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ABSTRACT

Summary: Pairs of individuals from a study cohort will often share

long-range haplotypes identical-by-descent. Such haplotypes are

transmitted from common ancestors that lived tens to hundreds of

generations in the past, and they can now be efficiently detected in

high-resolution genomic datasets, providing a novel source of infor-

mation in several domains of genetic analysis. Recently, haplotype

sharing distributions were studied in the context of demographic in-

ference, and they were used to reconstruct recent demographic

events in several populations. We here extend the framework to

handle demographic models that contain multiple demes interacting

through migration. We extensively test our formulation in several

demographic scenarios, compare our approach with methods based

on ancestry deconvolution and use this method to analyze Masai sam-

ples from the HapMap 3 dataset.

Availability: DoRIS, a Java implementation of the proposed method,

and its source code are freely available at http://www.cs.columbia.

edu/�pier/doris.

Contact: itsik@cs.columbia.edu

1 INTRODUCTION

Recent advances in high-throughput genomic technologies

enable population-wide surveys of genetic variation. Although

exacerbating challenges associated with data handling, this in-

crease in volume and resolution had the effect of exposing new

genomic features, creating the need for new models and compu-

tational tools. Among these new genomic features, identical-by-

descent (IBD) haplotypes have recently emerged as a new source

of information in several genetic applications, ranging from

genotype–phenotype association studies (Browning and

Thompson, 2012; Gusev et al., 2011) to the reconstruction of

recent familial relationships (Huff et al., 2011; Kirkpatrick

et al., 2011), the inference of recent demographic events (Gusev

et al., 2012; Palamara et al., 2012) or the study of natural selec-

tion (Albrechtsen et al., 2010; Han and Abney, 2012).

IBD segments are co-inherited from recent common ancestors

by pairs of individuals and are delimited by historical recombin-

ation events. Such recombination events can now be detected in

cohorts that have been densely genotyped (although not requir-

ing the availability of full sequences), and several methods have

now been developed for efficient IBD detection in large datasets

(Browning and Browning, 2011; Gusev et al., 2009). Although

shared haplotypes are found to be common even across popula-

tions that diverged hundreds of generations ago (Gusev et al.,

2012), the average detectable IBD segment is transmitted from

shared ancestors that lived tens to a few hundreds of generations

before present. Haplotype sharing analysis is, therefore, suitable

to reveal the signature of the relatively recent demographic

events that followed the agricultural revolution, where most clas-
sical methods provide limited insight. Leveraging this property of

IBD, several recent surveys relied on shared haplotypes to ana-
lyze population demographics (Atzmon et al., 2010; Henn et al.,

2012; Lawson and Falush, 2012).
In a recent work (Palamara et al., 2012), we studied several

theoretical quantities of IBD haplotypes, as a function of the
demographic history of a population. We used the derived
framework to infer the demographic history of two populations

with different characteristics: (i) a population that underwent
substantial recent isolation (Ashkenazi Jews) and (ii) a cohort

that deviates from a single population model, with migration
across small demes likely playing an important role in shaping

recent genomic diversity (Kenian Masai). The analytical models
we previously described are limited by the assumption that all the

analyzed samples belong to a single population. Although such
models can be used to provide insights in cases of extreme his-
torical isolation, fine-scale interactions across populations were

frequent in recent history, and the reconstruction of these events
is of great interest for genetic-driven investigation of historical

events (Henn et al., 2010) and genetic analysis at large.
In this article, we propose an extension of the analytical frame-

work described in Palamara et al. (2012), allowing to explicitly
model the presence of multiple populations that interact through
migration rates. We test our approach on several synthetic popu-

lations with known population size changes and migration rates,
finding that our model accurately matches the empirical distri-

butions and provides a novel tool for the inference of recent
demographic events that involve multiple interacting demes.

We compare our method with existing approaches based on
the distribution of migrant tracts obtained through ancestry

deconvolution, and we revisit the analysis of the Masai popula-
tion using the presented formulation.

2 METHODS

2.1 Haplotype sharing and demographic history

Here, we provide a brief summary of the formulation developed in

Palamara et al. (2012), and we invite the reader to refer to that article

for additional details.

At a chosen genomic site, a pair of modern day individuals from a

population will have a common ancestor that lived a number of gener-

ations in the past. Such common ancestor transmits several adjacent sites

along with the one being considered, in a region that is delimited by any

recombination event happening along the lineage between the two indi-

viduals on either side of the locus (Fig. 1), and by chromosome bound-

aries. We define such non-recombinant region as IBD. Recombination

shortens IBD segments during meiotic transmission, and the genetic

length of shared haplotypes is probabilistically linked to the number of

generations separating two individuals from their most recent common

ancestor. In addition, standard assumptions of coalescent theory

(Kingman, 1982) postulate that when tracing the ancestry of a pair of

individuals back in time, the chance of randomly finding their common*To whom correspondence should be addressed.

