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Abstract
Two families of E3 ubiquitin ligases are prominent in cell cycle regulation and mediate the timely
and precise ubiquitin-proteasome-dependent degradation of key cell cycle proteins: the SCF
(Skp1/Cul1/F-box protein) complex and the APC/C (Anaphase Promoting Complex or
Cyclosome). While certain SCF ligases drive cell cycle progression throughout the cell cycle,
APC/C (in complex with either of two substrate recruiting proteins: Cdc20 and Cdh1) orchestrates
exit from mitosis (APC/CCdc20) and establishes a stable G1 phase (APC/CCdh1). Upon DNA
damage or perturbation of the normal cell cycle, both ligases are involved in checkpoint
activation. Mechanistic insight into these processes has significantly improved over the last ten
years, largely due to a better understanding of APC/C and the functional characterization of
multiple F-box proteins, the variable substrate recruiting components of SCF ligases. Here, we
review the role of SCF- and APC/C-mediated ubiquitylation in the normal and perturbed cell cycle
and discuss potential clinical implications of SCF and APC/C functions.
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1. Introduction
The mammalian cell cycle is a strictly regulated process controlled by the oscillating
activities of cyclin-dependent kinases (CDKs), which are activated by cyclins and inhibited
by CDK inhibitors (CKIs). Many cyclins and CDKs have been described, with each cyclin
associating with one or more CDKs, and most CDKs interacting with one or more cyclins
[1]. The prototypical cyclins driving cell cycle progression are cyclin A, B, and E, which are
expressed in a cell cycle dependent manner and associate with Cdk1 or Cdk2 to mediate
downstream events, such as DNA replication and mitosis. Specifically, cyclin E-Cdk2 is
activated in late G1 phase to promote S-phase entry and DNA replication, cyclin A-Cdk2
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and cyclin A-Cdk1 are involved in S-phase progression and the G2/M transition
respectively, while cyclin B-Cdk1 is activated to promote mitotic entry.

This oscillating activity of CDKs is regulated by diverse mechanisms, starting from the
transcriptional and translational level, to posttranslational modifications (phosphorylation in
particular), and the periodic degradation of cyclins and CKIs by the ubiquitin-proteasome
system [2, 3]. Contrary to reversible modifications, such as phosphorylation or association
with CKIs, ubiquitin-mediated proteasomal degradation is an irreversible mechanism that
assures the strict unidirectionality of the cell cycle, and it plays a key role in cell cycle
regulation by mediating the precise spatial and temporal proteolysis of the main components
of the cell cycle machinery.

Ubiquitylation, the covalent attachment of the small 76-amino-acid polypeptide ubiquitin to
a target protein, occurs through a three-step enzymatic cascade. Ubiquitin is first bound and
activated by the E1 ubiquitin activating enzyme in an ATP dependent manner. It is
subsequently transferred to the E2 ubiquitin conjugating enzyme, before the E3 ubiquitin
ligase enzyme specifically binds the substrate protein to mediate the transfer of ubiquitin to
a lysine residue in the target [4]. Several rounds of ubiquitin conjugation produce long
ubiquitin chains in which each ubiquitin molecule is covalently bound to a specific lysine of
the previous ubiquitin moiety (polyubiquitylation). In the case of polyubiquitylation via
lysine 48 or lysine 11, the polyubiquitylated substrate is committed to association with, and
subsequent degradation by, the 26S proteasome. However, there are different types of
ubiquitylation, which can lead to other molecular consequences, depending on the nature of
the E2. Indeed, substrates can be monoubiquitylated or polyubiquitylated through five other
internal lysine residues (K6, K27, K29, K33, and K63) or the N-terminus of ubiqutin [5–7].
While monoubiquitylation or K63-linked polyubiquitylation specify non-proteolytic fates
for a substrate, the implications of other chain linkages are less understood [5, 7, 8].
Ubiquitylation itself can be reversed by specific deubiquitinating enzymes (DUBs) leading
to a model in which ubiquitylation is controlled by the balance between an E3 ligase and a
DUB [9].

To allow for high specificity in the ubiquitylation of target proteins, more than 600 different
E3 ligases exist in the human genome [10]. Depending on their homology domains, these
ligases can be subdivided in two major classes, the HECT (Homologous to E6-AP C-
Terminus) family E3 ligases and the RING (Really Interesting New Gene) family E3 ligases
[11]. The approximately 30 different HECT ligases form transient covalent linkages with
ubiquitin during the ubiquitylation process, while RING ligases only mediate the transfer of
ubiquitin from the E2 directly to the substrate. RING E3 ligases can be further
subcategorized into those in which one protein contains both the RING and the substrate
adaptor domain or multi-subunit complexes, in which these domains are part of distinct
proteins within the complex [11]. One of the best described E3 families within the multi-
subunit RING ligases is the cullin RING ligase (CRL) superfamily [12], which includes the
CRL1 (better known as SCF, standing for Skp1-Cul1-F-box protein complex) and the APC/
C (anaphase promoting complex/cyclosome, which is also referred to as a CRL-like ligase)
E3 ligases.

The SCF complex consists of Cul1, the scaffold of the complex, Rbx1, the RING protein,
which eventually recruits the E2, and Skp1 (S-phase kinase associated protein 1), which
serves as an adaptor to bind the F-box protein, the substrate-binding subunit (Fig. 1) [12–
14]. F-box proteins are named after the F-box domain, a 40-amino-acid motif initially
identified in cyclin F (aka Fbxo1), which binds Skp1 [15]. They contain an additional motif,
which constitutes the substrate binding domain. Depending on these domains, they are
classified into three groups. F-box proteins containing WD-40 domains are called Fbxws,
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while those with leucine-rich repeats are called Fbxls. The remaining F-box proteins, with
diverse motifs (e.g., tetratrico peptide repeats, kelch repeats, proline-rich motifs) are named
Fbxos [13, 16, 17].

Sixty-nine different F-box proteins are encoded by the human genome, and individual F-box
proteins recognize different substrates. Therefore, these proteins determine the broad
functional bandwidth of SCF complexes. Importantly, specific substrates or biological
activities have so far been assigned to only a few F-box proteins, and each of these play a
key role in essential cellular processes, such as cell cycle control, apoptosis, DNA damage
responses, gene transcription, or translation [3, 18].

