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Abstract

By using fluorescent labelling techniques, the distribution and dynamics of proteins can be measured within living cells,
allowing to study in vivo the response of cells to a triggering event, such as DNA damage. In order to evaluate the reaction
rate constants and to identify the proteins and reactions that are essential for the investigated process, mechanistic models
are used, which often contain many proteins and associated parameters and are therefore underdetermined by the data. In
order to establish criteria for assessing the significance of a model, we present here a systematic investigation of the
information that can be reliably deduced from protein recruitment data, assuming that the complete set of reactions that
affect the data of the considered protein species is not known. To this purpose, we study in detail models where one or two
proteins that influence each other are recruited to a substrate. We show that in many cases the kind of interaction between
the proteins can be deduced by analyzing the shape of the recruitment curves of one protein. Furthermore, we discuss in
general in which cases it is possible to discriminate between different models and in which cases it is impossible based on
the data. Finally, we argue that if different models fit experimental data equally well, conducting experiments with different
protein concentrations would allow discrimination between the alternative models in many cases.
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Introduction

The technique of fluorescently labelling proteins made it

possible to visualize cellular proteins and to measure their

distribution and dynamics within the cell [1]. Via genetic

engineering cells are manipulated such that they synthesise the

protein of interest tagged with a fluorescent protein. The

fluorescence signal of the cell is measured with a fluorescence

microscope. Since the cells need not be fixed, it is possible to

explore processes within living cells. The intensity of the

fluorescence signal is proportional to the concentration of the

tagged proteins, and its change in space and time reflects the

changes of the protein concentrations. Comparing the signal

within the region of interest, which has been treated in a special

way (e.g., by irradiation), with an untreated region, allows to

evaluate the relative concentration of proteins that are recruited to

substrates (e.g., DNA) within the region of interest in response to

the treatment. Examples for such experiments are the study of

DNA repair processes after a damage [2], and cellular signalling

subsequent to triggering light-inducible interactions [3]. If two or

more different protein species are labelled, information about the

interaction between these proteins can be obtained by measuring

all their concentrations simultaneously.

Another application of fluorescently labelled proteins is FRAP

(fluorescence recovery after photobleaching). FRAP allows the

determination of the association and dissociation rate constants of

proteins within cells by analyzing the curve of the recovering

fluorescence signal after photobleaching. In contrast to the above-

mentioned experiments, FRAP experiments are performed in

equilibrium and not during the recruitment or response process.

The theoretical background of FRAP has been extensively

discussed [4,5].

In the following, we focus on protein recruitment to a region in

the cell following a triggering event, such as irradiation. There

exist two kinds of mathematical approaches to deducing the

binding and reaction rate constants from experimental data, the

phenomenological and the mechanistic approach. In a phenom-

enological approach, mathematical functions (e.g., a monoexpo-

nential function) are fitted to protein recruitment data [6,2,7,3],

whereas mechanistic models use differential equations to describe

the changes in the concentrations of activated or bound proteins in

the region of interest [8,9,10,11,12,13]. The aim of these

mechanistic models often consists in evaluating rate constants, in

identifying the proteins and reactions that are essential for the

investigated process, and in obtaining evidence for processes that

are not directly visible. Usually, protein diffusion is not included in

such models, which is a good assumption as long as recruitment

occurs at a considerably slower scale than diffusion, so that

proteins do not become depleted near the site of recruitment.

Usually, mechanistic models assume that proteins are recruited

in sequential order, and they contain many protein species and at

least three times as many free parameters (association rate,

dissociation rate, and initial concentration for each protein

species), which means that the fit to the data may be good even

when the underlying model is not valid. Such an approach is

therefore only useful if the underlying model is well corroborated

by other evidence or if competing models are so different that only

one of them matches the data in spite of the large number of fit
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parameters. However, as Mueller et al. [14] pointed out often

different models are able to describe experimental data equally

well. For instance, Friedland et al. [15] noted that attachment and

dissociation rates of Ku70/80 and DNA-PKcs involved in non-

homologous end-joining cannot be derived unequivocally from the

data. In the following, we will therefore assume that the complete

set of reactions that affect the recruitment data of the considered

protein species is not known. We will discuss in a systematic way

which information can be deduced by comparing mechanistic

protein recruitment models to data. To our knowledge, no such

investigation exists yet in the literature. We will discuss a set of

simple but realistic models consisting of three chemical species or

less. We have chosen this number to keep the model as simple as

possible but to still be able to describe situations in which one

protein species influences another. We will show that in many

cases it is possible to estimate the kind of interaction between two

protein species by analyzing the shape of the recruitment curves.

Furthermore, we will show in general in which cases the

distinction between different models is possible and in which

cases it is impossible based on the experimental data. Finally, we

will show that if different models fit experimental data equally well

in many cases conducting experiments with different protein

concentrations would lead to a considerable improvement of the

discriminability of the alternative models.

Methods

The models we discuss consist of two or three chemical species.