� The Author 2013. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial

re-use, please contact journals.permissions@oup.com

http://www.cs.columbia.edu/~pier/doris
http://www.cs.columbia.edu/~pier/doris
http://www.cs.columbia.edu/~pier/doris
mailto:itsik@cs.columbia.edu


ancestor is inversely proportional to the effective size of the analyzed

population, with a smaller effective population size resulting on average

on earlier common ancestors. Combining these principles, the length of

IBD segments detected in a cohort of studied individuals can be used to

gain insight into the distribution of coalescent times, which in turn can be

used to gain insight into the effective population size within and across

populations at different time scales.

In the remainder of this article, a population’s effective population size

in a coalescent model will simply be referred to as population size. We

represent the demographic history of the studied population via the

vector �, which may hold just one parameter in the simplest case of a

constant (Wright–Fisher) population, or several parameters in more com-

plex cases (e.g. current population size, ancestral population size and

duration of an exponential expansion). The probability of the considered

genomic site to be spanned by a shared IBD haplotype of genetic length

comprised in the range R ¼ ½u, v� can be expressed asZ v

u

pðl j �Þdl ¼

Z v

u

Z 1
0

pðl, tmrca ¼ t j �Þdldt

¼

Z 1
0

pðtmrca ¼ t j �Þ

Z v

u

pðl j tmrca ¼ tÞdldt

ð1Þ

where pðtmrca ¼ t j �Þ, in the reminder simply written pðt j �Þ, represents

the probability of finding the common ancestor for the considered site at

(continuous) time t in the past, measured in generations; pðl j tmrca ¼ tÞ,

later indicated as pðl j tÞ, represents the probability of a segment spanning

the site to have length l after being transmitted for t generations. In this

model, population size is allowed to arbitrarily change in time. In the

simple case of a Wright–Fisher population of constant size Ne, the co-

alescence probability is simply pðt j �Þ ¼ N�1e e�tN
�1
e . Recombination

events may happen on either side of the considered locus at an exponen-

tial rate that depends on the number of meiotic events in the lineage to a

common ancestor. pðl j tÞ, therefore, assumes the form of a sum of two

exponential random variables or Erlang-2 distribution: pðl j tÞ ¼ 4t2le�2tl

(note that length here is expressed in Morgans). Combining these into

Equation (1) and integrating, we obtainZ v

u

pðl j �Þdl ¼
4N2

e ðv� uÞ ðuþ vþ 4NeuvÞ

ð1þ 2NeuÞ
2
ð1þ 2NevÞ

2
ð2Þ

or
R1
u pðl j �Þdl ¼ 1þ4Neu

ð1þ2NeuÞ
2 for the particular case of R ¼ ½u,1Þ.

As shown in Palamara et al. (2012), Equation (2) can be used to obtain

a closed form estimator of recent effective population size. Taking the

limit of such estimator for v!1, it assumes the form

N̂e ¼
1� f̂R þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f̂R

q
2uf̂R

ð3Þ

where f̂R is the average observed fraction of genome shared through

segments longer than a length threshold u (here in morgans).

The computation of
R v
u pðl j �Þdl allows us to derive several additional

theoretical quantities of IBD sharing. Because of the linearity of the ex-

pectation operator, the average fraction of genome shared through IBD

segments in the length range R is simply fR ¼
R v
u pðl j �Þdl. The distribu-

tion of the length of a randomly sampled segment shared by the pair of

individuals is obtained as pðs j �Þ ¼ ðfR=lÞ � ½
R1
0 pðl j �Þ=ldl��1, and it can

be used to compute the expected length of a randomly sampled shared

segment in the chosen length range, sR. For a region of length �, a pair of

individuals is expected to share �R � ð� � fRÞ=sR segments, and the dis-

tribution for the number of shared segments can be modeled as a Poisson

random variable with the aforementioned expectation. Using this infor-

mation, an expression for the variance of the fraction of genome shared in

an interval R can be computed. Finally, the full probability distribution

for the fraction of genome shared by a pair of individuals through seg-

ments in the length range R can also be computed using the previously

described quantities.

The quantity
R v
u pðl j �Þdl is, therefore, central in this formulation, as it

allows expressing a number of different measures of IBD sharing as a

function of demographic history. Furthermore,
R v
u pðl j �Þdl only depends

on � through pðt j �Þ, the probability of a coalescence event in the demo-

graphic scenario �. If the goal is to infer the demographic parameters in a

model comprising multiple populations, we, therefore, need to express the

coalescence probability pðt j �Þ, where � now includes historical size vari-

ation for multiple populations and migration rates across them.