The APC/C is a prominent E3 ubiquitin ligase involved in cell cycle regulation. It consists
of thirteen different subunits and, in somatic cells, has two co-activators: Cdc20 and Cdh1
(also known as Fzr1), which define substrate specificity and associate with the APC/C core
at defined stages of the cell cycle (Fig. 1) [19]. While SCF ligases can be active throughout
the cell cycle, APC/C activity is restricted to the time between metaphase and the end of the
next G1, and during this time, APC/CCdc20 initiates anaphase and mitotic exit, while APC/
CCdh1 contributes to mitotic exit and establishment of a stable G1 state [3, 20–22].

In the following sections, we outline the current understanding of how SCF and APC/C E3
ligases regulate cell cycle progression, their response to environmental cues in each phase of
the cell cycle, and potential clinical and therapeutic implications of SCF and APC/C
biology.

2. The G0 and G1 phases
2.1 Quiescence and G1

In response to mitogen withdrawal (or after exit from mitosis), a stable G0 or G1 state has to
be established. The APC/CCdh1 complex is the central player in this task, and it is activated
in late mitosis to complete mitotic exit and reset the cell cycle by targeting a variety of
proteins involved in DNA replication, cycle progression, and mitosis. Among the targets that
promote DNA replication is Cdc6, which binds to the origin recognition complex (ORC) to
form pre-replication complexes (preRCs). Cdc6 is kept at low levels during early G1 through
APC/CCdh1-mediated degradation (Fig. 2A) [23]. APC/CCdh1 also negatively regulates pro-
proliferative signal transduction by targeting Ets2 (Fig. 2A), a transcription factor involved
in Ras-Raf-MAPK signaling that induces the expression of cyclin D1 [24, 25]. APC/CCdh1

activity also precludes early accumulation of positive cell cycle regulators [21, 26].
Specifically, Skp2 (S phase kinase-associated protein, aka Fbl1) is targeted for proteolysis to
avert premature formation of the SCFSkp2 complex, which promotes cell cycle progression
by mediating the degradation of CKIs (see below and Fig. 2A) [26–28]. Importantly, the
Cdc25A phosphatase, which promotes S-phase entry and mitosis by dephosphorylating and
thus activating Cdk2 and Cdk1, is also kept at low levels during early G by APC/CCdh1 (Fig.
2A) [29]. Finally, APC/CCdh1 targets mitotic proteins for proteasomal degradation [19–21,
30]. Among the most prominent targets are cyclin A and cyclin B (Fig. 2A), the main drivers
of mitotic entry [31, 32]. Furthermore, Aurora A, Aurora B, and polo-like kinase 1 (Plk1),
important mitotic kinases involved in centrosome maturation, spindle assembly, and
chromosome separation, are additional targets of APC/CCdh1 (Fig. 2A) [33–36].

Hence, by targeting protooncogenic proteins, such as Skp2 and Ets2, APC/CCdh1 exerts an
anti-proliferative activity. In fact, APC/CCdh1 acts as a tumor suppressor in mice, where
Fzr1 heterozygous mice have elevated rates of spontaneous tumor formation [37].
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In response to mitogen withdrawal, cells must also switch to a state of nutritional saving and
restrict protein translation and cell growth to sustain survival. SCFFbxo9 contributes to this
process via differential regulation of mTORC1 and mTORC2 signaling. Specifically, the
Tel2 (telomere maintenance 2) and Tti1 (Tel2 interacting protein 1) proteins, integral
components of both the mTORC1 and mTORC2 complexes, are phosphorylated by CKII to
target them for degradation by SCFFbxo9 upon growth factor withdrawal. This pathway
specifically targets Tel2 and Tti1 in the mTORC1 complex (Fig. 2B) [38]. As a
consequence, mTORC1 signaling is attenuated to restrain protein translation and cell
growth, but via relief of mTORC1-mediated feedback inhibition, mTORC2 signaling is
sustained to promote survival [38].

2.2 The growth factor response
If growth factors and nutrients are available, cells respond with a number of events that lead
to growth and, eventually, cell division. Certain SCF ligases are acutely involved in the
orchestration of growth factor responses during G1 phase. For example, the tumor
suppressor PDCD4 (programmed cell death protein 4), which inhibits the translation
initiation factor eIF4A, is degraded in response to mitogens in a two-step mechanism. First,
PDCD4 is phosphorylated on serine 67 (and possibly adjacent serine residues) by S6K1, and
it is subsequently ubiquitylated by SCFβTrCP (Fig. 2B), resulting in increased protein
synthesis and cell growth [39]. In response to mitogens and survival signals, SCFβTrCP

furthermore promotes survival by targeting the proapoptotic BH3-only protein BimEL for
degradation in an Rsk1/2- and Erk1/2-dependent manner (Fig. 2B) [40]. Another important
target of SCFβTrCP in growth factor responses is the mTOR inhibitor DEPTOR (Fig. 2B).
After mitogen stimulation, DEPTOR is phosphorylated by mTORC1 or mTORC2 and
CK1α, which directs ubiquitylation and degradation, relieving mTOR inhibition [41, 42].
Thus, in cooperation with SCFβTrCP, mTOR signaling promotes further mTOR activation
via this auto-amplification loop.

2.3 Post-restriction point G1 and the G1 to S phase transition
With sufficient mitogen stimulation and cell growth, cells commit to cell division, passing a
point of G1 known as “restriction point”, after which cells will proceed through a round of
cell division even if mitogens are removed. The transition from G1 to S phase results from
decreasing APC/CCdh1 activity, decreasing CKIs levels, rising cyclin expression, increasing
CDK activity, phosphorylation and inactivation of Rb (retinoblastoma) protein family
members, and activation of E2F transcription factor family members.

Inactivation of APC/CCdh1 during progression through the late G1 phase occurs via different
mechanisms. First, UbcH10, the APC/C specific E2 ubiquitin conjugating enzyme, is
ubiquitylated by APC/CCdh1 (Fig. 2C), thereby providing a negative feedback loop limiting
APC/CCdh1 activity [43]. Likewise, Cdh1 initiates autoubiquitylation within APC/C (Fig.
2C), thus limiting its activity [44]. Furthermore, rising levels of CDK activity lead to
phosphorylation of Cdh1, disrupting its binding to APC/C (Fig. 2C) [3, 45]. Later, in S-
Phase, an unidentified SCF complex contributes to Cdh1 degradation (Fig. 2C), either
directly or indirectly, and this process may depend on previous Cdh1-phosphorylation [46].
Finally, at the G1/S transition, the transcription factor E2F induces expression of Emi1 (an
F-box protein also known as Fbxo5), which binds to APC/CCdh1 as a pseudosubstrate
inhibitor, inhibiting APC/CCdh1 throughout S and G2 (Fig. 2C) [47, 48].