One of them is a substrate, such as a single strand break in the

DNA, the other species are proteins binding to the substrate. We

assume that these relations are composed of elementary reactions

such as

PzS
k1

Pb ð1Þ

and

Pb

k{1
PzS : ð2Þ

In these formulas P denotes a protein particle, S represents the

substrate (e.g., the DNA), Pb is the complex (e.g., a protein bound

to DNA), and k1 and k{1 denote the forward and backward

reaction rate constant. Assuming that the recruitment of the

proteins happen on a slower time scale compared to diffusion and

using the law of mass action this chemical reaction can be

translated into the following set of differential equations for the

concentrations of the chemical species:

d½Pb�
dt

~{
d½P�
dt

~{
d½S�
dt

~k1½P�½S�{k{1½Pb� : ð3Þ

Such a deterministic description is valid if the concentrations of the

chemical species in the modeled volume are so high that the

stochastic nature of the underlying processes is negligible. Even if

this is not the case, the deterministic description is still useful as an

approximation.

If the model includes more chemical species, the resulting set of

coupled differential equations is in general not analytically

solvable. However, for some important limiting cases analytical

solutions exist. In particular, we consider the situation that the

concentration of at least one chemical species is quasi constant.

This situation arises for instance when there are few substrates

(such as damaged DNA sites) but many proteins that could bind to

them. In the following, the quasi constant approximation (QCA)

will be applied to a protein species whenever the concentration of

free proteins, ½X �, remains close to its initial value, ½X0�, during the

entire recruitment process and is always much larger than the

concentration of bound proteins, ½Xb�. This means that
½X �
½X0�

&1

and
½Xb�
½X0�

%1. In the example above, the QCA can be applied if

½P0�ww½S0�. In the case k{1~0, it leads to

½P�(t)~½P0� , ð4Þ

d½S�
dt

~{
d½Pb�

dt
~{k�1½S� ð5Þ

with k�1~k1½P0�.
Most of the models that we will discuss later consist of two

protein species and the substrate. If the QCA is applied to both

protein species, this will make all differential equations linear

allowing to solve them analytically.

In order to compare curves resulting from different sets of

parameters we normalize the curves to their steady state value.

This is motivated by the fact that absolute values of the

concentrations are usually not known in experiments, only relative

changes in the concentrations can be evaluated. For the situation

described by eq. (5), this leads to the functions

½S�(t)=S0~e
{k�

1
t
, ð6Þ

½Pb�(t)=S0~1{e
{k�

1
t
: ð7Þ

In this case the system has only one free parameter, k�1~k1P0.

In the following, we first discuss the situation of one protein

species binding to the substrate, and then the case of two protein

species binding to the substrate.

One protein one substrate model
The most simple model of protein recruitment includes a

protein species, a substrate, and a chemical reaction for the

binding of the protein to the substrate and its dissociation, as

represented in eqs (1) to (3). This model can be solved analytically

(see section A in Appendix S1). If the dissociation rate is negligible,

the solution is

½Pb�(t)
S0

~1{

1{
S0

P0

e
(1{

S0
P0

)k�
1

t
{

S0

P0

, ð8Þ

whereas in general the solution is given by

½Pb�(t)
S0

~1{
{e

({
S0
P0

k�
1

tzq3)q2 (q2zq1)zq1{q2

2(e
({

S0
P0

k�
1

tzq3)q2{1)

ð9Þ

with
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q1~
P0

S0

1z
k{1

k�1

� �
{1, ð10Þ

q2~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(q1)2z

4P0k{1

S0k�1

s
, ð11Þ

q3~
1

q2

ln
2zq1{q2

2zq1zq2

: ð12Þ

The maximum P�b, which corresponds to the limit limt??½Pb�(t),
is given by

½P�b�
S0

~
q1

2
z1{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1

2
z1

� �2

{
P0

S0

r
: ð13Þ

In the QCA, the differential equation and its solution simplify to

d½Pb�
dt

~{
d½S�
dt

~k�1½S�{k{1½Pb� ð14Þ

with k�1~k1½P0� and

½Pb�(t)
P�b

~1{e
{(k�

1
zk{1)t ð15Þ

with P�b~
S0

1z
k{1

k�1

.

Interestingly, this solution contains the two rate constants only

in the combination keff ~k1½P0�zk{1. This means that if the

concentration of the protein is much higher than that of the

substrate, it is impossible to conclude from the normalized

recruitment curve whether dissociation occurs. The fit gives only

the combined value keff .

Additionally, eq. (15) shows that an increase of the dissociation

rate k{1 has an effect similar to an increase of the association rate

k�1 . At first, this might seem counterintuitive. The reason for this

effect is that increasing k{1 decreases the absolute maximum

(obtained without normalization), while having only little effect on

the slope of the not normalized curve at the beginning. The latter

is due to the low concentration of ½Pb�(t) at the beginning. Both,

the decreased maximum and the almost unchanged initial slope of

the not normalized curves, lead to an increase of the slope of the

normalized solution.

Figure 1 shows the normalized recruitment curves obtained for

this model for different values of S0. An important feature of this

model is that curves resulting for different sets of the parameters

can cross each other. This is impossible if dissociation is excluded.

One can also see that with decreasing S0 the curves of the

analytical solution (eq. (9)) approach the QCA solution (eq. 15)).

In Figure 1 we also demonstrate how the parameter keff can be

read off from the curve. First, we choose one point on the curve,

for instance the initial point (as done in Figure 1). Then, we

measure the difference of the concentration value at this point to

the asymptotic value, which is 1 in our example. Then, we choose

a second point that has a difference to the asymptotic concentra-

tion that is smaller by a factor
1

e
&0:37. In our example, this point

has the concentration value 0.63. The time interval between the

two points then gives the inverse of the time constant. In our

example, this time interval is 1.6, and we read off the result

k�1zk{1&
1

1:6
&0:63.

