the Allen Institute

for Brain Science (Lein et al., 2007). ISH image analysis has been

used in the past to infer gene biological functions from spatial

co-expression in non-neural tissues (Frise et al., 2010). However,

inferring functions based on gene expression patterns in the brain

is believed to be hard, as several studies found very low variabil-

ity between transcriptomic patterns of different brain regions,

sometimes even lower than between-subject variability for the

same area (Khaitovich et al., 2004, 2005). Neural expression

patterns are usually studied using methods that average

expression values over a brain region, and this averaging removes

fine-resolution spatial information that may differentiate

between brain regions. Here, we analyze high-resolution ISH

images at several scales, taking into account subtle, even cellular

resolution, information for functional inference.
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We find that gene function can indeed be inferred from neural

ISH images, particularly in biological processes that are related

to neural activities. Our approach detects related genes with

better accuracy based on the similarity of their functional repre-

sentations. Furthermore, these similarities can be explained and

interpreted using semantic terms.

2 METHODS

2.1 The data

We used whole-brain, expression-masked images of gene expression

measured using ISH, publicly available at the Allen Brain Atlas (www.

brain-map.org, also see Supplementary Material). Expression was

measured for the entire mouse genome. For each gene, a different adult

mouse brain was sliced into 100 -mm thick slices, mRNA abundance was

measured and the slice was imaged. The database holds image series

for420K transcripts. Most genes have one corresponding image series,

containing �25 imaged brain slices. Some genes were imaged more than

once and have several associated image series. In our analysis, we used the

most medial slice for each image series, yielding a typical image size of

8 K� 16 K pixels. In all, 4823 of the available 21 174 images showed no

expression in the brain and were ignored in subsequent analysis, leaving

16 351 images representing 15 612 genes. We also tested our approach on

a larger image set constructed by taking three images for each gene: the

medial slice, and lateral slices at 30% and 50% of brain size (from one

hemisphere). The results with this three-image set were mixed, and all

results reported later in the text are for the one-slice dataset

(Supplementary Material). Figure 1 shows examples of images, demon-

strating the complexity of neural expression patterns across brain regions

and multiple scales. The images analyzed in our study were in gray scale

but are shown here as color-coded by expression intensity for better

visualization.

2.2 A functional representation of images

We present a method to identify similarities between neural ISH images

and to explain these similarities in functional terms.

Our method consists of a visual phase, where we transform the raw pixel

images into a robust visual representation, and a semantic phase, where we

transform that visual representation using a set of 2081 gene-function de-

tectors. The output of these detectors comprises a higher-order semantic

representation of the images in a gene-functional space (Fig. 2). Similar

two-phase systems have recently been proposed and applied successfully

for tasks, such as cross-domain image similarity and object detection in

natural images (Deng et al., 2011; Li et al., 2010a, b; Malisiewicz, 2012;

Malisiewicz et al., 2011; Torresani et al., 2010).

Fig. 2. Illustration of the image processing pipeline. (A) Original image in pixel grayscale indicating level of gene expression. (B) Local SIFT descriptors

are extracted from image at 4 resolutions. (C) Descriptors from all 16351 images are clustered into 500 representative ‘visual words’ for each resolution

level using k-Means. (D) Each image is represented as a histogram counting the occurrences of visual words. (E) L2-regularized logistic regression

classifiers are applied for 2081 GO categories. (F) The final 2081 dimensional image representation

Fig. 1. The raw data. ISH image for the gene Tuba1 shown (A) at different scales and (B) in three different regions
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For the first, visual, phase, we first represent each image as a collection

of local descriptors using SIFT features (Lowe, 2004). This step aims to

address the problem that ISH brain images of the same gene vary signifi-

cantly in shape and size when measured in different brains (Kirsch et al.,

2012). SIFT features are histograms of oriented gradients on a small grid.