2.2 IBD distributions in the presence of migration

We begin discussing the case of multiple populations referring to a simple

scenario, where two populations of constant size Ne exchange individuals

at a fixed rate m per individual, per generation (see model in Fig. 2a). We

encode this migration rate using the matrix

Q ¼
�m m
m �m

� �

We consider two individuals, i and j, each sampled from either popu-

lation. We trace the ancestors of these individuals at one genomic site and

encode their state (in terms of population their ancestors belong to), using

a vector of dimensionality 2. If individual i is sampled from population 1

and individual j from population 2, for example, the state at generation 0

is known and we write it as við0Þ ¼ ð1, 0Þ, vjð0Þ ¼ ð0, 1Þ. If both are

sampled from population 1, við0Þ ¼ ð1, 0Þ, vjð0Þ ¼ ð1, 0Þ. After t gener-

ations (measured in continuous time), the probability that the ancestor of

individual i at this genomic location belongs to either population is given

by

viðtÞ ¼ ð1, 0Þe
tQ ¼

e�2mt

2
ð1þ e2mtÞ,

e�2mt

2
ðe2mt � 1Þ

� �
ð4Þ

if individual i was sampled from population 1, or, symmetrically

viðtÞ ¼ ð0, 1Þe
tQ ¼

e�2mt

2
ðe2mt � 1Þ,

e�2mt

2
ð1þ e2mtÞ

� �
ð5Þ

if it was sampled from population 2. We are interested in expressing the

probability of individuals i and j to coalesce at time t. This requires both

individuals to be in the same population, in which case coalescence hap-

pens at rate 1=Ne. Formally pðt j m,NeÞ ¼ viðtÞvjðtÞ
T=Ne, which in this

setting becomes

pðt j m,NeÞ ¼
1þ e�4mt

2Ne
ð6Þ

if við0Þ ¼ vjð0Þ, and

pðt j m,NeÞ ¼
1� e�4mt

2Ne
ð7Þ

Fig. 1. An IBD segment (blue) is co-inherited by two present day indi-

viduals from a common ancestor that lived four generations in the past.

Recombination shortens the IBD segment, as meiotic events occur along

the lineage between the two individuals
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otherwise. To compute
R v
u pðl j �Þdl, we plug the coalescence probability

in Equation (1). Also, for simplicity, we take R ¼ ½u,1Þ, obtainingZ 1
u

pðl j �Þdl ¼
1

2Neu
þ

mþ u

2Neð2mþ uÞ2
ð8Þ

if við0Þ ¼ vjð0Þ, and Z 1
u

pðl j �Þdl ¼
mð4mþ 3uÞ

2Neuð2mþ uÞ2
ð9Þ

otherwise. Recall that
R v
u pðl j �Þdl ¼ fR, which is the expected fraction of

genome shared through segments of length between u and v by an indi-

vidual pair. To infer N̂ and m̂, we, therefore, consider the observed aver-

age fraction of genome shared through IBD segments longer than a

threshold u, for all pairs of individuals sampled from the same population

or from different populations (which we call f̂s and f̂d, respectively, now

omitting the dependence on the length range). We then solve the system

obtained by equating f̂s and f̂d to the quantities in (9) and (10), to obtain

the estimators

N̂e ¼
1

ðf̂d þ f̂sÞu

m̂ ¼

u 3f̂s � 5f̂d �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f̂df̂s � 7f̂2d þ 9f̂2s

q� �
8ðf̂d � f̂sÞ

ð10Þ

A simple generalization of the aforementioned scenario consists in

allowing the two considered populations to differ in their effective popu-

lation sizes, Ne1 and Ne2. In this scenario, it is still possible to obtain a

closed form expression for
R v
u pðl j �Þ dl, and a closed form estimator for

N̂e1, N̂e2, m̂, which are reported in the Appendix.

2.3 The general case

Although the previously discussed case of constant population sizes and

migration rates has a simple formulation and can be used to gain initial

insight into the recent demography of a study cohort, such population

dynamics are oversimplified and generally unrealistic. Luckily, given a

few reasonable assumptions, population sizes and migration rates can be

allowed to arbitrarily fluctuate in time, still permitting a closed form

computation of
R v
u pðl j �Þdl.