We conclude that if the QCA is applicable, the shape of the

recruitment curve is monoexponential for the one protein one

substrate model. The association and dissociation constant cannot

be determined separately in this case, only the combination

k�1zk{1 can be obtained by a fit to the normalized curves. When

the QCA is not applicable, a monoexponential fit does not work,

and a fit based on eq. (8) or (9) must be performed, giving the two

parameters k�1 and S0=P0 in the first case and the three parameters

k�1, S0=P0, and k{1=k�1 in the second case. Unfortunately, since

the curves have a simple shape, a fit with eq. (8) will work very well

even when the ratio k{1=k�1 is in reality not small. Unless there is

separate information on the value of k{1 (obtained for instance

from FRAP measurements) or on absolute concentration values,

the value of k�1 cannot be extracted from recruitment data.

Nevertheless, the fit with eq. (8) gives an upper limit for k�1, and

assuming that the dissociation rate is not larger than k�1, one can

expect that the true value of k�1 is somewhere between this upper

limit and half this value. Thus at least the order of magnitude of k�1
can be estimated. For instance, the parameter estimation of the

grey curve shown in Figure 1 led to k�1zk{1&0:63. From this we

can conclude that k�1ƒ0:63. Additionally, if there is indication that

at least half of the substrate places bind P in equilibrium, it follows

that k�1§k{1. Then, the highest possible value for k{1 and the

lowest possible value of k�1 is k{1~k�1~0:63=2.

Whenever a one protein one substrate model does not work, this

indicates that additional molecules are involved in the recruitment

process and influence the recruitment of the considered protein.

This typically leads to recruitment curves that have a more

complex shape than those shown in this subsection. In order to

understand the different ways in which another molecule (which

we take to be a second protein) can affect the recruitment

Figure 1. Effect of a variation of S0 on the one protein one
substrate model with dissociation. Coloured lines: Exact analytical
solution (eq. (9)) normalized to P�b (eq. (13)) with P0~6:103 , k1~10{4 ,

k{1~10{2 . The value of S0 decreases from the lowest (blue) curve
(S0~6:103) to the the highest (green) curve (S0 = 500). Grey line: QCA
solution (eq. (15)) with k�1~0:6 and k{1~10{2 . The inset shows the
section in which the blue curve and the green curve cross, amplified by
a factor of 15. The dashed lines illustrate the parameter estimation
described in the main text.
doi:10.1371/journal.pone.0066590.g001

Deducing Mechanisms from Protein Recruitment Data

PLOS ONE | www.plosone.org 3 June 2013 | Volume 8 | Issue 6 | e66590



dynamics of a given protein, we study in the next subsection the

case of two proteins and a substrate.

Two protein one substrate models
In this section we discuss models that consist of two proteins A

and B and a substrate S. The influence of another protein can

affect the association or the dissociation rate constant of a

measured protein by either increasing or decreasing its rates. The

analytical solution of the full model is complex and involves

hypergeometric series. We therefore restrict ourselves to the QCA,

which means that ½A0�ww½S0� and ½B0�ww½S0�. Since these

conditions are satisfied in many biological situations, our results

are widely applicable.

We denote with ½SA�, ½SB�, and ½SAB� the concentrations of A

only, B only, and the complex AB bound to the substrate S.

Again, ½S� denotes the concentration of the unbound substrate.

kSzA (kSzB) denotes the association rate constant of A (B) if B (A)

is not bound to the substrate, while kSBzA (kSAzB) is the

association rate constant if B (A) is already bound to the substrate.

The corresponding dissociation rates are denoted with kSA{A,

kSAB{A, kSB{B and kSAB{B.

The model consists of the following differential equations:

d½S�
dt

~{(k�SzAzk�SzB)½S�zkSB{B½SB�zkSA{A½SA� , ð16Þ

d½SA�
dt

~k�SzA½S�zkSAB{B½SAB�{(kSA{Azk�SAzB)½SA� , ð17Þ

d½SB�
dt

~k�SzB½S�zkSAB{A½SAB�{(k�SBzAzkSB{B)½SB� , ð18Þ

d½SAB�
dt

~k�SBzA½SB�zk�SAzB½SA�{

(kSAB{AzkSAB{B)½SAB�
ð19Þ

with k�SzA~kSzAA0, k�SBzA~kSBzAA0, k�SzB~kSzBB0 and

k�SAzB~kSAzBB0. The sum of these four equations is zero,

because the total concentration of bound and unbound substrate

does not change.

In the following, we discuss specific model versions, which are

nevertheless relevant in many situations and which give insights

into the most general case by combining their insights. First, we

discuss models in which all dissociation rate constants (kSA{A,

kSAB{A, kSB{B, and kSAB{B) are assumed to be negligible and the

association rate constants of at least one protein is influenced by

the other protein (kSzB=kSAzB). Then, we focus on models in

which the dissociation rate constants are assumed to become

important while we presume that the association rate constants are

not influenced by the other protein (kSzA~kSBzA and

kSzB~kSAzB).

A. Protein A influences the association rate of protein B
In many cases, association occurs on a much faster time scale

than dissociation. When the recruitment curves are analyzed on a

time scale where dissociation is not yet relevant, the dissociation

rates kSA{A, kSAB{A, kSB{B, and kSAB{B can be set to zero.