The resulting image-patch SIFT descriptor is invariant to small rotation

and illumination (but not to scale), making imaged-slices from different

brains more comparable. We computed SIFT descriptors of dimension

128 extracted on a dense grid spanning the full image (Bosch et al., 2006,

2007; Csurka and Dance, 2004), at four spatial resolutions. In ISH

images, different information lies in different descriptor sizes, and we

wish that the representation captures spatial patterns both at the level

of single cells, micro-circuitry and at the coarser level of distribution of

expression across brain layers. To capture information at multiple scales,

we used the VLFeat implementation of SIFT (Vedaldi and Fulkerson,

2010), where scale-invariance is not incorporated automatically.

Specifically, each image is represented as a collection of �1 M SIFT

descriptors, computed by down sampling each image at a factor of 1,

2, 4 and 8. As the descriptors were extracted from high-resolution images,

which are mostly dark, many descriptors were completely dark and were

discarded.

Next, to achieve a compact non-linear representation of each image,

we aggregate the descriptors from all images for a given resolution level

and cluster them to form a dictionary of distinct ‘visual words’ per each

resolution level. We used the original Lloyd optimization for k-Means

with L2 distance, initializing the centroids by randomly sampling data

points. The clustering procedure was repeated multiple times (n¼ 3), and

the solution with the lowest energy was used. We tested four different

dictionary sizes (k¼ 100, 200, 500 and 1000), all yielding similar results

(Supplementary Material), and we report later in the text results for

k¼ 500, which obtained slightly higher accuracies. Next, we construct a

standard ‘bag-of-words’20,21 description of each image. As a result of this

process, each image is described by four concatenated 500-dimensional

vectors counting how many times each ‘visual word’ appeared in it at a

given resolution level. We also added a count of the number of zero

descriptors per resolution level, ending up with a 2004-dimensional

vector describing each image. Using this approach, similar spatial infor-

mation from different brain regions is preserved, as opposed to using

global correlation-based approaches.

We then turn to the second, ‘semantic’, phase, and represent each

image by a set of functional descriptors. Given a set of predefined

Gene Ontology (GO) annotations of each gene, we train one separate

classifier for each known biological annotation category, using the SIFT

bag-of-words representation as an input vector. Specifically, here, we

trained a set of 2081 L2-regularized logistic regression classifiers [using

LIBLINEAR (Fan et al., 2008)] corresponding to biological-processes

GO classes that have 15–500 annotated genes (Supplementary

Material). We trained the classifiers using two layers of 5-fold cross-

validation, performed as follows: the full set of 16 351 gene images was

split into five non-overlapping equal sets (without controlling for the

number of positives in each split), training the classifiers on four of

them and testing performance on the fifth unseen test set of images.

This procedure was repeated five times, each time with a different set

acting as the test set. All accuracy and other results later in the text are

reported for a held-out test set that was not used during training.

To tune the logistic regression regularization hyperparameter, we used

a second layer of cross-validation. We repeated the splitting procedure

within each of the five training sets, splitting each of them again into five

subsets of images, using four for training and the fifth as a validation set.

The regularization hyperparameter was selected from the values (0.001,

0.01, 0.1, 1, 10 and 100). At the end of this process, each gene is then

represented as a vector of ‘activations’, corresponding to the likelihood

that the gene belongs to one functional category, such as ‘forebrain

development’ or ‘regulation of fatty acid transport’.

The representation described earlier in the text removes important

information about global location in the brain. We, therefore, also

tested an approach using spatial pyramids (Lazebnik et al., 2006),

where descriptor histograms are computed separately for different parts

of the image. Unfortunately, this approach results in feature vectors

whose dimensionality was too high for the current dataset and yielded

poor classification results (Supplementary Material).

2.3 Similarity between functional profiles

We use two gene–gene similarity measures in this work, taking each gene

as a vector of functional category activations. The first, flat-sim, is simply

the linear correlation of two functional category activation vectors. The

second, GO-sim, takes into account the known directed acyclic graph

(DAG) structure among the functional categories of the GO annotation.

Formally, the flat-sim score between a pair of L2-normalized feature

vectors a ¼ ða1 . . . amÞ and b ¼ ðb1 . . . bmÞ is given by their dot product

flat-sim a, bð Þ ¼
Pm

i¼1 ai � bi. This additive similarity measure allows as-

sessing the contribution of each individual feature to the overall similarity

score, by setting the contribution of the feature i (corresponding to GO

category i) to ai � bi. Thus, for each pair of similar images, we can sort the

GO categories by order of their contribution to the similarity, providing a

semantic interpretation of the correlation.