Rising CDK activity during G1 phase occurs through several different mechanisms.
Primarily, the expression of cyclins is induced on a transcriptional level, with cyclin E and
cyclin A expression being initiated by E2F (Fig. 2C) [49, 50]. However, the majority of
cyclin-Cdk complexes are inhibited via association with CDK inhibitors (CKIs), such as p21
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or p27. In late G1, Cdk4 and Cdk6 bound to cyclin D1 catalyze the phosphorylation (and
consequent inactivation) of Rb family proteins (pRb, p107, and p130), which bind and
inhibit E2F transcription factors, preventing their promotion of cell cycle progression. With
decreasing APC/CCdh1 activity in late G1, Skp2 accumulates and forms the SCFSkp2

complex (Fig. 2C), which targets cell cycle inhibitors for degradation, promoting cell cycle
progression throughout S, G2, and M [22]. Importantly, SCFSkp2 binds p27 and mediates its
proteasomal degradation, liberating cyclin E-Cdk2 from p27 inhibition (Fig. 2C) [51–54].
Ubiquitylation of p27 depends on phosphorylation of threonine 187 by cyclin E-Cdk2 and
the co-factor Cks1 [55–59]. Other CKIs ubiquitylated by SCFSkp2 include p21 and p57,
whose degradation further reinforces cyclin-Cdk1/2 activation [60, 61]. By analogy to p27,
phosphorylation by cyclinECdk2 and binding of Cks1 are likely prerequisites for SCFSkp2

dependent ubiquitiylation of p21 and p57 [60, 61]. These functions distinguish Skp2 as an
E3 ligase with oncogenic properties, which is further supported by the frequent
overexpression of Skp2 in many tumors [62].

3. S and G2 Phases of the cell cycle
3.1 S phase

Cyclin E-Cdk2 and (later) cyclin A-Cdk2 are the two main CDK complexes in S phase and
mediate the initiation of DNA and centrosome duplication. At the same time, cyclin A-Cdk2
further inhibits APC/CCdh1 via Cdh1 phosphorylation to ensure cyclin stability (Fig. 3A)
[43]. Upon successful S-phase entry, cyclin D1 is phosphorylated by GSK3β, targeting it for
degradation by an SCF ligase containing Fbxo4 and the small heat-shock protein α/B-
crystallin (the latter being a substrate adaptor) [63]. As cells progress through S and
approach G2, the levels of S phase cyclins decrease again. Notably, cyclin E abundance is
regulated via a negative feedback loop. Specifically, as Cdk2-activity increases, Cdk2-bound
cyclin E is phosphorylated on threonine 380 in a Cdk2-dependent manner, whereupon
phosphorylated cyclin E is targeted for degradation by the SCFFbw7 complex (Figs. 2C and
3A) [64, 65].

3.2 DNA damage checkpoint
During S and G2 phases, it is crucial for cells to assure accurate and complete DNA
replication. Therefore, DNA damage detection mechanisms and checkpoints provide precise
surveillance. Upon DNA damage, ATM activates the checkpoint kinase Chk2 and ATR
activates Chk1 in a Claspin-dependent process (Fig. 4). Chk1 and Chk2 then mediate
inhibitory phosphorylation of Cdc25A on serine 216 [66, 67]. Cdc25A promotes cell cycle
activation by virtue of its ability to remove inhibitory phosphorylations from Cdk1 and
Cdk2, but Cdc25A phosphorylation by Chk1/2 results in ubiquitylation by SCFβTrCP and
degradation, attenuating CDK activity (Fig. 4) [68]. Degradation of Cdc25A leads to a pause
in cell cycle progression during S or G2, depending on the timing of the DNA damage.

Another target of the DNA damage checkpoint in G2 phase is Plk1 [69, 70]. In response to
DNA damage, the phosphatase Cdc14B is released from the nucleolus to the nucleoplasm,
where it dephosphorylates Cdh1 (Fig. 4). As a consequence, APC/CCdh1 becomes
reactivated to target Plk1 for degradation (Fig. 4). In this way, Claspin and Wee1 are
stabilized to activate the checkpoint and inhibit cell cycle progression (Fig. 4) [70]. Notably,
other known targets of APC/CCdh1 are likely protected during this process by DUBs,
particularly USP28 [70, 71].

SCFβTrCP also plays a role during recovery from the checkpoint. Claspin, which mediates
ATR-induced activation of Chk1 upon DNA damage, is phosphorylated by Plk1 during
checkpoint recovery and subsequently degraded in an SCFβTrCP dependent manner [72, 73].
As a consequence, activation of Chk1 declines, and the cell recovers from the checkpoint.
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Moreover, SCFβTrCP also regulates translation during the silencing of the G2 DNA damage
checkpoint. In response to genotoxic stress, AMPK (Adenosine Monophosphate-activated
Protein Kinase) phosphorylates and activates eEF2K (eukaryotic Elongation Factor 2
Kinase), which, in turn, inhibits elongation by phosphorylating and inhibiting eEF2, a
protein that mediates movement of the ribosome along mRNA [74]. During checkpoint
silencing, SCFβTrCP targets eEF2K for degradation to enable rapid resumption of translation
elongation [74].

3.3 G2 phase and G2/M transition
After successful and accurate completion of DNA replication, production of
deoxyribonucleotides (dNTPs) must be avoided. To this end, RRM2 (Ribonucleotide
Reductase family Member 2), which converts ribonucleotides to dNTPs for DNA synthesis,
is phosphorylated on threonine 33 by CDKs and ubiquitylated by the SCFCyclinF complex,
reducing the availability of dNTPs (Fig. 3A) [75]. In contrast, cyclin F is downregulated in
response to DNA damage in an ATR-dependent manner to stabilize RRM2 (Fig. 4). By this
means, production of dNTPs is enhanced to allow for efficient DNA repair [75].

Beyond DNA replication, SCFCyclinF also regulates centrosome duplication. Cyclin F and
CP110, a protein essential for centrosome duplication, physically associate on the centrioles
during G2 [76]. By targeting CP110 for proteasomal degradation (Fig. 3A), SCFCyclinF

assures that centrosomes are replicated only once during the cell cycle, preventing
centrosome overduplication, which could lead to multipolar or asymmetric mitotic spindles
and subsequent chromosome aberrations [76].