Furthermore, we assume that the QCA is applicable and that the

association rate of protein A is independent of the binding status of

protein B (kSzA~kSBzA), but that the association rate constant of

B is influenced by the presence of A (kSzB=kSAzB). As we will

show below, the more general case where each protein influences

the association of the other can easily be deduced from the more

special case studied in this subsection.

With the mentioned restrictions, the set of differential equations

is given by

d½S�
dt

~{(k�SzAzk�SzB)½S� , ð20Þ

d½SA�
dt

~k�SzA½S�{k�SAzB½SA� , ð21Þ

d½SB�
dt

~k�SzB½S�{k�SzA½SB� , ð22Þ

d½SAB�
dt

~k�SzA½SB�zk�SAzB½SA� : ð23Þ

The solution is (see section B in Appendix S1)

½S�(t)~S0e
{(k�

SzA
zk�

SzB
)t

, ð24Þ

½SA�(t)~
S0k�SzA

k�SzAzk�SzB{k�SAzB

({e
{(k�

SzB
zk�

SzA
)t
ze

{k�
SAzB

t
) ,

ð25Þ

½SB�(t)~S0(1{e
{k�

SzB
t
)e

{k�
SzA

t
, ð26Þ

½SAB�(t)~S0 1{e
{k�

SzA
t
{½SA�(t)

� �
: ð27Þ

Since the recruitment of A is described by the one protein one

substrate model discussed in the previous section, we will focus in

the following on protein B. Unless k�SzBwwk�SzA, in which case

B is recruited almost completely before ½SA� becomes non

negligible, the recruitment curves of B show an influence of

protein A. This influence is qualitatively different in the cases

k�SAzBwk�SzB and k�SAzBvk�SzB, where A either increases or

decreases the association rate of B. We therefore discuss these two

cases separately.

A.1 Protein A increases the association rate of B. If

k�SAzBwk�SzB, the association rate of B is increased by the

presence of A. Figure 2 shows that this can lead to an initial

increase of the slope of ½SB�(t)z½SAB�(t) (i.e., the overall

concentration of recruited protein B). It can be shown analytically

that the condition for such an initial increase is

k�SzB

k�SAzB

w

k�SzB

k�SzA

z1 : ð28Þ

Under experimental conditions, however, the initial increase of the

slope will be concealed by noise unless the left hand side of eq. (28)
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exceeds the right hand side to a sufficient extent (depending on the

noise level).

Even when the parameters are such that no upwards bend of

the curve is visible (as in the green curve in Figure 2A), the slope of

the curve is steeper than for a simple exponential function with

exponent k�SzB. The special case k�SzB~0 (i.e. B can not bind

without A) is characterized by a zero initial slope of the curve

(Figure 2B). Admittedly it might be difficult to experimentally

resolve this difference in the slope at t~0. However, if several

experiments with different values of B0 are performed, it is possible

to identify the case k�SzB~0 also by the signature that the curves

approach with increasing B0 the asymptotic curve

lim
k�

SAzB
??
½SAB�(t)~S0(1{e

{k�
SzA

t
) , ð29Þ

which is the recruitment curve for protein A. In contrast, in the

case k�SzBw0 recruitment becomes ever faster with increasing B0

and is not limited by A recruitment, see Figure 2A.

Approximate values of the parameters k�SzB and k�SAzB can be

estimated by looking at the early and late stages of recruitment,

which are dominated by k�SzB and k�SAzB, respectively. The initial

slope of the curve is identical to k�SzB, and it should be possible to

extract this slope approximately from recruitment data. Alterna-

tively, if k�SzBwk�SzA, the time at which the curve reaches the

value 1{1=e*0:63 gives an impression of the order of magnitude

of 1=k�SzB. In the example shown in Figure 2A, the resulting

estimate of k�SzB is 50 percent off the correct value. If protein B is

recruited on a slower time scale than A, the value of k�SAzB can be

estimated by measuring the time it takes to decrease the distance to

the asymptotic value 1 to 1=e*0:37 of its previous value (see inset

of Figure 2A; a detailed explanation of parameter estimation can

be found in section A).

An example of experimental data that show a slope that

increases at the beginning is the recruitment curve of 53BP1

measured by Tobias et al. [2]. Indeed, it is known that the binding

of 53BP1 depends on the binding of other proteins. In general,

such an initial increase of the slope will be seen whenever the

considered protein binds with a considerably increased rate when

either another protein has become bound to the substrate or has

performed a modification of the substrate, such as phosphoryla-

tion.

A.2 Protein A decreases the association rate of B. If

k�SAzBvk�SzB, the association rate of B is decreased by the

presence of A. Figure 3A shows typical recruitment curves

obtained in this case. After A has risen to a high level, recruitment

of B becomes much slower, and the slope of ½SB�(t)z½SAB�(t)
decreases faster than would be expected from a monoexponential

curve that has a similar initial slope (grey curve). A three-

parameter fit using the one protein one substrate model eq. (9)

does not give good fits either (not shown). The reason for this is

that the bend in ½SB�(t)z½SAB�(t) is caused by protein A

approaching saturation, and not by a depletion of binding sites for

protein B, as in model eq. (9). The bend can therefore occur when

½SB�(t)z½SAB�(t) is still far from saturation.

An interesting special case is given by k�SAzB~0 (Figure 3B). In

this case protein A prevents the association of protein B, and the

concentration of total recruited B is given by:

½SB�(t)z½SAB�(t)~S0(1{
1

1z
k�SzA

k�SzB

)e
{(k�

SzA
zk�

SzB
)t
: ð30Þ

According to eq. (30) the recruitment curve of B is monoexpo-

nential. Thus, if k�SAzB~0, this model can not be distinguished

from the model in which there is no influence on the protein.