Consider two populations whose sizes at generation g are expressed as

N1ðgÞ and N2ðgÞ. The rate at which these two populations exchange

individuals can be encoded in a discrete migration matrix

MðgÞ ¼
1�m12ðgÞ m12ðgÞ
m21ðgÞ 1�m21ðgÞ

� �
ð11Þ

where m12ðgÞ represents the probability of an individual migrating from

population 1 to population 2 at generation g (backwards in time). After g

generations, the probability that the ancestor of individual i at a genomic

location belongs to either population is given by the vector

við0Þ
Qg

k¼0 MðkÞ. Define the matrix NðgÞ to be diagonal with 1=N1ðgÞ

and 1=N2ðgÞ as its diagonal elements. The probability of coalescence

from generation g� 1 to generation g is then

cg ¼ við0Þ
Yg
k¼0

MðkÞ

" #
NðgÞ vjð0Þ

Yg
k¼0

MðkÞ

" #T

ð12Þ

and the probability of the two individuals to coalesce g generations before

present is

pðg jMðgÞ,NðgÞÞ ¼ cg
Yg�1
k¼1

ð1� ckÞ ð13Þ

Equation (13) can be used in Equation (1), in its discrete version, to

computeZ v

u

pðl jMðgÞ,NðgÞÞ dl ¼
X1
g¼1

cg
Yg�1
k¼1

ð1� ckÞ

Z v

u

pðl j gÞdl

" #
ð14Þ

Note that Equation (14) is general, and we can allow additional demo-

graphic changes to take place. For instance, by setting

N2ðgÞ ¼ 0, m12ðgÞ ¼ 0 and m21ðgÞ ¼ 1 for all g4G, we encode a popu-

lation split that occurred G generations ago. In practice, a pair of popu-

lations will have split a number of generations back in time, and it is,

therefore, convenient to consider models of the kind depicted in

Figure 2b. In this model, a population of constant size Natot splits

G generations in the past, forming two populations of size Na1 and

Na2. The size of these two groups then fluctuates in time, to reach a

present size of Nc1 and Nc2. During their separation, the populations

exchange individuals at a rate of m12 and m21 per generation, per indi-

vidual. Of course, other models can be defined, allowing variable migra-

tion rates, and different population size dynamics.

Fig. 2. Two demographic models that involve two populations and migration between them. In model (a), the populations have the same constant size

Ne, and exchange individuals at the same rate m. In model (b), a population of constant ancestral size Natot splits G generations in the past, resulting in

two populations whose sizes independently fluctuate from Na1 and Na2 individuals to Nc1 and Nc2 individuals during G generations. During this period,

the populations interact with asymmetric migration rates m12 and m21
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For mathematical convenience, it is safe to assume the ancestral popu-

lation size becomes constant a number of generations in the past. Models

where the ancestral population size (Natot in Fig. 2b) is constant from

generation G to infinity allow for a closed form computation of Equation

(14), no matter which demographic dynamics take place from generation

0 to G [see Palamara et al. (2012) for this expression]. Furthermore,

extremely remote demographic events have negligible impact on shared

haplotypes of currently detectable lengths (e.g. 41 cM).

2.4 Simulations, ancestry deconvolution and real data

We tested our framework using extensive simulation of realistic chromo-

somes under several demographic models, using the GENOME coales-

cent simulator (Liang et al., 2007). For computational convenience, we

set the size of the simulator’s non-recombinant segments between 0.01

and 0.025 cM, as specified in Section 3, always using a recombination rate

of 1cM/Mb. A modified version of the simulator was used to extract

ground truth IBD haplotypes from the simulated genealogies, defined

as non-recombinant segments co-inherited by pairs of individuals from

their most recent common ancestor. For some of the simulations, we

inferred shared haplotypes using the GERMLINE software package

(Gusev et al., 2009) on phased genotype data, which were obtained setting

GENOME’s mutation rate to 1:1� 10�8 per base pair (Roach et al.,

2010). Genotypes were post-processed to mimic the information content

of array data. To this extent, we computed the allele frequency spectrum

of European individuals from the HapMap 3 dataset (Frazer et al., 2007),

using frequency bins of 2%. We then randomly selected the same pro-

portion of alleles from the simulated genotypes. We obtained an average

density of � 230 single nucleotide polymorphisms/Mb.

To compare the proposed IBD-based approach for migration inference

to the approach of Gravel (2012), which is based on ancestry deconvo-

lution, we simulated synthetic datasets under several demographic models

and extracted genotype data as previously described. We then ran the

PCAdmix software (Brisbin et al., 2012) with windows of size 0.3cM and

the genetic map used in the simulations. The output of PCAdmix was

used to infer migration rates via the Tracts software package (Gravel,

2012). IBD information was computed in the same datasets running the

GERMLINE software, and the output was used to infer migration rates

using the DoRIS software package, which implements the proposed

framework. Perfectly phased haplotypes were used in input for both

PCAdmix and GERMLINE. Only migration rates were inferred, whereas

all other demographic parameters were set to the true simulated values

for both Tracts and DoRIS.

To demonstrate the use of the DoRIS framework on real data, we

analyzed 56 trio-phased samples from the HapMap 3 dataset. Phased

genotypes were downloaded from the HapMap 3 webpage at http://

hapmap.ncbi.nlm.nih.gov. IBD haplotypes were extracted using

GERMLINE, as previously described in Palamara et al. (2012).

3 RESULTS

3.1 Constant size and symmetric migration rates

To test the accuracy of demographic inference based on the

proposed model, we initially simulated a number of populations
of constant size Ne, which exchange individuals at a constant,

symmetric migration rate m, as depicted in the model of
Figure 2a. We simulated 15 possible sizes of synthetic popula-

tions, ranging from 2000 to 30 000 haploid individuals, with in-

crements of 2000. For each population size, we simulated 11
possible migration values, uniformly chosen between 10�4 and

5� 10�2. For a total of 165 datasets, we simulated a chromo-
some of 300 cM for 500 haploid individuals from each subpopu-

lation and computed IBD sharing within and across populations.

