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Abstract
The Canham–Helfrich free-energy density for a lipid bilayer has drawn considerable attention.
Aside from the mean and Gaussian curvatures, this free-energy density involves a spontaneous
mean-curvature that encompasses information regarding the preferred, natural shape of the lipid
bilayer. We use a straightforward microphysical argument to derive the Canham–Helfrich free-
energy density. Our derivation (i) provides a justification for the common assertion that
spontaneous curvature originates primarily from asymmetry between the leaflets comprising a
bilayer and (ii) furnishes expressions for the splay and saddle-splay moduli in terms of derivatives
of the underlying potential.
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1 Introduction
Biomembranes are ubiquitous in nature as they form cell walls. An essential element of a
biomembrane is a lipid bilayer, which is composed of lipid molecules. These molecules have
a hydrophilic head and a hydrophobic tail. Due to these properties, when a large number of
lipid molecules are placed in a solution they self assemble, under suitable conditions, into
two-dimensional structures consisting of two leaflets (or monolayers). The lipid molecules
are oriented so that the tails of the molecules in each leaflet are in contact with each other,
while the heads are in contact with the ambient solution; see, for example, Lasic (1988).
These two-dimensional structures often close to form vesicles and are usually between 50
nanometers and tens of micrometers in diameter but only a few nanometers thick, as
observed by Luisi & Walade (2000). Due to these dimensions, lipid bilayers are usually
modeled as surfaces.

There is a long history of work dealing with specifying a free-energy density for a surface
representing a lipid bilayer. Over forty years ago, Canham (1970), in an effort to explain the
biconcave shape of red blood cells, proposed a bending-energy density dependent on the
square of the mean curvature. A few years later, Helfrich (1973) also considered an elastic-
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energy density depending on the curvature of the surface associated with a lipid bilayer. In
the Canham–Helfrich theory, the free-energy density ψ of the lipid bilayer is of the form

(1)

where H and K are the mean and Gaussian curvatures, κ and κ̄ are the bending moduli, and
H∘ is the spontaneous mean-curvature. The curvatures H and K are scalar invariants that
describe the shape of the lipid bilayer. (See Appendix A.2 for the definitions of H and K.)
The splay modulus κ, which is always positive, characterizes the resistance to changes in
mean curvature, while the saddle-splay modulus κ̄ is related to the resistance to changes in
Gaussian curvature. The spontaneous mean-curvature H∘ is determined by the preferred,
natural, local shape of the lipid bilayer. Although Canham (1970) and Helfrich (1973) were
the first to use a free-energy density of the form (1) for biomembranes, such expressions
were considered by Poisson (1812), in the H∘ = 0 case, Germain (1821), and the Cosserat
brothers (1909) in the study of elastic surfaces. Although not present in the Canham–
Helfrich theory, it is also possible to introduce a spontaneous Gaussian-curvature K∘, as do
Maleki et al. (2012), in which case the last term on the right-hand side of (1) is replaced by κ̄
(K − K∘). If κ̄ and K∘ are both constant, the spontaneous Gaussian-curvature can be neglected
since the free-energy density is only determined up to an additive constant.

As mentioned above, the spontaneous curvatures H∘ and K∘ are determined by the preferred,
natural, local shape of the lipid bilayer. As Seifert (1997) notes, one of the main causes for
spontaneous curvature is asymmetry between the two leaflets making up the bilayer. The
asymmetry can manifest itself in different ways. For example, Döbereiner et al (1999)
observe that spontaneous curvature may arise from differences in the chemical properties of
the aqueous solution on the two sides of the lipid bilayer, while McMahon & Gallop (1998)
explain that lipid molecules with different configurations may also lead to nonzero H∘ and
K∘.

Several derivations of the Canham–Helfrich free-energy density have appeared in the
literature. For example, in a work concerned with lipid monolayers, Safran (1994) derived
(1) by modeling the lipid molecules in a monolayer as springs. In Safran’s (1994) derivation,
the springs are allowed to change length with the bending of the bilayer but may not interact
with one another. Granted that the lipid monolayer is incompressible, Safran (1994)
expressed the length of a generic molecule in terms of the underlying mean and Gaussian
curvatures. Upon making the additional assumption that the product of the spontaneous
curvature with the natural length of the molecules is small, he found that the energy
governing each spring takes a form consistent with (1).