However, if the concentration of A is measured as well, it is

possible to distinguish between this model and the one in which

there is no influence on the protein: If B is blocked by A, the

absolute maximum of the recruitment curve of B should decrease

if A0 is increased (see Figure S1).

Figure 2. Model in which protein A increases the association rate of protein B. k�SzA~k�SBzA~0:3 and k�SAzB~0:1,0:5,5 from bottom
to top curve. A) k�SzB~0:1k�SAzB. Solid lines are for protein B, the dotted line is for protein A, and the dashed lines are used for estimating the

order of magnitude of the rate constants from the curves, giving k�SzB&
1

1:3
&0:77 for the steepest curve, and k�SzB&10{2 and

k�SAzB&
1

36:8{26:5
&0:097 for the slowest curve. Depending on the parameters the curves show an increasing slope at the beginning. B) same

parameters as in A) except k�SzB~0. The curves always show an increasing slope at the beginning, which helps distinguishing this case from the one
shown in Figure 2A. Additionally, for large values of A0 the recruitment curves of B resemble the recruitment curve of A, which is not the case if
k�SzBw0.
doi:10.1371/journal.pone.0066590.g002
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A.3 Protein A influences the association rate of B

(dissociation is relevant). If the dissociation rate of B is

relevant and all other conditions are the same as mentioned at the

beginning of section B1 (QCA is applicable, kSzA~kSBzA,

kSzB=kSAzB, kSA{A~kSAB{A~0, kSB{B~kSAB{Bw0), the

set of differential equations is given by

d½S�
dt

~{(k�SzAzk�SzB)½S�zkSB{B½SB� , ð31Þ

d½SA�
dt

~k�SzA½S�zkSB{B½SAB�{k�SAzB½SA� , ð32Þ

d½SB�
dt

~k�SzB½S�{(k�SzAzkSB{B)½SB� , ð33Þ

d½SAB�
dt

~k�SzA½SB�zk�SAzB½SA�{kSB{B½SAB� : ð34Þ

with the solution (see section B in Appendix S1)

½S�(t)~S0e
{k�

SzA
t
{½SB�(t) , ð35Þ

½SB�(t)~e
{k�

SzA
t S0

1z
kSB{B

k�SzB

(1{e
{(k�

SzB
zkSB{B)t

) , ð36Þ

½SA�(t)~S0(1{e
{k�

SzA
t
){½SAB�(t) , ð37Þ

½SAB�(t)~ S0

1z
kSB{B
k�

SAzB

z(
S0k�SzA

1z
kSB{B
k�

SzB

{S0k�SAzB)

e
{k�

SzA
t

k�SAzBzkSB{B{k�SzA

{
S0k�

SzA

1z
kSB{B

k�SzB

e
{(k�

SzA
zk�

SzB
zkSB{B)t

k�
SAzB

{k�
SzA

{k�
SzB

zre
{(k�

SAzB
zkSB{B)t

,

ð38Þ

r~{(
S0

1z
kSB{B
k�

SAzB

z(
S0k�SzA

1z
kSB{B
k�

SzB

{S0k�SAzB)

1

k�SAzBzkSB{B{k�SzA

{
S0k�SzA

1z
kSB{B
k�

SzB

1

k�SAzB{k�SzA{k�SzB

) :

ð39Þ

The features of this model are the same as those in the previous

models with the addition of a new feature, which can be seen in

Figure 4. In contrast to the previous models, the recruitment

curves of this model have a maximum that is larger than the

plateau value if kSzBwkSAzB and kSB{Bw0. The reason for this

feature is that at t&
2

k�SzBzkSB{B

the association and dissocia-

tion of B are equilibrated. But, since the concentration of recruited

A still increases, which in turn decreases the association rate of B,

the equilibrium of B is shifted downwards. Interestingly the curve

with the lowest B0 shows the highest peak, which can be explained

by its lower asymptotic concentration at t~?, to which the curves

were normalized.

If kSzBvkSAzB and kSB{Bw0, this can lead to an initial

increase of the slope similar to the one observed in the previous

model with kSzBvkSAzB and kSB{B~0. But, if kSzBvkSAzB

Figure 3. Model in which protein A decreases the association rate of protein B. k�SzA~k�SBzA~0:3 and k�SzB~0:1,0:5,5 from bottom to
top curve. A) k�SAzB~0:1k�SzB. Solid lines are for protein B, the dotted line is for protein A. The grey line is a monoexponential fit. The dashed lines

are used for estimating the rate constants from the curves, giving k�SAzB&
1

47{20
&0:05. After A has risen to a high level, recruitment of B becomes

much slower, and the slope of the recruitment curve of B (purple curve) decreases faster than would be expected from a monoexponential curve that
has a similar initial slope (grey curve). B) same parameters as in A) except k�SAzB~0. The curves always resemble a monoexponential function.
doi:10.1371/journal.pone.0066590.g003
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and kSB{Bw0, depending on how fast A is recruited compared to

B it is also possible that the curves show a slope that decreases too

fast to be fitted by a monoexponential function, which is similar to

the feature found in the previous model with kSzBwkSAzB and

kSB{B~0. The reason for this is that at t&
2

k�SzBzkSB{B

the

association and dissociation of B are equilibrated, but since the

concentration of recruited A still increases and hence the

association rate of B increases, the equilibrium is shifted upwards,

which causes the slope that decreases too fast to be fitted by a

monoexponential function. Since the two models with kSB{B~0
are able to reproduce only one of these two features (the initial

increase of the slope or the slope that decreases too fast to be fitted

by a monoexponential function), whereas the model with

kSzBvkSAzB and kSB{Bw0 is able to reproduce both features,

it is possible to discriminate between these three models, supposing

that the underlying data are detailed enough.