With progression through G2 phase, the cell prepares for mitotic entry, which is orchestrated
by cyclin B-Cdk1. Therefore, cyclin B-Cdk1 is a strictly regulated kinase complex. In late
G2 phase, SCFβ-TrCP promotes activation of Cdk1 by mediating the degradation of Wee1, a
Cdk1 inhibitory kinase (Fig. 3B). A prerequisite for SCFβ-TrCP binding to Wee1 is
phosphorylation of serine 53 and serine 123 by Plk1 and Cdk1, respectively [77]. Thus, a
positive feedback loop between Cdk1 activation and Wee1 degradation assures rapid
activation of Cdk1 upon mitotic entry (Fig. 3B). The activity of Plk1 itself is also tightly
controlled through the synergistic actions of Bora and Aurora A kinase. Accumulation of
Bora during G2 leads to Aurora A-mediated activation of Plk1, which contributes to Wee1
degradation and subsequent activation of Cdk1 (Fig. 3B) [78].

To preclude premature mitotic entry, early activation of cyclin B-Cdk1 must be prevented.
To this end, SCFNIPA targets nuclear cyclin B1 during S and G2 (Fig. 3A) [79]. However, in
late G2, NIPA is phosphorylated at serine 395 by cyclin B-Cdk1, after initial
phosphorylation on serine 354 and serine 359 by Erk2 (Fig. 3B) [80, 81]. Phosphorylation
inhibits assembly of a functional SCFNIPA complex, allowing nuclear accumulation of
cyclin B1 and subsequent mitotic entry. In this context, cyclin B1 regulates its own
abundance through a positive feedback loop (Fig. 3B).

4. Mitosis
4.1 Prometaphase and spindle assembly checkpoint

Cyclin B-Cdk1 orchestrates essential steps of early mitosis, including the assembly of the
mitotic spindle, breakdown of the nuclear envelope, cessation of gene transcription, and
condensation of chromosomes. These processes drive the cell through prophase until
metaphase.

Starting from metaphase, the APC/C becomes a key player in promoting mitotic progression
and, eventually, mitotic exit. Thus, inhibitory mechanisms that keep the APC/C in check
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throughout S- and G2 phases must be removed. In this regard, SCFβTrCP mediates
ubiquitylation and degradation of the APC/C inhibitor Emi1 following phosphorylation by
cyclin B-Cdk1 and Plk1 in early mitosis (Fig. 5A) [82, 83]. However, until all kinetochores
are correctly attached to spindle fibers and the chromosomes are properly aligned on the
metaphase plate, the Spindle Assembly Checkpoint (SAC) inhibits APC/C activation,
blocking the onset of anaphase [84]. In the presence of unattached kinetochores, the mitotic
checkpoint proteins, BubR1, Bub3, and Mad2, bind to Cdc20 to form the Mitotic
Checkpoint Complex (MCC), which sequesters Cdc20 and directly inhibits activation of the
APC/CCdc20 (Fig. 5A) [84–86]. Another model suggests that Cdc20 is targeted for
degradation by APC/C in an MCC-dependent manner during SAC activation [87, 88].
Furthermore, inhibitory phosphorylation of Cdc20 by protein kinases, such as Cdk1 (Fig.
5A), MAPK, or Bub1, contributes to Cdc20 inhibition during SAC activation [89–91].
Interestingly, the transcriptional activation of Mad2 is also regulated by SCFβTrCP. During
late G2, SCFβTrCP targets REST (Repressor-Element-1-Silencing Transcription factor) for
degradation, allowing transcriptional derepression of Mad2 (Fig. 5A) [92].

Despite the many mechanisms keeping APC/CCdc20 in check, its activity is not completely
inhibited; a minor fraction remains active even during SAC activation. This subpopulation
sustains cyclin B-Cdk1 activity during prometaphase by targeting p21 for degradation (Fig.
5A) [93]. Although p21 is degraded via SCFSkp2 at the G1/S transition, it re-accumulates
during G2 and interacts with cyclin B-Cdk1 before it is ubiquitylated by APC/CCdc20.
Interestingly, APC/CCdc20 and APC/CCdh1 have opposing effects on p21 levels. While p21
is degraded via APC/CCdc20 in early mitosis, APC/CCdh1 indirectly stabilizes p21 in G1
phase by targeting Skp2 and Cdc20 for degradation [27, 94, 95]. In addition, APC/CCdc20

targets two other substrates for degradation in early mitosis, cyclin A and Nek2A, even
when the spindle checkpoint is active. How the checkpoint-resistant activity of the APC/
CCdc20 is regulated remains unclear. Potential mechanisms include Cdc20-independent
binding of substrates to APC10 or an increase in substrate affinity for Cdc20, which allows
substrates to outcompete SAC proteins [96–98].

4.2 Metaphase to anaphase transition and mitotic exit
Upon proper attachment of all spindle microtubules to chromosome kinetochores, the SAC
is rapidly inactivated, and APC/CCdc20 is released from inhibition via an uncertain
mechanism (Fig. 5B). Checkpoint inactivation depends on Cdc20-dependent ubiquitylation.
According to some, this leads to dissociation of the MCC from APC/CCdc20, but others
suggest that it causes degradation of Cdc20 [99, 100]. An additional, ATP-dependent step is
also required for both dissociation of the MCC from APC/C and disassembly of the free
MCC [101, 102]. This step has been shown to involve β–γ bond cleavage of ATP,
suggesting the presence of an additional ubiquitin independent process, which may be
kinase- or chaperone-related [102]. The understanding of SAC inactivation is further
complicated by the fact that Cdc20 proteolysis is also stimulated by Mad2 and BubR1 to
keep levels of Cdc20 low in order to avoid premature activation of APC/C and maintain the
checkpoint [87, 88]. Eventually, after kinetochore attachment, activated APC/CCdc20

initiates anaphase by targeting Securin for degradation (Fig. 5B) [20, 103, 104]. During
metaphase, sister chromatids are held together by Cohesin. Securin is a chaperone that binds
and inhibits Separase, an enzyme capable of cleaving Cohesin. With Securin degradation,
Separase is released, and centromeric Cohesin is cleaved, which leads to sister chromatid
segregation (Fig. 5B) [105]. Moreover, Shugoshin, a protector of centromeric sister
chromatid cohesion, is targeted for degradation by APC/CCdh1; however, this step is not
indispensable for chromatid segregation and seems more important during meiosis [106,
107].
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Both mitotic cyclins, cyclin A and cyclin B, are targeted for degradation by the APC/C (Fig.
5B) [108]. Whereas cyclin A degradation starts in prometaphase, cyclin B ubiquitylation
starts at the metaphase/anaphase transition, mediated first by APC/CCdc20 and later by APC/
CCdh1 [109–111]. Notably, APC/CCdc20 has different effects on Cdk1 activity depending on
the mitotic phase. While it augments cyclin B-Cdk1 activity during prometaphase via
degradation of p21 (Fig. 5A), it suppresses cyclin B-Cdk1 via degradation of cyclin B in late
mitosis (Fig. 5B) [93]. Mitotic cyclin-CDK activity inhibits Separase, so the degradation of
cyclin A and cyclin B by APC/CCdc20 is directly involved in sister chromatid separation
(Fig. 5B) [20]. Furthermore, drastically reduced CDK activity in anaphase allows for
disassembly of the mitotic spindle, chromosome decondensation, cytokinesis, and
reconstitution of the nuclear envelope [20].