Paunov et al. (2000) also used statistical methods to derive an energy for a lipid monolayer.
Their expression for the energy consists of two terms: one associated with bending, which is
taken from the work of Safran (1994), and the other associated with mixing. The mixing
term accounts for interactions between the monolayer and the ambient solution. For the
particular cases of spherical and cylindrical monolayers, Paunov et al. (2000) found that,
when expanded up to include only terms up to the square of the inverse radius of curvature,
their expression for the energy of a monolayer agrees with (1).

Following Ljunggren & Eriksson (1995), who took the view that the bending energy of a
bilayer is due to electrical forces, using the Debye–Huckel approximation, Winterhalter &
Helfrich (1988) obtained expressions for the bending energy of planar, cylindrical, and
spherical lipid bilayers. As with the derivation of Paunov et al. (2000), Winterhalter &
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Helfrich (1988) considered only terms up to the square of the inverse radius of curvature
and, in so doing, obtained expressions for the bending moduli and spontaneous curvature.

A derivation for the bending energy of a bilayer was also provided by Seifert (1997), who
models the bilayer as a surface with molecules populating both sides, the molecular density
being different on the sides. Disregarding the structure of these molecules, Seifert (1997)
assumes that the energy of the bilayer is determined by the extent to which these densities
deviate from an equilibrium density. The densities are defined on the midsurface of each
monolayer. To obtain an energy density defined on the surface, the two molecular densities
are projected onto the surface. Since these projections depend on the curvature of the
surface, the energy density of the surface inherits dependance on the curvature. By assuming
that the curvature of the surface is small, Seifert (1997) finds an energy density for the
surface of the Canham–Helfrich variety with no spontaneous curvature.

In the present paper, we follow an approach used by Keller & Merchant (1991) to derive the
energy of a liquid surface. To obtain their result, Keller & Merchant (1991) expanded the
energy of a mass of liquid in powers of the range d of the intermolecular potential. Beyond
the first term of this expansion, which is volumetric, the second and third terms of this
expansion are areal. Of the areal contributions to the energy, the first is due to surface
tension and is proportional to the area of the underlying surface, and the second is

proportional to the integral over the surface of  and, thus, to the bending-energy
density arising in the plate theory of Föppl (1907) and von Kármán (1910) with Poisson’s
ratio equal to 1/3.

In our derivation of the free-energy density of a lipid bilayer, we neglect interactions
between the lipid molecules and the ambient solution and instead focus on interactions
between the lipid molecules themselves. These molecules are modeled as rigid rods, as in
the work of Seguin & Fried (2012). The rods, representing the molecules, are distributed
over the surface that represents the lipid bilayer. By assuming that the lipid molecules are
oriented perpendicular to the surface and interact with each other only when they are within
a distance of d, we obtain an expression for the free-energy density for the bilayer.
Following the approach of Keller & Merchant (1991), we then expand the free-energy
density in powers of ε: = d/ℓ, where ℓ is a characteristic length associated with the bilayer,
and identify the Canham–Helfrich free-energy density as the coefficient of the term of order
ε2. This expansion rests on the assumption that the smallest possible curvature of the
membrane is much larger than its thickness and, thus, our derivation does not hold for
membranes that are undergoing crumpling, pitting, or budding. Our derivation also neglects
the effect of any molecular fluctuations. While these fluctuations are important in
crumpling, budding, and pitting events, as described by Lipowsky (1990) and Sackmann
(1994), all of these events involve the membrane having large curvature and, thus, are not
included in our theory. Moreover, we view the Canham–Helfrich free-energy density as a
mean-field description of a lipid bilayer. In classical mean-field theory, fluctuations are
neglected.

This argument provides a direct and easy derivation of the Canham–Helfrich free-energy
density. It also affords several observations. For one, if the lipid bilayer is symmetric, which
occurs when its leaflets are of identical composition, and the lipid molecules are uniformly
distributed, then the spontaneous curvatures H∘ and K∘ must vanish. Moreover, since our
derivation gives concrete expressions for the bending moduli, those expressions might be
used to gain insight regarding the sign of the saddle-splay modulus κ̄.