A.4 Protein A and B mutually influence their
association rate. Next, we discuss the situation that both

proteins influence the association of the other protein

(kSzA=kSBzA, kSzB=kSAzB). We still assume that dissociation

is not relevant (kSA{A, kSAB{A, kSB{B, and kSAB{B can be set to

zero) and that the QCA is applicable. Equations (16) to (19) then

become

d½S�
dt

~{(k�SzAzk�SzB)½S� , ð40Þ

d½SA�
dt

~k�SzA½S�{k�SAzB½SA� , ð41Þ

d½SB�
dt

~k�SzB½S�{k�SBzA½SB� , ð42Þ

d½SAB�
dt

~k�SBzA½SB�zk�SAzB½SA� : ð43Þ

The solution is given by (see section B in Appendix S1):

½S�(t)~S0e
{(k�

SzA
zk�

SzB
)t

, ð44Þ

½SA�(t)~ S0k�SzA

k�SzAzk�SzB{k�SAzB

(e
{k�

SAzB
t
{e

{(k�
SzA

zk�
SzB

)t
) ,

ð45Þ

½SB�(t)~
S0k�SzB

k�SzAzk�SzB{k�SBzA

(e
{k�

SBzA
t
{e

{(k�
SzA

zk�
SzB

)t
) ,

ð46Þ

½SAB�(t)~S0 1{e
{(k�

SzA
zk�

SzB
)t

� �
{½SA�(t){½SB�(t) : ð47Þ

The solution for ½SA�(t) and ½SB�(t)z½SAB�(t) is identical to that

obtained in the previous subsection, where A was not influenced

by B. This means that the recruitment curve of B does not carry

any information about whether B influences the association rate of

A. By exchanging A and B, we can also conclude that the

recruitment curve of A does not carry any information about

whether A influences the association rate of B. Only if both

recruitment curves are measured is it possible to decide whether

the influence is mutual.

An interesting special case is given by k�SBzA~k�SAzB~0. This

means that the two proteins block each other. In this case, the

normalized curves ½SA�(t)=½SA�(?) and ½SB�(t)=½SB�(?) both

are identical to 1{e{(k�
SzA

zk�
SzB

)t, i.e., they saturate at the same

time. If only normalized curves are considered, this situation,

where the two proteins block each other, cannot be distinguished

from the situation that the two proteins are recruited as a complex.

In the latter case, the two recruitment curves are also identical.

However, if the proteins block each other, increasing the initial

concentration of one of them will lead to an increase of the

saturation value of this protein and to a decrease of the saturation

value of the other protein. It should be possible to see this effect

even when the absolute values of the concentrations cannot be

obtained. If the two proteins are recruited as a complex, this effect

does not occur. One can thus distinguish between the two

situations by varying the protein concentrations.

B. Protein A influences the dissociation rate of protein B
In general, a protein can not only affect the association rate of

another protein, but also its dissociation rate. We therefore study

in this subsection a model version where dissociation of one of the

proteins (B) is assumed to become important and to be influenced

by the other protein (A). In order to see the effect of an influenced

dissociation rate as clearly as possible, we assume that the

association rate of neither protein is influenced by the other

protein. This means that k�SzA~k�SBzA and k�SzB~k�SAzB. In

contrast to the previous subsections, we now have kSB{Bw0 and

kSAB{B§0, with kSB{B=kSAB{B. We still assume that dissoci-

ation of protein A is not relevant (kSA{A~kSAB{A~0) and that

Figure 4. Model in which A decreases the association rate of B
and in which dissociation is relevant. k�SzA~k�SBzA~0:3 and
k�SzB~5,0:5,0:1 from green to blue curve; k�SAzB~0:1k�SzB and
kSB{B~0:1. The curves are normalized to their asymptotic value at
t~?. In contrast to the previous models, the recruitment curves of this
model have a maximum that is larger than the plateau value if
kSzBwkSAzB and kSB{Bw0.
doi:10.1371/journal.pone.0066590.g004
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the QCA is applicable. Equations (16) to (19) then become

d½S�
dt

~{(k�SzAzk�SzB)½S�zkSB{B½SB� , ð48Þ

d½SA�
dt

~k�SzA½S�{k�SzB½SA�zkSAB{B½SAB� , ð49Þ

d½SB�
dt

~k�SzB½S�{(k�SzAzkSB{B)½SB� , ð50Þ

d½SAB�
dt

~k�SzA½SB�zk�SzB½SA�{kSAB{B½SAB� : ð51Þ

The solution is (see section B in Appendix S1)

½S�(t)~S0
:e

{k�
SzA

t
{½SB�(t) , ð52Þ

½SA�(t)~S0(1{e
{k�

SzA
t
){½SAB�(t) , ð53Þ

½SB�(t)~e
{k�

SzA
t: S0

1z
kSB{B

k�SzB

(1{e
{(k�

SzB
zkSB{B)t

) , ð54Þ

½SAB�(t)~S0(
1

1z
kSB{B
k�

SzB

(
e
{k�

SzA
t
(k�SzA{k�SzB{kSB{B)