Although APC/C is the most prominent E3 ubiquitin ligase orchestrating the metaphase to
anaphase transition, SCF ubiquitin ligases are also involved in the regulation of anaphase
onset. For instance, Bora, which works together with Plk1 and Aurora A to regulate
microtubule polymerization, spindle stability, and tension between kinetochores, is targeted
for degradation by SCFβTrCP at the metaphase to anaphase transition (Fig. 5A) [112, 113].
Interestingly, a prerequisite for Bora ubiquitylation is phosphorylation by Plk1, which itself
is activated in a Bora-dependent manner at the G2/M transition [78, 112]. Timely activation
and degradation of Bora assures regulated cell cycle progression, as inhibition of Bora
degradation delays anaphase onset and knockdown of Bora activates the spindle checkpoint
[112, 113].

In late mitosis, Aurora A and Plk1 are eventually targeted for degradation via the APC/
CCdh1 to promote mitotic exit (Fig. 5B) [33, 34, 36]. Another important substrate of APC/C
in late mitosis is Geminin (Fig. 5B), which inhibits DNA re-replication by precluding
formation of the pre-replication complex (pre-RC) after S-phase, rendering replication
possible during the subsequent cell cycle [114].

Overall, the APC/C is the central E3 ligase that coordinates mitotic progression, mitotic exit,
and the subsequent establishment of a G1 state. While anaphase onset is induced by APC/
CCdc20, both APC/CCdc20 and APC/CCdh1 orchestrate mitotic exit, and APC/CCdh1

contributes to establishment and maintenance of the G1 phase of the next cell cycle. This
distinct activation profile is the result of different regulatory steps. As mentioned earlier,
Cdh1 is kept inactivated via phosphorylation by CDKs during S, G2 and part of mitosis
[115]. Degradation of cyclin B reduces CDK activity at the metaphase to anaphase
transition, so the levels of dephosphorylated Cdh1 rise. Dephosphorylated Cdh1 binds APC/
C and negatively regulates APC/CCdc20 by targeting Cdc20 for degradation (Fig. 5B) [94,
95]. Moreover, APC/C dependent autoubiquitylation of Cdc20 in anaphase has been
proposed to further contribute to the inactivation of APC/CCdc20 (Fig. 5B) [99, 100]. The
oscillation between Cdc20 and Cdh1 expression partly explains how the APC/C times the
degradation of its various substrates. Depending on their destruction box and their affinity
for Cdc20 or Cdh1, APC/C substrates will be targeted earlier or later during mitosis or G1
for proteasomal degradation [116, 117].

5. Other CRLs involved in cell cycle control
Other CRLs are also implicated in cell cycle control and the DNA damage response. CRL3
complexes appear to control mitosis via proteolytic and non-proteolytic mechanisms. The
best understood cell cycle-related CRL3 substrate is Aurora B. K63-type ubiquitylation of
Aurora B targets it to mitotic chromosomes to control their alignment [118]. The CRL4
ligases also control features of the cell cycle. In addition to Cul4 and Rbx1, CRL4 ligases
contain the adaptor protein DDB1 (DNA Damage Binding protein 1), which recruits
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members of the DCAF (DDB1–Cul4 Associated Factors) family to dictate the specificity of
substrate degradation [119–121]. CRL4Cdt2 is a prominent member of this family implicated
in DNA replication and the DNA damage response. Notably, CRL4Cdt2 interacts with
different UBCs (UBCH8, UBE2G1, and UBE2G2) to mediate ubiquitylation of its various
substrates [122]. An important target of CRL4Cdt2 is Cdt1, a replication licensing factor and
pre-replication complex (pre-RC) component that is tightly regulated to ensure that DNA
replication only occurs once per cell cycle. After S phase, Cdt1 activity is attenuated both by
Geminin binding and by proteasomal degradation. Importantly, CRL4Cdt2-mediated
degradation of Cdt1 is initiated shortly after S phase onset [123–126]. This event requires
Cdt1 binding to PCNA via a PIP (PCNA Interacting Protein)-box motif present in Cdt1.
Upon DNA damage, Cdt1 is degraded in the same way to preclude DNA replication [127].
(Interestingly, Cdt1 is also targeted for degradation by SCFSkp2 in response to CDK-
dependent phosphorylation [123, 128].)

An additional target of CRL4Cdt2 is p21, which is degraded both in response to UV-induced
DNA damage and during the unperturbed cell cycle. In the later context, CRL4Cdt2

collaborates with SCFSkp2 to mediate timely degradation of p21. Like Cdt1, p21 degradation
by CRL4Cdt2 requires interaction with PCNA via a PIP-box [129]. CRL4Cdt2 is further
involved in cell cycle control via regulation of histone methylation by ubiquitylation of Set8.
Set8 mono-methylates Lys 20 of histone H4 (H4K20me1) during G2 to promote chromatin
compaction. During S phase and upon DNA damage, Set8 is degraded by CRL4Cdt2 in a
PCNA-dependent manner [130–132]. Perturbation of this mechanism leads to accumulation
of H4K20me1, premature chromatin compaction, and activation of the G2/M checkpoint
[130, 131].

Interestingly, Cdt2 levels are regulated via SCFFbxo11 during the cell cycle [133, 134] and
inhibition of Cdt2 degradation delays cell cycle exit. In contrast to most other SCF
substrates, whose phosphorylation promotes binding to the F-box protein, CDK-dependent
phosphorylation of the Cdt2 degron inhibits binding to and degradation via Fbxo11 [134].
Thus, crosstalk between an SCF ligase, CDKs, and a CRL4 complex controls the abundance
of Cdt2 to regulate the timing of cell cycle exit.