The simulations used non-recombining blocks of 0.02 cM. This

resolution may introduce small biases in the analysis, which we

found to be negligible in our previous work. We then used

Equation (10) to estimate m̂ and cNe, with results shown in

Figure 3. To test the model’s accuracy, for this analysis, we

only considered ground-truth IBD segments extracted from the

synthetic genealogies (see Section 2).
We obtained a good correspondence between the true popu-

lation size and the size inferred via the estimator of Equation

(10), with almost perfect correlation shown in Figure 3a. Inferred

migration rates were also close to the simulated rates, although a

moderate upward bias and higher estimation variance for large

migration rates was observed in this case (Fig. 3b). In addition to

using the effective population size estimator of Equation (10), we

used the estimator previously computed in Palamara et al. (2012)

for the case of constant population with no migration, reported

in Equation (3). As expected, the inferred recent effective popu-

lation size was in this case inflated by the presence of migration,

as shown in Figure 4. When migration rates are increased, the

inferred population size quickly approaches the total population

size (in this case 2Ne).

3.2 Dynamic size and asymmetric migration rates

We then tested our model’s performance in the more complex

demographic scenario depicted in Figure 2b, where a population

splits into two subpopulations that grow at different exponential

rates, interacting with asymmetric migration rates. We simulated

a chromosome of � 275 cM for 500 haploid individuals per sub-

population. Simulated non-recombinant blocks had size

0.025 cM. In all simulated scenarios, we kept Natot fixed to

10 000 haploid individuals, whereas Na1 and Na2 were kept

fixed at 5000 individuals. For Nc1 and Nc2, we simulated all

possible combinations of sizes between 5000 and 205000 haploid

individuals, with increments of 15 000 (excluding cases where

Nc1 ¼ Nc2). Note that on average, the simulated values of Nc1

were smaller, resulting in higher inference accuracy compared

with Nc2. For each pair of population sizes, we simulated

values of m12 and m21 using all combinations of the migration

rates 0.0001, 0.0167, 0.0334 and 0.5.
A total of 540 synthetic populations were tested. For each

synthetic population, we extracted the average fraction of

genome shared through haplotypes of different length intervals

by pairs of individuals within each population or across popula-

tions. As in our previous work, we used a combination of inter-

vals of uniform length and length intervals corresponding to

quantiles of the Erlang-2 distribution, which is used in pðl j tÞ.

Inference performance was tested via minimization of the root-

mean-squared deviation between observed and predicted average

fraction of shared genome. Note that a likelihood-based ap-

proach (e.g. considering the number of shared segments) could

be used based on the quantities derived in Section 2.1. We

scanned several possible values for one parameter at a time, per-

forming a line search while fixing the remaining model param-

eters to the true simulated value. The results of this analysis are

reported in Figure 5.
As expected, because of the large recent effective population

sizes we simulated, the variance of the inference accuracy was

higher in this scenario, suggesting that more than a single
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chromosome for 500 diploid individuals may be required for the

analysis of these demographics. A single chromosome of � 250

cM sampled in 500 diploid individuals is in fact equivalent for

the purpose of this inference to the analysis of all the autosomal

chromosomes for � 150 diploid samples (see Palamara et al.,

2012). Larger population sizes result in lower signal-to-noise

ratio for the estimation of the expected fraction of genome

shared via IBD segments, and increasing sample size or analyzing

additional chromosomes is expected to reduce the variance in the

inference performance. Lower accuracy was observed in the in-

ference of Nc2 since, as previously mentioned, this simulated

subpopulation was on average larger. Inferred population sizes

were more accurate in the presence of low-migration rates (rep-

resented by colors in Fig. 5a and b), as high migration further

reduces the chance of early coalescent events, exacerbating the

effects of large population sizes. Overall, no significant bias was

observed in the recovered parameter values, suggesting our

model provides a good match for the empirical distributions.

3.3 Applicability of the model to genotype data

Although the previous analysis was mainly concerned with test-

ing the model’s accuracy, and it relied on ground-truth IBD

sharing extracted from the simulated genealogies, it is interesting

to ask whether this approach can be used on genotype data. To

this extent, we simulated genotypes for the demographic model

of Figure 2a. We set the population sizes to 4000 or 12 000 dip-

loid individuals per population, and extracted 300 diploid

sampled from each group. The migration rate was symmetric

and set to 0.04 per individual, per generation. Chromosomes of

150 cM were simulated using non-recombinant blocks of size

0.01 cM, and the synthetic genotypes were post-processed to re-

produce the density and allele frequency spectrum of realistic

SNP array data (see Section 2). In addition to extracting the

ground truth IBD information as previously described, we

inferred IBD haplotypes from the simulated genotypes using

the GERMLINE software. The results suggest that when accur-

ate phase information is available (e.g. for the X Chromosome,

or for trio-phased samples), GERMLINE is able to recover the

IBD sharing distribution across any pair of samples with high

fidelity (Fig. 6). However, when the samples were computation-

ally phased using the Beagle software (Browning and Browning,

2007), GERMLINE had an inconsistent performance, accurately

recovering the IBD sharing in the case of N¼ 4000, whereas

poorly inferring long haplotypes in the case of N¼ 12 000. This

suggests that additional care must be taken when analyzing com-

putationally phased data, particularly when analyzing cross-

population IBD spectra, were the quality of the inferred IBD
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haplotypes will likely vary from population to population, as a

result of different underlying demographic histories.