However, flat-sim does not take into account that the activation of

some functional categories can be far more informative than others. For

example, two genes that share a specific function like ‘negative regulation

of systemic arterial blood pressure’ are much more likely to be functionally

similar than a pair of genes sharing a more general category like ‘metab-

olism’. We address this issue by adapting a functional similarity measure

between gene products developed by (Schlicker et al., 2006), which we

refer to as GO-sim. GO-sim is designed to give high similarity scores to

gene pairs that share many specific and similar functional categories. We

treat our model’s functional activations as binary annotations (using a

threshold of 0.5) and calculate GO-sim as follows.

For each GO category i, we calculate its information content (IC) as

ICðiÞ ¼ �log10
#genes in i

total # of genes, which measures the specificity of each

category. For each pair of categories i and j, we consider the set

of their common ancestors ancði, jÞ and define simrel i, jð Þ ¼

max
k2ancði, jÞ

2IC kð Þ
IC ið ÞþIC jð Þ ð1� 10�IC kð ÞÞ. The measure simrel is symmetric, bounded

between 0 and 1, and attains larger values for pairs of categories that are

both specific and close to each other in the GO graph.

In our method, each gene is annotated with multiple categories.

Naı̈vely, we could calculate the mean simrel measure between all pairs

of categories, but calculating this mean could give weight to many irrele-

vant categories and be sensitive to the addition of extra annotations to a

gene. Instead, we use a more robust method to measure similarity

between two sets of function annotations, developed by (Schlicker

et al., 2006). This method relies on the most similar gene pairs, instead

of all the pairs. For two binary activation vectors a ¼ ða1 . . . amÞ,

b ¼ b1 . . . bmð Þ define a matrix Sij ¼ simrel i, jð Þaibj. Then we define

sima!b ¼
1
m

Pm
i¼1ðmax

j¼1...m
SijÞ that measures for each annotation of a its

most similar annotation in b and averages across all of a ‘s annotations.

We similarly define simb!a with the roles of a and b switched, and use it

to define GO-sim¼ maxðsima!b, simb!a). To assess the contribution of

individual gene functional annotations to the GO-simmeasure, we look at

the category pairs (i,j) corresponding to the highest values of Sij. Each

such pair also has its ‘most informative common ancestor’ MICA i, jð Þ ¼

argmax
k2ancði, jÞ

2IC kð Þ
IC ið ÞþIC jð Þ ð1� 10�IC kð ÞÞ. These ancestor functional categories give

a succinct interpretation of the similarity between genes a and b.

Computing GO-sim for n¼ 16 351 genes, each with m functional

annotations, is computationally burdensome, requiring O(n2m2)
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operations. In this study, we, therefore, use only 164 brain-related cate-

gories of the 2081 functional categories for calculating GO-sim.

3 RESULTS

We start with evaluating the quality of the low-dimensional

semantic representation that we learned in two aspects: the
classification accuracy for individual semantic terms and the

precision of our gene–gene similarity measure compared with
a spatial correlation-based method. We then take a closer look
at discriminative spatial patterns, mapping them back onto raw

images. Finally, we use the geometry of the low-dimensional
semantic space to infer new gene functions via gene similarities

and their interpretations.

3.1 Predicting functional annotations using brain

ISH images

We applied FuncISH to 16 K ISH images of 15 K genes, and we

mapped each image to a vector corresponding to 2000 GO cate-
gories as functional features. We used the area under the ROC
curve (AUC) as a measure of classification accuracy. All evalu-

ationswere performed on a separate held-out test set.We find that
37% of the GO categories tested yielded a test set AUC value that

was significantly above random (permutation test, P50.05). This
was encouraging, as the variability of expression between brain
regions was previously shown to be very low (Khaitovich et al.,

2004, 2005). This suggests that fine spatial resolution in neural
tissues can reveal highly meaningful expression patterns.