6. Clinical implications
6.1 SCF complexes as targets in the therapy of cancer and other diseases

The SCF complexes and the APC/C are key players in cell cycle control and the DNA
damage response. As such, they govern cell proliferation and genome stability, which, when
deregulated, contribute to tumorigenesis. Among the SCF ligases controlling cell growth and
proliferation (discussed above), this situation has been described in particular for SCFSkp2,
SCFTrCP, SCFFbxw7, and SCFFbxo9. The recent therapeutic success of the proteasome
inhibitor bortezomib in multiple myeloma and certain types of B-cell Non-Hodgkin's
lymphoma has expedited the efforts to develop inhibitors of ubiquitin ligases or its
components [135, 136]. While bortezomib exhibits a certain degree of selectivity towards
cancer cells and has a noticeable therapeutic index, it non-specifically blocks the ubiquitin-
proteasome-dependent degradation of all cellular proteins, resulting in considerable side
effects and the development of resistance. Therapies directed against individual E3 ligases
or ligase families known to be deregulated in human cancers may thus prove more
efficacious. To qualify as a target for therapeutic inhibition, a ligase should be an
oncoprotein (based on the activity of its substrates - e.g., tumor suppressors) and deregulated
in tumors.

6.1.1 Skp2—Skp2 is an oncoprotein by virtue of its function in degrading negative cell
cycle regulators, including p27, p21, p130, and p57 [137, 138]. Skp2 is overexpressed in
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various malignancies, such as gastric cancer [139, 140], colon cancer [141], and breast
cancer [142], with an associated decrease in p27 levels and indicating a poor prognosis. The
oncogenic function of Skp2 is further underscored by mouse genetic studies. Targeted
expression of Skp2 in the T-lymphoid lineage cooperates with activated N-Ras to induce T-
cell lymphomas [143], while tissue specific expression of Skp2 in the prostate induces
hyperplasia and low grade carcinoma [144]. In addition, a critical role for Skp2-dependent
degradation of p27 in colon adenoma-carcinoma development was demonstrated using a
Skp2 knock-in model [145]. Similarly, in Skp2-null cells, aberrant oncogenic signaling or
inactivation of tumor suppressor genes trigger a potent, tumor-suppressive senescence
response, although Skp2 inactivation alone does not induce senescence [146]. Finally,
RNAi-mediated knockdown of Skp2 inhibits the growth of tumor cells, including cell lines
derived from glioblastoma [147], melanoma [148], and oral cancer [149]. Specific inhibition
of Skp2 would thus be expected to be effective in the treatment of cancers with activated
Skp2 signaling.

Interestingly, Skp2 also interacts with a number of proteins produced by pathogenic viruses,
such as X-protein (HBV), EBNA3C (EBV), and E7 (HPV16/18) [150], suggesting that Skp2
inhibitors may be also utilized in certain viral infections.

6.1.2 βTrCP—Given the diversity of its substrates (reviewed in [151]), βTrCP might be
expected to exert both oncogenic and tumor suppressor activities. However, in certain
tissues, βTrCP is clearly an oncoprotein based on its ubiquitylation activity against tumor
suppressors, such as IκB, a negative regulator of NFκB [152], PDCD4, an inhibitor of
eIF4A-mediated protein translation [39], and BimEL, a potent proapoptotic protein [40].
Indeed, βTrCP is overexpressed in breast cancer [153], and forced overexpression of βTrCP
induces transformation in breast epithelium [154]. Likewise, upregulation of βTrCP has
been shown in colon cancer, where it correlates with elevated NFκB activity and poor
prognosis [155] and in pancreatic cancer cells, where it impacts chemoresistance [156].
Further evidence demonstrating the oncogenic potential of βTrCP stems from transgenic
mouse models, in which tumor formation was observed in the mammary gland, liver, and
kidney when βTrCP expression was directed to these tissues [154, 157]. Interestingly, no
obvious phenotype was observed upon targeted expression of βTrCP in lymphoid organs,
suggesting that βTrCP-dependent tumorigenesis is tissue specific [154]. Therefore,
disrupting the interaction of βTrCP and its tumor suppressive substrates may be an attractive
therapeutic strategy in defined tumor entities.

Similarly to Skp2, βTrCP interacts with a number of proteins produced by pathogenic
viruses, such as Tax (HTLV1). Moreover, the HIV-1 protein Vpu targets SCFβTrCP to CD4
[158]. This finding, together with the evidence that other HIV-1 proteins (i.e. Vif and Vpr)
bind CRLs to eliminate cellular proteins with antiviral activity (e.g., APOBEC3), indicates
that SCFβTrCP and other CRLs are involved in the HIV life cycle and represent potential
targets in the fight against this virus.

6.1.3 Fbxo9 and Fbxw7—The rationale for targeting the ubiquitin-proteasome system is
particularly evident in multiple myeloma, due to the high efficacy of proteasome inhibitors
in this disease. Indeed, Bortezomib, a reversible proteasome inhibitor, has been approved as
the first line treatment for multiple myeloma. In addition, Carfilzomib, a second generation
irreversible proteasome inhibitor has recently been approved by the Food and Drug
Administration (FDA) for the treatment of patients with relapsed and refractory multiple
myeloma, and demonstrates increased potency and an improved therapeutic index [159,
160]. Two ubiquitin ligases of the SCF family have recently been reported to contribute to
the pathogenesis of multiple myeloma, SCFFbxo9 and SCFFbxw7α.
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As outlined above, Fbxo9 targets Tel2/Tti1 proteins in a CK2-dependent manner to adjust
mTOR signaling to the availability of growth factors. Significantly, Fbxo9 is overexpressed
in multiple myeloma and drives constitutive activation of the PI3K/mTORC2/Akt pathway
to promote survival. In multiple myelomas with elevated Fbxo9 expression, inhibition of
Fbxo9 represents an attractive approach to inhibit Akt signaling, one of the most important
mediators of cell survival in this disease [159]. Inhibition of CK2, the kinase that promotes
Fbxo9-mediated ubiquitylation of Tel/Tti1, may also be an interesting therapeutic approach
in multiple myeloma, particularly since CK2 inhibitors are readily available [161].

Although Fbxw7 behaves as a tumor suppressor due to its ubiquitylation activity against
mitogenic substrates (e.g., Notch, c-Myc, cyclin E), Fbxw7 functions as a pro-survival gene
in multiple myeloma by constitutively targeting the NFκB inhibitor p100 in a GSK3-
dependent manner [162]. While a number of cancers, including T-ALL, breast cancers, and
gastric adenocarcinoma often carry mutations in the Fbxw7 gene, leading to an
accumulation of mitogenic substrates [163–165], these mutations do not occur in B-cell
malignancies like multiple myeloma [166]. Fbxw7 and GSK3 may thus serve as promising
targets for the treatment of multiple myelomas with constitutive activation of the NFκB
pathway.