3.4 Real data analysis

To demonstrate the applicability of our method to real data, we

analyzed the HapMap 3 Masai dataset, which was already stu-

died in our previous work using a simulation-based approach.

We here revisit this analysis, using the described analytical

framework.
Cryptic relatedness across individuals in this dataset is

extremely common, and it does not appear to be because of

the presence of occasional outliers among the samples.

Demographic reports are not supportive of recent population

bottlenecks in this group, which is, though, to be slowly but

steadily expanding (Coast, 2001). The Masai are a semi-nomadic

people, and individuals often reside in small communities

(Manyatta) of tens to few hundreds of members. To study

their demography, we, therefore, use a model where V villages

of constant size N exchange individuals at a constant and sym-

metric rate m. This model is similar to the one depicted in

Figure 2a, with symmetric migration rates across several popu-

lations. We assumed that all samples were extracted from the

same village and used the model described in Section 2.3 for

the analysis. We performed a grid search testing migration

rates from 0.01 to 0.4, with intervals of 0.01, village sizes from

50 to 4000 with steps of 10 and number of villages from 3 to 150

with increments of 1. We also obtained 95% confidence intervals

for the inferred values using a bootstrap approach, by creating

400 re-samples randomly selecting individuals with replacement,

True present size of population 1

In
fe

rr
ed

 p
re

se
n

t 
si

ze
 o

f 
p

o
p

u
la

ti
o

n
 1

50000

100000

150000

200000

250000

300000

50000 100000 150000 200000

Migration rate to population 2
0.01
0.02
0.03
0.04
0.05

True vs. inferred value of Nc1

True present size of population 2

In
fe

rr
ed

 p
re

se
n

t 
si

ze
 o

f 
p

o
p

u
la

ti
o

n
 2

50000

100000

150000

200000

250000

300000

350000

50000 100000 150000 200000

Migration rate to population 1
0.01
0.02
0.03
0.04
0.05

True vs. inferred value of Nc2

True migration rate to population 2

In
fe

rr
ed

 m
ig

ra
ti

o
n

 r
at

e 
to

 p
o

p
u

la
ti

o
n

 2

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.01 0.02 0.03 0.04 0.05

Total population size
1e+05
2e+05
3e+05
4e+05

True vs. inferred value of m12

True migration rate to population 1

In
fe

rr
ed

 m
ig

ra
ti

o
n

 r
at

e 
to

 p
o

p
u

la
ti

o
n

 1

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.01 0.02 0.03 0.04 0.05

Total population size
1e+05
2e+05
3e+05
4e+05

True vs. inferred value of m21

(a) (b)

(c) (d)

Fig. 5. Results of the evaluation of our method on synthetic populations with demographic history depicted in the model of Figure 2b. Higher variance

in the method’s accuracy is observed because of limited sample sizes and increased population sizes. Higher migration rates further decrease the rate of

coalescent events in the recent generations (Fig. 5b), resulting in additional uncertainty. However, no significant bias is observed in the inference
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then re-computing the optimal parameters using a gradient-

driven procedure, which was initialized using the parameters

inferred using the original samples (note, however, that small

correlations exist for IBD sharing across individual pairs, and

this method may provide optimistic intervals). Using this ap-

proach, we obtained the following estimates: V¼ 58 (95% CI:

46–75), N¼ 400 (95% CI 360–470) and m ¼ 0:1 (95% CI 0.09–

0.12).

3.5 Comparison with existing methods

The structure of long-range haplotypes is known to carry rele-

vant information about recent population dynamics, but this

genomic feature has only recently become observable thanks to

the development of modern high-throughput genomic technolo-

gies. As a consequence, methods that rely on a population’s

haplotypic structure to reconstruct demographic events have

only recently arose. A model proposed in Pool and Nielsen

(2009), and recently expanded in Gravel (2012), provides a way

to analyze the distribution of migrant tracts and infer the timing

and intensity of recent migration events. To analyze the distri-

bution of migrant haplotypes, however, ancestry deconvolution

needs to be accurately performed. This typically requires the

availability of two suitable reference populations, which are

required to be sufficiently diverged from each other. The

amount of required divergence depends on the specific method

used for the deconvolution, but in general, this poses significant

constraints in terms of the demographic scenarios that can be

analyzed using these methods.