Which functional categories can be best predicted by ISH
images? Table 1 lists the top 15 GO categories that achieved
the best test-set AUC classification scores. Interestingly, these

include mostly biosynthesis/metabolism processes and neural
processes. To further test whether neural categories achieve

higher classification values based on neural expression patterns,
Figure 3 compares the AUC scores of 164 categories related to
the nervous system with the AUC scores of the remaining cate-

gories. As expected, neural GO categories receive significantly
higher AUCs (Wilcoxon, P510�38), with 69% of categories

yielding significantly above random AUC values.
These AUC values suggest that when a gene is represented as a

feature vector of classifiers activations, many of the features

carry a meaningful signal. The axes of the new low-dimensional
representation correspond to functional properties of each gene,

linking functions of the genes to the geometry of the space in
which they are embedded.

3.2 Comparison with Neuroblast, the ABA

image-correlation tool

How well does FuncISH compare with other methods suggested

for finding similarity between these images? We compared
our results with NeuroBlast, a method to detect image–image
similarities available on the ABA website (Hawrylycz et al.,

2011). This method uses a non-linear mapping of the images to
a reference anatomical atlas to apply voxel–voxel correlation

between the images.
To evaluate the quality of the similarity measure, we used

three sets of pairwise relations as evidence of gene related-

ness: (i) markers of known cell types (Cahoy et al., 2008), such

as astrocytes or oligodendrocytes; (ii) occurrence in the same

KEGG pathway (Kanehisa, 2002); and (iii) a set of known pro-

tein–protein interactions taken from IntAct (Kerrien et al., 2012).

For each of the 16 531 genes, we ranked the 100 most similar

genes according to four different similarity measures:

(i) FuncISH GO-sim, (ii) FuncISH flat-sim, (iii) cosine similarity

between the SIFT bag-of-words representations (Fig. 2D) and

(iv) the ABA NeuroBlast tool. For each of the pairwise relations

(cell-type markers, KEGG pathway and PPIs), we plot the mean

fraction of relations retrieved at the top-K most similar genes

(precision-at-k), a standard method in information retrieval

(Manning and Raghavan, 2009). Figure 4 shows that for all

three validation labels, FuncISH GO-sim provides superior

precision for the top 10 ranked similar genes. The superior

precision of GO-sim over flat-sim is presumably because

Fig. 3. AUC scores for GO categories related to the nervous system

(dashed, red) and the remaining categories (solid, blue). AUC scores

are significantly higher for neural categories (Wilcoxon test, p510�38).

The red and blue ticks indicate the median of each set

Table 1. The GO categories classified with highest test-set AUC values

GO ID GO category name No. of

genes

AUC

GO:0060311 Negative regulation of elastin catabolic process 17 1

GO:0042759 Long-chain fatty acid biosynthetic process 23 0.98

GO:0009449 �-Aminobutyric acid biosynthetic process 20 0.96

GO:0009448 �-Aminobutyric acid metabolic process 23 0.96

GO:0032348 Negative reg. of aldosterone biosynthetic process 21 0.94

GO:2000065 Negative regulation of cortisol biosynthetic process 21 0.94

GO:0043206 Fibril organization 23 0.94

GO:0031947 Negative reg. of glucocorticoid biosynthetic process 22 0.94

GO:0042136 Neurotransmitter biosynthetic process 23 0.94

GO:0022010 Central nervous system myelination 29 0.89

GO:0008038 Neuron recognition 20 0.87

GO:0042220 Response to cocaine 30 0.87

GO:0050919 Negative chemotaxis 16 0.86

GO:0042274 Ribosomal small subunit biogenesis 15 0.86

GO:0016486 Peptide hormone processing 17 0.85
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GO-sim weighs categories more correctly and also possibly be-
cause GO-sim was limited to brain-related categories that tend to

be more accurately predicted (Fig. 3). On the other hand, we see
that NeuroBlast outperforms flat-sim in most cases.