In a short term setting, acute delivery of an Fbxw7 inhibitor could also be effective in
tumors where this F-box protein plays a tumor suppressive role by inducing cancer stem
cells to proliferate and, therefore, become susceptible to traditional chemotherapies.
However, this hypothesis remains to be proved experimentally.

6.1.3 Other F-box proteins—Fbxo11 mutations are present in human cancers, such as
diffuse large B cell lymphomas (DLBCLs), colon, lung, ovary, and head and neck tumors
[167–171] (and Staudt L., personal communication). At least in DLCBLs, these mutations
inhibit SCFFbxo11. The presence of inactivating mutations suggests that Fbxo11 may
function as a tumor suppressor, whose loss of function contributes to the pathogenesis of
DLBCL (via BCL6 accumulation) and other cancers (through the stabilization of
unidentified oncogenic substrates). Furthermore, inactivating mutations have been reported
for Fbxo4 in esophageal carcinoma, and these mutations are associated with an increase in
cyclin D1 levels. The mutations occur in the N-terminal regulatory regions of Fbxo4 and
disrupt dimerization and activation [172]. Moreover, there is evidence for the loss of α/B
crystallin in breast cancer and a corresponding increase in cyclin D1 levels. α/B crystallin is
the substrate adaptor for cyclin D1 together with Fbxo4 [63, 173]. These data suggest a
tumor suppressor role for the SCFFbxo4-α/B crystallin ligase in human tumors based on its
ability to destabilize cyclin D1. Finally, cyclin F has been reported to be downregulated in
hepatocelular carcinoma (HCC). In this context, low cyclin F expression was an independent
poor prognostic marker for overall survival and correlated with tumor size and clinical stage
[174]. Given the role of cyclin F in regulating centrosome homeostasis and the balanced
abundance of dNTPs, these findings hint at a function for cyclin F as a tumor suppressor in
HCC by maintaining genomic stabilty [75, 76].

6.2 Strategies to target CRLs
In theory, targets for inhibiting substrate degradation by the ubiquitin proteasome system
can involve any of the three enzymes involved in ubiquitin transfer, including the E1
activating, the E2 conjugating, and the E3 ligase enzymes. These approaches would be
expected to inhibit most or certain ubiquitin ligase families, when targeting E1 or E2
enzymes, respectively, and become highly specific when targeting single E3 ligases.
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6.2.1 Targeting E1 ubiquitin activating enzymes—E1s (of which there are two in
mammals) catalyze the initial step in ubiquitin conjugation, which involves an ATP-
dependent covalent attachment of ubiquitin to its active cysteine site [4]. Efforts have been
undertaken to target E1. These studies have yielded candidate compounds like PYR-41, an
irreversible ubiquitin E1 inhibitor, but further investigations will be necessary to assess if
they are clinical candidates [175]. Additional efforts have been directed to the E1s for
ubiquitin like proteins (such as NEDD8, SUMO, etc.). Recently, MLN4924, an adenosine
sulfamate analog, was reported to inhibit the E1 responsible for NEDDylation, the covalent
addition of NEDD8 to substrates [176]. The cullin family of proteins are the most important
substrates for neddylation, and the activity of SCF and other CRLs requires cullin
neddylation [12, 177, 178]. In contrast to an inhibitor for the ubiquitin E1s, a small molecule
inhibitor of the NEDD8 E1 would only inhibit CRLs. Currently, MLN4924 is in phase I/II
clinical trials for the treatment of multiple myeloma and non-Hodgkins lymphoma, and the
preclinical data suggest high efficacy in AML [179, 180].

6.2.2 Targeting E2 ubiquitin conjugating enzymes—Together with the E3 ligase,
E2s mediate the transfer of ubiquitin to the target protein and govern the type and extent of
ubiquitin linkage [181]. The human genome encodes at least 38 E2 enzymes, and Cdc34
(aka Ubc3) appears to be the major E2 for SCF ligases in promoting K48-linked
polyubiquitylation and proteasomal degradation [12]. Recently, CC0651, a small molecule
allosteric inhibitor of Cdc34 was reported [182]. CC0651 inhibits p27 ubiquitylation and
degradation, and it demonstrates convincing specificity for human Cdc34, as evidenced by a
lack of reactivity against any other E2/E3 pairs tested [182]. While current data on other E2
inhibitors is limited, the development of CC0651 indicates the feasibility of developing
highly selective inhibitors of E2s and encourages efforts to target other E2s in a similar
manner.

6.2.3 Targeting E3 ubiquitin ligases—E3 ligases determine which target protein
becomes ubiquitylated. Inhibition of a single E3 ligase would be the most selective targeting
approach, since it would affect a limited number of proteins, potentially translating into a
better therapeutic ratio and fewer side effects. Most E3 ligases do not feature a canonical
active site, and instead, the active site is a protein-protein interaction with a substrate.
Inhibition of these protein-protein interactions is typically considered more difficult than
inhibition of a catalytic site. However, this task appears increasingly feasible with advances
in the structural understanding of these interactions [183]. MDM2 is an extensively studied
ubiquitin E3 ligase with strong clinical relevance by virtue of its ability to regulate the
abundance of the tumor suppressor p53. Previously, the Nutlin class of imidazoline
chemotypes was identified, and they specifically disrupt the protein-protein binding
interface between MDM2 and p53, stabilizing p53 [184]. Nutlin-3a is the most promising
candidate and has favorable preclinical characteristics in terms of pharmacological
properties and toxicity [185, 186]. Currently, Nutlin-3a is being investigated in early phase
clinical trials for several solid and hematological tumor entities, setting a precedent for the
specific inhibition of a ligase-substrate pair as a promising clinical approach.