To compare our IBD-based approach with methods based on

ancestry deconvolution, we simulated the demographic scenario

of Figure 7, where two populations split Gs generations in the

past, and Ga generations in the past contribute a fraction of

genomes to the creation of a group of admixed individuals,

with probability m and 1�m, through a unique pulse of migra-

tion. All three population sizes were fixed to either N¼ 5000 or

N¼ 10 000, m was set to 0.2 and Ga was 25 in all simulations. We

varied Gs from 40 to 600, with increments of 20, and extracted

genotype data on a single 400 cM chromosome for 250 diploid

samples in each of the three extant populations (see Section 2).

We used the output of the PCAdmix software as input for the

Tracts program (Gravel, 2012), and the IBD segments retrieved

by GERMLINE as input for the DoRIS software. Note that for

the IBD analysis, we only used the 250 admixed samples and the

250 samples from the population contributing � m haplotypes at

generation Ga, whereas the samples from the third population

were ignored. In both cases, we inferred the value ofm, setting all

other parameters to the true simulated values, with results shown

in Figure 8.
DoRIS performed better on average (mean inferred

m ¼ 0:205, std 0.025), although providing slightly noisy results,

suggesting the need for a larger sample size and/or the analysis of

additional chromosomes. The migration rate inferred by Tracts

(mean m ¼ 0:104, std 0.0233) was strongly biased. We note that

in this setting, Tracts is essentially used to only report the pro-

portion of ancestry inferred by the deconvolution method, which

is the actual source of inaccuracy. Even for populations that

diverged 600 generations in the past (�15 000 years before

Fig. 8. We created several simulation genotype datasets using the model

in Figure 7, varying Gs while keeping m ¼ 0:2, Ga ¼ 25, and using con-

stant populations of size 5000 or 10 000 diploid individuals. We inferred

the value of m using PCAdmixþTracts, or GERMLINEþDoRIS, here

reported as a function of Gs

Fig. 6. We simulated a chromosome of 150 cM for 600 individuals using

the model in Figure 2a, setting population sizes to 4000 and 12 000 dip-

loid individuals, with a migration rate of 0.04. IBD sharing was extracted

directly from the simulated genealogy (diamonds), or inferred trough

GERMLINE using perfectly phased (circles) or computationally

phased (triangles) chromosomes

Fig. 7. The model used to simulate admixed populations
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present assuming a generation of 25 years), the recovered rate

was substantially lower than the simulated rate. The case of

N¼ 5000 yielded better estimates because of the higher drift

found in smaller populations, which improved the power of

PCAdmix to call migrant tracts. We additionally run the

PCAdmixþTracts analysis on longer time scales, simulating

values of Gs from 200 to 6000, with intervals of 200 generations,

usingN¼ 10 000. Even for several thousand generations since the

split of the reference populations, a small bias was observed

(Fig. 9).
This analysis suggests that although the methods that rely on

ancestry deconvolution are a useful tool for the specific case of

recently admixed groups arising from strongly diverged popula-

tions, they may not be suitable for the analysis of fine-scale mi-

gration events, such as those that occurred across populations

that split few tens to hundreds of generations in the past. It is,

however, possible that adjusting some of the parameters used for

the GENOME simulations and for the PCAdmix software, or

using other deconvolution methods, the obtained accuracy may

be increased. Furthermore, the development of methods for an-

cestry deconvolution in sequence data, where rare variants are

observable, is expected to substantially increase the power of this

analysis, although the effects of limited population divergence

are likely to still affect the accuracy of methods that do not

explicitly take this aspect into account. An additional difference

to be noted between the two considered approaches is that Tracts

does not model population size changes in the populations,

focusing on relative migration rates, whereas DoRIS allows re-

covering both population size fluctuations and migration rates,

thus providing insights into the magnitude of migration events.

This increased flexibility, however, may complicate the inference,

also in light of our observation that large sample sizes are

required for the IBD analysis.

4 DISCUSSION

In this article, we have extended our previous work on the rela-

tionship between long-range haplotypes that are shared IBD

across individuals from a study cohort and the demographic

history of the individuals’ populations of origin. Specifically,

the described framework removes the limiting requirement that

all sampled individuals belong to a single population and allows
for explicitly modeling and inferring demographic interactions
across multiple demes. The evaluation we performed on � 700

synthetic populations confirms the accuracy of the derived IBD
model and suggests that haplotype sharing can be used to gain
insight into fine-scale demographic dynamics for the past tens to

few hundreds of generations, provided enough samples are col-
lected. Our analysis of the HapMap 3 Masai samples, as well as
our previously reported analysis of an Askenazi cohort, suggests

that this method can be applied to currently available datasets,
provided that the quality of haplotype phasing and IBD detec-
tion is carefully considered.