3.3 Identifying and explaining similarities between

GABAergic neuron markers

We now turn to a deeper look into the similarity predictions.
Interestingly, the highest classification scores were achieved for

the neural-related categories GABA biosynthetic process and
GABA metabolic process (shown in Table 1), implying that our

algorithm can identify spatial patterns of GABAergic neurons.
A prominent member of the GABAergic neuron marker family

is parvalbumin B (Pvalb), which encodes for a calcium-binding
protein. We examined the genes that are most similar to Pvalb,

and we found that another GABAergic neuronal marker and a

calcium-binding protein, calbindin D28K (Calb1), is at the top 15
most similar gene lists for all associated image series. Pvalb and

Calb1 belong to a family of cellular Ca2þ buffers in GABAergic
interneurons. The third member in this family is calretinin

(Calb2). Looking at the similarity rank of Calb1 and Calb2,
Calb2 ranks at the top 2 percentile (of 16 351 images in the data-

set) at 16 of 17 cases. Similarities between these three genes were
not identified by NeuroBlast. This may be because NeuroBlast

uses spatial correlation measures that produce results heavily
reliant on the spatial location of expression, whereas FuncISH

can identify patterns that can appear in different regions of the
brain. A major benefit of representing genes in the functional

embedding space is that similarities between genes can be ‘ex-
plained’ in functional terms. Calb1, Pvalb and Calb2 are all

involved in regulation of synaptic plasticity (Schwaller, 2012).

When looking at the semantic interpretations explaining the
similarities between the genes, 6 of the top 10 GO

categories are indeed directly related to synaptic plasticity, such
as ‘synaptic transmission’, ‘regulation of synaptic plasticity’ and

‘learning’.

3.4 Finding important spatial patterns in different scales

using SIFT ‘visual words’

A major advantage of representing ISH images with SIFT

descriptors is the ability to point directly to spatial patterns in

these complex images. Although their name suggest differently,

SIFT descriptors at several scales capture different types of pat-

terns. Figure 5 shows three visual words for each of the four

scales, selected as the visual words that contributed most to clas-

sification. Scale invariance is often assumed when analyzing nat-

ural images, as objects are photographed at varying distances.

ISH images, however, contain distinctive information in the dif-

ferent scales. As Figure 5 demonstrates, the four sizes of visual

words correspond to grids capturing different neural entities. The

smallest descriptors cover an actual area of 36� 36mm2 and cap-

ture fine-scaled information, such as cell shapes and cell densi-

ties; the medium-size discriminative descriptors of 72� 72mm2

tend to trace thinner cell layers; larger descriptor sizes of

144� 144mm2 and 288� 288mm2 can cover large and intricate

patterns of a mixture of cells and cell types in a tissue.

Interestingly, the four visual words with the highest contribution

to classification were the words counting the zero descriptors in

each scale. This means that the highest information content lies

in ‘least informative’ descriptors, and that overall expression

levels (‘sparseness’ of expression) are important factors in func-

tional prediction of genes based on their spatial expression. Our

method presents a new representation of ISH imagery as SIFT

descriptors, and using multiple scales allows revealing the multi-

resolution nature of the images.
Which scale carries the most meaningful signal for functional

prediction? Figure 5E shows the mean absolute value of visual

words weights in every scale for all GO categories, showing that

all scales contribute significantly to the scores, with the medium

contributing most.
Figure 5A–D shows descriptors that contributed to classifica-

tion of all the categories. Furthermore, each GO category has its

own visual words that are important to its classification, and

looking into their details reveals spatial properties that are

unique to specific biological processes.
As an interesting example of this effect, we considered the

gene adducin � (Add2). Add2 is annotated to several GO cate-

gories, including ‘positive regulation of protein binding’ and

‘actin filament bundle assembly’. Figure 6 overlays the top

weighted visual words of the two categories over the Add2

ISH image. It is easy to see that the descriptors important for

classification of ‘actin filament bundle assembly’ are much smal-

ler than those important for classification of the more general

Fig. 4. Precision at top-K for similarity defined by (A) cell type marker (B) KEGG pathways (C) protein–protein interaction. Precision was measured

using functional representations (FuncISH, purple lines for GO-sim, orange for flat-sim), SIFT (red) and NeuroBlast (blue)
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category ‘positive regulation of protein binding’ (t-test,