In the case of SCF complexes, inhibition of either the F-box protein-substrate interface or
the recruitment of the F-box protein to the SCF core are attractive strategies to selectively
inhibit individual ubiquitylation events. In this regard, the small molecule inhibitor CpdA
has previously been found to prevent the binding of Skp2 to the SCF ligase complex,
inducing G1/S arrest and apoptosis by stabilizing p27, p21, and other Skp2 target proteins.
In addition, CpdA sensitized multiple myeloma cells to cytostatic agents and bortezomib,
and it was active against both myeloid and lymphoblastoid leukemia blasts [187].
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Independent studies have recently demonstrated the feasibility of direct inhibition of the
interfaces between the F-box protein and either the substrate or SCF core. SCF-I2 is an
allosteric inhibitor of substrate recognition by the yeast F-box protein Cdc4 and inhibits
binding and ubiquitylation of substrates. SCF-I2 inserts itself between the β-strands of the
WD-40 propeller domain of Cdc4, impairing recognition of Cdc4-specific phosphodegrons
[188]. In addition, a recent study screened for inhibitors that selectively target the p27-
binding interface formed by Skp2-Cks1. This approach yielded four compounds that
stabilize the expression of p27 in different human cancer cell lines and induce cell cycle
arrest in G1 [189]. Finally, a chemical genetics screen for enhancers of rapamycin identified
SMER3, an inhibitor of the SCFMet30 ligase. SMER3 specifically inhibits binding of the F-
box protein subunit Met30 to the SCF core, stabilizing substrates such as Met4 [190].

Another approach to prevent substrate degradation at the E3 ligase level is to inhibit the
kinase that phosphorylates a substrate to mark it for degradation. This approach particularly
applies to SCF ubiquitin ligases, as it is well established that substrate phosphorylation is
frequently a prerequisite for F-box protein binding [13, 151, 191]. Indeed, kinases like Plk1,
which control the degradation of tumor suppressors, are potential targets, and inhibitors have
already entered early clinical trials [192]. Notably, this approach could quickly impact the
clinic, as inhibitors to numerous kinases are readily available, but broader application will
require further investigations.

Together, SCF ligases are promising therapeutic target structures, whose pharmacological
modulation would offer highly specific therapeutic approaches to a wide variety of
malignancies. The success of this undertaking will largely depend on the pharmacological
progress in developing specific inhibitors of F-box proteins and a better mechanistic
understanding of the many uncharacterized F-box proteins, both with regard to their
substrates and the posttranslational modifications that prime them for SCF-dependent
ubiquitylation. Finally, it will be critical to further define tumor entities in which distinct
SCF ligases are deregulated. This data will help define distinct F-box proteins as biomarkers
and allow the selection of patient subpopulations that would profit from a targeted approach
against SCF ligases.
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Highlights

• Role of Cullin RING ligases (CRLs) in the normal cell cycle

• Involvement of CRLs in the cellular response to different environmental cues

• Particular focus on ligases of the SCF and APC/C families

• Clinical implications in targeted cancer therapies
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Figure 1. Structure of the SCF and the APC/C ubiquitin ligases
The SCF and APC/C E3 ligases are both members of the Cullin-RING ligase (CRL)
superfamily. Cul1 and Apc2 (light grey) are the scaffold proteins of SCF and APC/C,
respectively. On one end, they bind to a RING finger protein, Rbx1 or Apc11 (dark grey),
which recruits the E2 ubiquitin conjugating enzyme (UBC). On their other end, they connect
to the substrate specific unit via an adaptor molecule (red). In the case of SCF, the F-box
proteins are the variable substrate binding components (orange), while Cdh1 and Cdc20 (in
somatic cells), together with Apc10, recruit substrates to the APC/C. The scheme illustrates
the relationship between APC/C and SCF components and does not represent the topology
of APC/C subunits.
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Figure 2. SCF and APC/C mediated degradation processes in G1 phase and the response to
mitogen stimulation
A. APC/CCdh1 maintains a stable G1 phase by targeting mitotic proteins like Aurora A,
Aurora B, Plk1, cyclin A, and cyclin B for degradation. In addition, APC/CCdh1 prevents
premature accumulation of positive cell cycle regulators, such as Ets2, Cdc6, and Cdc25A.
The CDK inhibitors p21 and p27 are stabilized via APC/CCdh1-dependent degradation of
Skp2 to keep CDK activity low during G1.
B. Upon mitogen stimulation, SCFβTrCP mediates the degradation of inhibitory or
proapoptotic proteins, such as PCDC4, DEPTOR, and BimEL, promoting cell growth. Upon
mitogen withdrawal, SCFFbxo9 targets Tel2 and Tti1 for degradation within mTORC1 to
attenuate mTORC1 activity and sustain mTORC2 signaling.
C. At the G1/S transition, APC/CCdh1 activity is inhibited through several mechanisms, such
as inhibitory phosphorylation by CDKs and binding to Emi1. Skp2-dependent degradation
of p21 and p27 leads to activation of cyclin E-Cdk2, which initiates S phase before being
degraded via SCFFbw7. See main text for more details.
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Figure 3. SCF and APC/C mediated degradation processes in S and G2 phases of the cell cycle
A. In early G2, APC/CCdh1 remains inactivated, SCFSkp2 maintains cyclin A-Cdk1/2 activity
via degradation of p21 and p27, SCFFbw7 promotes cyclin E degradation, and SCFNIPA

prevents premature accumulation of nuclear cyclin B. Other S phase proteins (e.g., RRM2
and CP110) are also degraded via cyclin F to stop dNTP production and assure centrosomes
are only replicated once per cell cycle.
B. At the G2/M transition, SCFSkp2 continues to target p21 and p27, while Wee1 is degraded
in a Plk1- and SCFβTrCP-dependent manner to release cyclin B-Cdk1 from inhibition. See
main text for more details.
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Figure 4. Role of SCF and APC/C ligases in the response to DNA damage
Upon DNA damage, SCF and APC/C activate S and G2 checkpoints to halt cell cycle
progression. Chk1 (which is activated by ATR) promotes the SCFβTrCP-dependent of
Cdc25A to inhibit CDK activity, while dephosphorylation of Cdh1 by Cdc14B allows for
Plk1 degradation and subsequent stabilization of Claspin and Wee1. See main text for more
details.
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Figure 5. SCF and APC/C mediated degradation processes during mitosis
A. In early mitotis, SCFβTrCP ubiquitylates Emi1 to eliminate the repression of APC/CCdh1

(which remains inactive because of Cdh1 phosphorylation by CDKs) and, possibly, APC/
CCdc20. However, during activation of the Spindle Assembly Checkpoint (SAC), APC/
CCdc20 activity is repressed, with cyclin B-Cdk1 contributing to its inhibition.
B. After fulfillment of the SAC, APC/CCdc20 inhibition is relieved, allowing it to target
mitotic cyclins and Securin for degradation, the latter leading to Separase activation and
sister chromatid separation. With mitotic progression, APC/CCdc20 activity decreases via
several mechanisms, and APC/CCdh1 assembles to target cell cycle proteins for degradation.
See main text for more details.
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