Our paper is outlined as follows. In Section 2, we describe our approach to modeling lipid
molecules, write down a free-energy density for a lipid bilayer, and state the result of
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expanding this energy in powers of d/ℓ. The details of this expansion can be found in the
Appendices. This is followed, in Section 3, with a discussion of the resulting expansion and
some consideration of special cases. In Section 4, we discuss possible extensions of the
method used in Section 2, including some possible approaches to weakening the
assumptions made there. Finally, in Section 5, we summarize our primary results and make
some concluding remarks.

2 Free-energy density of an isolated lipid bilayer
In this section, guided by the work of Keller & Merchant (1991), we derive an expression
for the free-energy density of a single closed (lipid) bilayer suspended in solution. Our result
is based on the following assumptions:

i. The thickness of the bilayer is small relative to its average diameter.

ii. The (lipid) molecules can be modeled as one-dimensional rigid rods.

iii. The molecules do not tilt relative to the orientation of the bilayer.

iv. Interactions between the bilayer and the solution are negligible.

On the basis of Assumption (i), which is commonly imposed in models for closed bilayers
(Luisi & Walade (2000)), we identify both leaflets of the bilayer with a single orientable
surface . This surface can adopt a large variety of shapes; however, being made up of
molecules of a finite size, it cannot support arbitrarily large curvatures. Let ℓ denote the
smallest stable radius of curvature that  is capable of exhibiting. For each leaflet i = 1, 2 of
the bilayer, we introduce a molecular number density Wi defined on  and measured per unit
area of . The total number of molecules in leaflet i = 1, 2 is then given by the integral

(2)

where day denotes the area element on . Taking Wi to be defined on  amounts to
assuming that the centers of the lipid molecules of both leaflets lie on , which is consistent
with assuming that the bilayer is thin relative to its average diameter. In general, the number
densities of the leaflets may differ.

On the basis of Assumption (ii), the configuration of each such molecule may be described
by a point on  and a unit-vector-valued director (Seguin & Fried (2012)), with the point
representing the center of the rod and the director representing the orientation of the rod.
Without loss of generality, we suppose that the director tips point toward the headgroups of
the molecules. We also assume that the interaction between a pair of molecules is governed
by a potential that depends on the vector between the points and the directors and is
restricted such that only molecules separated by distances less than some fixed cut-off
distance d may interact. We assume that the cut-off distance d is small relative to the
smallest radius of curvature ℓ the bilayer can support, so that d ≪ ℓ or, equivalently,

(3)

Given molecules located at two points x and y on  and corresponding directors e(x) and
f(y), we consider interaction potentials, with dimensions of energy, of the generic form
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(4)

where, to ensure that rods separated by a distance greater than d may not interact, φ must
satisfy

(5)

Notice that Φd depends on d, while φ does not. That Φd must depend on the vectors x − y,
e(x), f(y) only through the scalars |x − y|, (x − y) · e(x), (x − y) · f(x), and e(x) · f(x) is shown
by Seguin & Fried (2012). This is also a consequence of the requirement that the potential
be frame-indifferent. Notice that the interaction energy φ(s, a, b, c) between two molecules
can change if the head and tail of one of the molecules flips. Interaction potentials of this
form may therefore account for differences between the polarities of the heads and tails of
the molecules. In taking Φd to depend on the cutoff distance d as shown in (4), we follow

Keller & Merchant (1991). In addition to a potential  that accounts for interactions

between molecules in each leaflet i = 1, 2, we introduce a potential  that accounts
for interactions between molecules belonging to different leaflets. Although the specific
forms of these potentials may differ, they share the same general properties to the extent that
they satisfy (4) and (5). A graph of a particular φ for fixed a, b, and c is given in Figure 1.
This function is based on the Lennard-Jones 6–12 potential. More tangible examples of
interaction potentials are provided by Yuan (2010).