Among available methods for demographic inference, another
approach that explicitly models the effects of recombination (the
Pairwise Sequentially Markovian Coalescent model, PSMC) was

recently proposed in Li and Durbin (2011). This model relies on
a Markovian approximation of the coalescent with recombin-
ation (McVean and Cardin, 2005) and is able to simultaneously

consider the effects of mutation and recombination. The PSMC,
however, differs from the proposed IBD-based model for its
applicability, as it requires full sequence information and is cur-

rently focused on the analysis of remote demographic events
using single individuals, or pairs of phased chromosomes.
Because of the scarcity of coalescent events in the recent history,

the simultaneous analysis of multiple samples is needed to infer
recent demographics. An extension of the PSMC to handle the
analysis of multiple samples, however, is computationally chal-

lenging, and efficient approximations are being developed
(Sheehan et al., 2013).
In addition to these whole-sequence–based methods, inde-

pendent current work (Ralph and Coop, 2013) infers historical
demographic changes from length distributions of IBD segments,
taking a complementary, less parametric approach, thereby

allowing increased flexibility during inference of plausible coales-
cent time distributions, but without providing explicit modeling
of migration and population size changes.

Among other methods aimed at inferring migration, our ap-
proach is conceptually related to those that rely on the frequency
and length of migrant tracts. These methods, however, do not

model population size fluctuations and are dependent on the
possibility of reliably performing ancestry deconvolution to
assign chromosomal tracts to a set of reference populations.

These populations may not be available and, more importantly,
need to be substantially divergent to attain high-quality decon-
volution, as shown in our analysis. Although whole-sequence

datasets and methodological developments may improve the per-
formance of deconvolution methods, this limitation may prevent
methods based on migrant tracts from being effectively used in

the reconstruction of fine-scale migration patterns of the recent
millennia.
Methods based on ancestry deconvolution, however, may in

some scenarios be used in concert with methods based on IBD
sharing. Knowing whether an IBD tract was co-inherited from a
specific population, in fact, may provide information on the dir-

ectionality of migration, and also offer further insight into deeper
time scales, as shown in Campbell et al. (2012) and Velez et al.
(2012). This direction may be further explored in light of the

recently developed analytical model for migrant tracts and the
presented model for IBD.

Fig. 9. We created several datasets using the model in Figure 7, varying

Gs from 200 to 6000, and using m ¼ 0:2, Ga ¼ 25 with population sizes

of 10000 diploid individuals. We inferred the value of m using

PCAdmixþTracts from phased genotype data
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The proposed IBD framework will further be enhanced by
accurate whole-genome sequence information, as the presence
of mutations on IBD segments will improve the timing of
common ancestors and IBD detection of shorter segments.

Finally, our model still relies on the assumption of selective neu-
trality. Natural selection has been shown to have an impact on
long-range haplotype sharing (Albrechtsen et al., 2010; Gusev

et al., 2012). Although selective forces are mostly visible at
local scales, demography affects the entire genome. This frame-
work could, therefore, be used to test local deviations from neu-

trality, and the presented extension, which handles the case of
multiple population models, may further assist the analysis of
cross-population IBD sharing in this context.
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A1 APPENDIX

A1.1 Estimators for different Ne1 and Ne1

When the population sizes of Ne1 and Ne2 are allowed to vary,
the derivation of Section 2.2 leads to the following closed form

estimators

N̂e1 ¼ f9f̂
3
2 þ 31f̂31 þ 128f̂3d þ 4f̂1 f̂dðk� 18f̂dÞþ

�3f̂21ð18f̂d þ kÞ þ f̂22ð49f̂1 � 10f̂d þ 3kÞþ

þf̂2½71f̂
2
1 � 64f̂1 f̂d � 4f̂dð22f̂d þ kÞ�g�

�
1

2u
½f̂1ðf̂2 þ f̂1Þ

2
ð9f̂2 þ 11f̂1Þ þ 8f̂2 f̂1ðf̂2 þ f̂1Þf̂dþ

�4ð4f̂22 þ 19f̂2 f̂1 þ 13f̂21Þf̂
2
d � 16f̂2 f̂

3
d þ 64f̂4d�

�1

ð15Þ

N̂e2 ¼ f31f̂
3
2 þ 9f̂31 þ 128f̂3d � 4f̂1 f̂dð22f̂d þ kÞþ

þf̂21ð3k� 10f̂dÞ þ f̂2½49f̂
2
1 � 64f̂1 f̂dþ

þ4f̂dðk� 18f̂dÞ� þ f̂22½71f̂1 � 3ð18f̂d þ kÞ�g�

�
1

2u
½f̂2ðf̂2 þ f̂1Þ

2
ð11f̂2 þ 9f̂1Þ þ 8f̂2 f̂1ðf̂2 þ f̂1Þf̂dþ

�4ð13f̂22 þ 19f̂2 f̂1 þ 4f̂21Þf̂
2
d � 16f̂1 f̂

3
d þ 64f̂4d�

�1

ð16Þ

m̂ ¼
uðk� 3f̂2 � 3f̂1 þ 10f̂dÞ

8ðf̂2 þ f̂1 � 2f̂dÞ
ð17Þ

where f̂1, f̂2, f̂d are observed within and across populations, and

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½9ðf̂1 þ f̂2Þ � 14f̂d�ðf̂1 þ f̂2 þ 2f̂dÞ

q
: ð18Þ
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