P510�17). This implies that small-scaled features, such as spe-

cific cell shapes, are important to identify genes related to actin

filament bundle assembly processes. Actin assemblies are im-

portant for the navigation of neural growth cones, by re-orient-

ing growth cones away from inhibitory cues (Challacombe

et al., 1996). Representing the images with histograms of ori-

ented gradients could capture tiny differences in cell shapes that

are in the process of synapse formation, a developmental pro-
cess occurring continuously throughout adulthood (Vidal-Sanz

et al., 1987).

3.4 Inferring new gene functions via explainable

similarities

We now demonstrate how the semantic representation learned
by FuncISH can be used to propose new gene functional anno-
tations. Consider as an example the gene synaptopodin 2

(Synpo2) that is known to bind actin, but otherwise has little
known associated information. FuncISH can be used to propose

functional annotations for synpo2 by looking at the genes that
are similar to Synpo2 and considering both the GO functions
that contribute to this similarity and the spatial pattern of

expression.
First, we find that Synpo2 is similar to two other genes

Npepps and Rasa4, but for different reasons (the list of top
five semantic explanations for these similarities is shown in
Table 2). Npepps is an aminopeptidase that is active specifically

in the brain (Hui, 2007), and the similarity between Synpo2 and
Npepps is explained by processes related to protein processing,

such as ubiquitination and protein proteolysis. At the same time,
Rasa4 is a GTPase-activating protein that suppresses the Ras/
mitogen-activated protein kinase pathway in response to Ca2þ

(Vigil et al., 2010), and the similarity between Synpo2 and Rasa4
is explained by high-level neural processes, such as axon guid-
ance or synaptic transmission.

Interestingly, Synpo2 and Rasa4 are expressed in different
brain regions: looking at their spatial expression patterns reveals

that Synpo2 is expressed exclusively in the thalamus, whereas
Rasa4 is expressed in olfactory areas. Therefore, their similarity
is not in their global expression patterns across regions, but

rather in local spatial patterns. This could reflect expression in

Fig. 5. Representing ISH images with visual words. (A, B, C, D) The three visual words with highest absolute weight (averaged over all categories) at

each scale. The SIFT descriptors (red grid) are plotted on top of each panel. The histogram of oriented gradients used in the SIFT descriptor is plotted in

the center of each element of the grid,as a set of red lines, where the length of the line correspond to the magnitude of the gradient in its direction.

(E) Mean absolute weight for the four scales of visual words calculated over classifiers for all categories

Fig. 6. The visual words important in classifying Add2 GO categories are

overlaid on the Add2 ISH image. Larger descriptors are needed for the

classification of ‘regulation of protein binding’ (A), while the discrimina-

tive visual words for ‘actin filament bundle assembly’ (B) are much smal-

ler, capturing properties such as cell shapes. The descriptors are color-

coded by their importance in classification, highest importance is in

bright yellow
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similar cell types or tissues that exhibit similar spatial distribution

at different brain regions. Npepps is more ubiquitously expressed
in the brain, and it is located in the thalamic area where synpo2 is

expressed. The co-location of Synpo2 and Npepps suggests they

could be participating in similar biological processes in these

areas, possibly in protein-modification processes as suggested
by the list of top explanations for the similarity.

4 SUMMARY

We present FuncISH—a method to learn functional representa-

tions of neural ISH images, yielding an interpretable measure
of similarity between complex images that are difficult to ana-

lyze and interpret. Using FuncISH, we successfully infer �700

functional annotations from neural ISH images, and we use

them to detect gene–gene similarities. This approach reveals
similarities that are not captured by previous global correl-

ation-based methods, but it also ignores important global

location information. Combining local and global patterns

of expression is, therefore, an important topic for further
research, as well as the use of more sophisticated non-linear clas-

sifiers, such as kernel-SVM, for creating better representations.

Importantly, FuncISH provides semantic interpretations for

similarity, enabling the inference of new gene functions from
spatial co-expression.
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