Without loss of generality, we choose to orient  with the unit-normal field that points into
the fluid adjacent to the head groups of leaflet 1 and denote that field by n. On the basis of
Assumption (iii), it then follows that the directors of molecules in leaflets 1 and 2 coincide
with n and −n, respectively. Bearing in mind the cut-off property (5), define (x) by

(6)

The integrals

(7)

and

(8)

then represent the contributions to the value of free-energy density of the bilayer at x due,
respectively, to interactions between the molecules of leaflets 1 and 2 at x with all other

molecules in their own leaflets. Notice that the interaction energy  appearing in the
integrand of (7) gives the interaction energy between a lipid molecule at x and a lipid
molecule at y. The two number densities are needed to account for the number of molecules
at x and the number of molecules at y. An analogous explanation explains the presence of
the two densities in (8). Similarly, the integrals
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(9)

and

(10)

represent the contributions to the free-energy density of the bilayer at x due, respectively, to
interactions between the molecules of leaflet 1 at x with all the molecules of leaflet 2 and to
interactions between the molecules of leaflet 2 at x with all the molecules of leaflet 1. Notice
that interactions between the molecules in leaflet 1 at x with those in leaflet 2 at x are
encompassed by ψ12(x); analogously, interactions between the molecules in leaflet 2 at x
with those in leaflet 1 at x are encompassed by ψ21(x).

Finally, on the basis of Assumption (iv), the free-energy density of the bilayer at x is
determined completely by the sum of the four contributions defined in (7)–(10) and thus has
the form

(11)

On substituting (7)–(10) into the right-hand side of (11), the goal is to expand ψ(x) in powers
of ε up to order ε2, following Keller & Merchant (1991), with the objective of capturing the
dependence on the curvature. This expansion, the details of which appear in the Appendices,
yields

(12)

where κ, κ̄, H∘, and K∘ are defined in (69)–(72), respectively. κ and κ̄ are of order ε2 and
terms of order o(ε2) are neglected. The quantities φ0, κ, κ̄, H∘, and K∘ depend on the point x
in . Thus, ψ may depends on x through not only the mean and Gaussian curvatures but also
through the splay and saddle-splay moduli and the spontaneous mean and Gaussian
curvatures.

3 Interpretation of results
The result (12) deserves some interpretation. The first term on the right-hand side of (12)
only depends on the interaction potentials and number densities at x. This term remains in
the limit as d (or, equivalently, ε) approaches zero. The remainder of (12) is the Canham–
Helfrich free-energy density, augmented by a spontaneous Gaussian-curvature term. Hence,
(12) provides a microphysical derivation of the Canham–Helfrich free-energy density (1) for
a lipid bilayer. Moreover, the abbreviations (64)–(72) describe how the spontaneous
curvatures H∘ and K∘ and the bending moduli κ and κ̄ depend on the interaction energies
between the lipid molecules and the densities of the molecules in the two leaflets. The term
ψ0 is independent of the shape of the membrane and not part of the Canham–Helfrich free-
energy density. However, due to implicit dependence of the number densities on
temperature, concentration, and relevant electromagnetic fields, that term encompasses
effects associated with ambient temperature, concentration, and relevant electromagnetic
conditions.
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Since the number densities W1 and W2 need not be constant, the spontaneous curvatures H∘
and K∘ and the bending moduli κ and κ̄ generally vary with position x on the bilayer. Since
the free-energy density can be determined only up to an arbitrary constant, if it happens that
both κ̄ and K∘ are constant, then the the term −κ̄K∘ can be dropped without loss of generality.
Otherwise, the presence of the spontaneous Gaussian-curvature K∘ cannot be neglected.

To obtain some additional insight regarding the spontaneous curvatures and the bending
moduli, suppose that the two leaflets are identical, so that there is no leaflet asymmetry. This
means that ψ11 = ψ22 = ψ12 and W1 = W2. From (66) and (71), we see that in this case C = H∘
= 0 and, hence, that there is no spontaneous mean-curvature. Moreover, if the lipid
molecules are evenly distributed on each leaflet so that the number densities W1 and W2 are
constant, then D = 0 and, hence, by (72), the spontaneous Gaussian-curvature K∘ also
vanishes. These results are in agreement with what other researchers have proposed
regarding spontaneous curvature. Specifically, Seifert (1997) proposes that spontaneous
curvature is a measure of the asymmetry of the two leaflets. McMahon & Gallop (1998)
suggest that spontaneous curvature is a result of the leaflets having different molecular
compositions. In the framework presented here, possible differences in the compositions of
the leaflets are encompassed by allowing ψ11 and ψ22 to differ.