{k�SzAzk�SzBzkSAB{B

z

k�SzAe
{(k�

SzA
zk�

SzB
zkSB{B)t

k�SzAzkSB{B{kSAB{B

)z
1

1z
kSAB{B

k�
SzB

z

d:e
{(k�

SzB
zkSAB{B)t

) ,

ð55Þ

with the constant

d~{(
1

1z
kSB{B
k�

SzB

(
k�SzA{k�SzB{kSB{B

{k�SzAzk�SzBzkSAB{B

z

k�SzA

k�SzAzkSB{B{kSAB{B

)z
1

1z
kSAB{B

k�
SzB

) :

ð56Þ

The expression eq. (54) for ½SB�(t) can be easily understood: the

first factor describes the exponential decrease of the number of

substrate sites at which A is not yet bound. The second factor is

identical to eq. (15)) and describes B recruitment (with dissociation)

to substrate sites where A is not yet bound. For t&
1

k�SzA

, the

concentration ½SB�(t) is very small, and most of the B proteins

bound to the substrate are bound in a complex with A. The

saturation level of the complex is

limt??½SAB�(t)~S0=(1z
kSAB{B

k�SzB

) and is determined by the

equilibrium between association and dissociation of B. This result

is valid because we have assumed that A dissociation is not

important, so that for large t there is an A protein bound to

virtually all substrate binding sites.

Depending on whether kSB{BwkSAB{B or the opposite is true,

the recruitment curves show different features. These features are

only visible if protein A binds slowly compared to B (i.e.,

k�SzAvk�SzB). Otherwise, recruitment of A is already too

advanced before B approaches its association-dissociation equilib-

rium, and the change in the dissociation rate of B due to the

presence of A is hardly visible in the curves.

B.1 Protein A decreases the dissociation rate of B. If

kSB{BwkSAB{B, the recruitment curves counter-intuitively show

a bend similar to the situation where A decreases the association

rate of B, see Figure 5A. This bend occurs around

t&
2

k�SzBzkSB{B

, when association and dissociation of B are

nearly equilibrated at binding sites not occupied by A. From this

moment on, B recruitment advances only slowly, with B being

almost at equilibrium with the recruited A concentration. This

equilibrium value increases as more A is recruited, because B
dissociation decreases. Since the shift in the equilibrium value is

caused by A, whose recruitment curve is monoexponential, the

increase of the equilibrium value follows a monoexponential

function as well. Thus, fitting a monoexponential function to the

part of the curve after the bend leads to a good fit (Figure 5A

orange curves). A similar bend was observed in the model where A
decreases the association rate of B. Thus, that model can be fitted

well to the total recruited B shown in Figure 5A (grey curves).

Hence, another criterion is needed in order to distinguish between

the model in which A decreases the dissociation rate and the

model in which it decreases the association rate.

If B0 is lowered (Figure 5A bottom curve), the bend still occurs

at the point at which B and S are equilibrated (t&
2

k�SzBzkSB{B

).

But, because of the lower B0, A is recruited quicker compared to

the time that is needed for B to be in equilibrium with the

substrates to which A was bound before. Hence, the recruitment

curve of the total recruited B does not follow a monoexponential

function after the bend. Instead, the slope of the curve increases

after the bend because A is recruited quicker compared to the

recruitment of B to substrates to which A was bound before. Since

from all models presented in this paper only in this one it is

possible to see this feature (a decrease of the slope followed by an

increase), it is useful to discriminate between alternative models.

Another feature which allows distinguishing between this model

and the one in which A decreased the association rate is shown in

Figure 5B. In these curves A0 was varied by a factor of 2 or less.

The resulting recruitment curves of B all show a bend at the same

time and at the same concentration. If the concentration of S0 and

B0 is varied as well, the bend still occurs at the same time but not

at the same concentration. This would not be the case if the bend

was a result of a decreased association rate. Since only a small

variation of A0 is needed for this criterion, the naturally occurring

variation of A0 might be enough to apply this criterion even if the

protein A is not known.

B.2 Protein A increases the dissociation rate of B. If

kSB{BvkSAB{B the recruitment curves of B show an overshoot,

which can be seen in Figure 6. The reason for this feature is that at

t&
2

k�SzBzkSB{B

the association and dissociation of B are

equilibrated. But, since the concentration of recruited A still

increases, which in turn increases the dissociation rate of B, the
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equilibrium of B is shifted downwards. We discussed such an

overshoot already in the model in which A decreases the

association rate and in which dissociation is relevant. Interestingly

that model is able to fit the curves shown in Figure 6 quite well

(grey curves). Nevertheless, it is possible to distinguish between

both models in principle, because only the model in which A

decreases the association rate and in which dissociation is relevant

can reproduce two of the features presented in this paper, the

overshoot and the slope that decreases too fast to be fitted by a

monoexponential function, whereas the model with

kSB{BvkSAB{B is able to reproduce the overshoot only.