Ideally, it should be possible to obtain an interaction energy for a given type of lipid
molecule and use (64)–(72) to explicitly calculate the spontaneous curvatures and bending
moduli for a bilayer consisting of these lipid molecules. For example, consider an interaction
potential of the form

(13)

which is taken from the Maïer–Saupe (1958) theory of liquid-crystals. Here, pij, i, j = 1, 2,
are functions of the square of the normalized distance s = ε−2|x − y|2 between the lipid
molecules. In this case, it is easily confirmed that φij,2 = φij,3 = 0 and, hence, by (64) and
(71), H∘ = 0. Thus, when applied to lipid molecules, the Maïer–Saupe (1958) interaction
potential leads to zero spontaneous mean-curvature. Without some concrete information
about the functions pij it is not possible to say anything about the characteristic features of
the moduli κ and κ̄ and, thus, in particular, about the sign of κ̄.

Consider next the simple generalization

(14)

of (13), in which aij and bij are constants that influence the relative orientations of
molecules. If aij = bij = 0, then pairs of molecules prefer to adopt orientations in which their
directors are perpendicular to the line through their centers. If aij and/or bij is not zero, then
pairs of molecules prefer to adopt orientations that are not perpendicular to the line through
their centers. For interaction energies of the form (14), (64) and (71) yield

(15)

which shows that the spontaneous mean-curvature H∘ generally differs from zero when aii ≠
bii for i = 1 or i = 2.
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For another more complicated proposed interaction energy see the work of Yuan (2010).

4 Possible further developments
There are numerous ways in which the results of the previous two sections might be
generalized. These are mainly related to the weakening of the assumptions made in Section
2. Namely, we will consider possible ways to weaken Assumptions (ii) and (iii).

Let us begin with Assumption (iii), which concerns the orientation of the lipid molecules.
Although Helfrich (1973) argues that any energetic contribution due to molecular tilt should
be negligible and the lipid molecules making up a lipid bilayer are almost ubiquitously
depicted as being perpendicular to the surface formed by the bilayer (see, for example,
McMahon & Gallop (2005)), there is no reason to rule out the possibility that molecules
may tilt relative to the surface normal. Moreover, any such tilt need not be small. For
simplicity, consider only leaflet 1 and, for brevity, drop the subscript 1. Analogous
statements apply to leaflet 2. A possible approach to modeling a lipid monolayer made up of
tilted molecules is to assume that the orientations of those molecules on the surface to be
given by a vector field d, so that d(x) gives the orientation of the molecules at the point x on
the surface representing the monolayer. This vector field should satisfy

(16)

While the first condition in (16) constrains the lipid molecules to be of fixed length, the
second condition ensures that the lipid molecules point roughly in the same direction as n. If
(16)2 did not hold, then either the lipid molecules lie flat on the surface (d · n = 0), which
seems physically unrealistic, or the tail of the lipid molecules are in contact with the
adjacent solution (d·n < 0), which, due to the chemical properties of the lipid molecules, is
physically unattainable. Recall that while the tail of a lipid molecule is hydrophobic, the
head is hydrophilic. The orientation d should take the place of n in expressions such as (7).
It is possible to find a second-order tensor field K such that

(17)

In essence, the tensor K describes the rotation of n into d. Notice that the condition (17) is
not sufficient to uniquely determine K, however, if the natural condition

(18)

is also imposed, where Ty  is the tangent space to  at y, then K is uniquely determined.
With the substitution (17), an argument analogous to that employed in Section 2 should go
through. In particular, we conjecture that an expression for the free-energy density with the
same form as (12) should emerge but that the corresponding counterparts of the
abbreviations (64)–(67) will involve K and its surface gradient at x.