Discussion

In this study, we investigated simple mechanistic protein

recruitment models and showed how the interaction between

different proteins can be inferred by analyzing the shape of their

recruitment curves. If one knows the recruitment curves of only

one protein, in our models denoted by B, there are four features of

the curves that indicate the influence of another protein on the

proteins association or dissociation rate: The slope that increases at

the beginning, the slope that decreases too fast to be fitted by a

monoexponential function, the overshoot and the slope that

decreases followed by an increase. Only the model in which

protein A decreases the dissociation rate can lead to the latter

feature. As summarized in Figure 7, the other three features can be

caused by either a change of the association rate, a change of the

dissociation rate, or a change of both rates. To resolve which is

true, additional experiments have to be conducted in which the

concentration of B or, if possible, the concentration of A is varied.

In our models we assumed that either the association rate or the

dissociation rate of one protein is influenced. This allowed us to

solve the equations analytically. Since the association and

dissociation of proteins often take place on different time scales,

even in more complex cases (e.g. an influence on the association

and the dissociation rate) the insights of this paper can be applied

by dividing the recruitment curves into appropriate sections (i.e., a

section in which dissociation is negligible and one where it is not).

Typical scenarios to which our models are applicable are those

in which a protein is in need of another protein to fulfill its task, or

in which one protein is a loading platform which is needed by

others to bind to the substrate.

An interesting question is whether two proteins bind to a

substrate as a preformed complex or each by its own (e.g. XRCC1

and its cofactor Ligase III, which are both involved in base

excision repair). As we have shown, even if the recruitment curves

of both proteins resemble each other, this does not necessarily

mean that they bind as a preformed complex. The reason could be

that the proteins bind in a sequential order and the protein which

binds last has a much higher association rate than the other

protein. Another explanation is that the proteins block each other,

in which case the recruitment curves resemble each other as well.

Figure 5. Model in which protein A decreases the dissociation rate of protein B. A) k�SzA~k�SBzA~0:3, k�SzB~0:5,5,10 from bottom to
top curve, kSB{B~5, kSAB{B~0. Grey curves: Fits of the model in which protein A decreases the association rate of protein B. Orange curves:
Monoexponential fit with an intercept. Decreasing B0 leads to a new feature, which is characterized by a decline of the slope followed by an increase.
Since this feature can not occur in the model in which protein A decreases the association rate, it allows distinguishing between the model in which
protein A decreases the association rate and the model in which it decreases the dissociation rate. B) same parameters as in subfigure A, but
k�SzA~0:15,0:3,0:45 from bottom to top and k�SzB~5. Despite of the variation in A0, the time at which the bend occurs is the same for all curves.
doi:10.1371/journal.pone.0066590.g005

Figure 6. Model in which protein A increases the dissociation
rate of B. k�SzA~k�SBzA~0:3, k�SzB~10,5,0:5 from green to blue
curve, kSB{B~0 and kSAB{B~5. Grey curves: Fits of the model in
which protein A decreases the association rate of B and in which
dissociation is relevant (section B1.3).
doi:10.1371/journal.pone.0066590.g006

Deducing Mechanisms from Protein Recruitment Data

PLOS ONE | www.plosone.org 9 June 2013 | Volume 8 | Issue 6 | e66590



It is possible to distinguish between the sequential model and the

other two models by analyzing the recruitment curve for small t.
In order to distinguish between the model with the preformed

complex and the one in which both proteins block each other

within our framework, one would need to analyze the value of the

maximum for different initial concentrations of the two proteins.

Alternatively, one could use other methods, which are targeted at

analyzing protein-protein interactions, to find out if the two

proteins form a complex, for instance Foerster resonance energy

transfer [16] or Co-immunoprecipitation [17].

In our models the dissociation of protein A was not included.

However, our findings are applicable to situations in which A
dissociates very quickly if the modification of the substrate (and

thus the change of the rates of B) caused by A persists on a

timescale that is long compared to the recruitment dynamics of

protein B.

To solve the differential equations we used the approximation

that the protein concentrations are much higher than the substrate

concentration. Even if this approximation is not valid, the

recruitment curves will still show features that are qualitatively

similar to those discussed in this study, and thus our findings are

still useful. For instance, even if the quasi constant approximation

is not valid, the model in which A decreases the association rate of

B still is unable to reproduce the increasing slope and still is able to

reproduce the slope that decreases too fast to be fitted by a

monoexponential function (just as when the QCA is valid). In

general, to find out which is the most simple model that is able to

reproduce a given recruitment curve, it is necessary to try out all

models that can not be excluded because of the shape of their

recruitment curve.

For most of the methods presented in this paper it is not

necessary to know which protein has an influence on the one that

is measured. However, if this is known and the recruitment curve

of the influencing protein is measured as well, this opens up much

better ways to discriminate between alternative models, especially

if the concentration of protein A is known relative to the

concentration of protein B. In this case, fitting the full model

(eq. (16) to (19)) to the recruitment curves often reveals which

parameters are negligible and which rates are not influenced.

Supporting Information

Appendix S1 Derivation of the analytical solutions.

(PDF)

Figure S1 Model in which protein A decreases the
association rate of protein B: Special case k�SAzB~0.

k�SzA~k�SBzA~0:3 (solid curves), k�SzA~k�SBzA~1:2

(dashed curves), k�SzB~0:5 and k�SAzB~0. The recruitment

curve of B in the case with low A0 (solid blue curve) has a higher

maximum as the recruitment curve of B in the case with high A0

(dashed green curve). This feature helps distinguishing the model

in which A blocks B (k�SAzB~0) from the model in which there is

no influence on B. For further explanation see section B1.2 in the

paper.

(EPS)
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