To also weaken Assumption (ii), namely the assumption that the lipid molecules are
inextensible, two steps are necessary. First, the condition (16)1 must be removed. Second,
the potential governing the interaction between the molecules in (19) must be replaced by

(19)
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Once again, an analysis similar to that appearing in Section 2 should be feasible and we
believe a result similar to (12) might emerge from such an analysis.

It should also be feasible to relax Assumption (iv) by adding to the right-hand side of (11) a
term that accounts for interactions between the lipid bilayer and the ambient solution. In
pursuing such a generalization, it might make sense to follow the lead of Paunov et al.
(2000).

Steigmann (1999) developed a general theory of lipid bilayers, regarded as fluid surfaces
with bending elasticity. Aside from accommodating a completely general dependence of the
free-energy density on the mean and Gaussian curvatures, Steigmann’s (1999) theory
accounts for the areal stretch of the lipid bilayer relative to some reference placement. It
would be interesting to see if it would be possible to use an argument like that contained in
Section 2 to obtain a free-energy density that incorporates dependence on the areal stretch.
To achieve this, it would perhaps be necessary to introduce a reference placement for the
lipid molecules and then to account for interactions relative to that reference placement.
Along with the other ideas mentioned in this section, we leave the details of any such
analysis to a subsequent work.

5 Summary
In Section 2 we presented a microphysical derivation for the Canham–Helfrich form of the
free-energy density of a lipid bilayer that includes not only spontaneous mean-curvature but
also spontaneous Gaussian-curvature. Our approach was inspired by the work of Keller &
Merchant (1991). The resulting expressions for the spontaneous curvatures allowed us to
remark in Section 3 that if the two leaflets are identical and the lipid molecules are evenly
distributed across the surface of the bilayer, then the natural shape of that surface is flat.
Moreover, in Section 4, we observed that it should be feasible to extend our method to allow
for molecular tilt, molecular extension, interactions between the bilayer and the adjacent
solution, and areal stretch.
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A Appendices
In these appendices we present the necessary linear algebra and differential geometry
necessary to carry out the expansions needed in Section 2. We also include some details of
the expansion.

A.1 Linear algebra
Here we recall some basic properties of tensors. Let  be a finite-dimensional vector space
equipped with an inner-product. For the purposes of this work, a tensor T of order m is a
multilinear mapping that takes in m vectors and gives a real number. A vector can be viewed
as a first-order tensor and vice versa. A linear mapping from  to itself can be viewed as a
second-order tensor and vice versa; we denote the set of all such linear mappings by Lin ( ,

). Other such statements regarding higher-order tensors can also be made. For example, a
fourth-order tensor may be viewed as a bilinear mapping from  to the space of second-
order tensors and vice versa.

Given a tensor T of order m and a tensor S of order n, it is possible to form their tensor
product T ⊗ S, which is a tensor of order m + n defined by
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(20)

The tensor product is associative, meaning that (T ⊗ S) ⊗ R = T ⊗ (S ⊗ R) and, thus, the
use of parenthesis in this context may be dropped.

Just as it is possible to take the inner-product of two vectors, it is possible to take the inner-
product of two tensors of the same order. The details of how this can be done in general will
not be spelled out here. However, there are two useful identities that we will need regarding
the inner-product of tensors. Namely, for any vector z and second-order tensor L, the
following hold:

(21)

(22)

Assume the dimension of  is 2. The following lemma, which can be established using polar
coordinates and the integral gradient theorem, involving second- and fourth-order tensors
will also be needed. Here, 1 denotes the identity mapping on  and, thus, is a second-order
tensor.

Lemma 1
Let g: ℙ → ℝ be a continuous function. Then

(23)

(24)

A.2 Geometry of surfaces
Consider a surface  in a three-dimensional Euclidean point space  with associated vector
space . Given a point y in , let   denote the tangent space of  at y. Let n denote a
mapping that determines a unit-normal to the surface at each point. Given a mapping h:  −

 defined on the surface that takes values in some vector space , the surface gradient
∇ h of h can be defined by

(25)

where he is an extension of h to a neighborhood of x and ∇xhe is the classical three-
dimensional gradient of this extension at x. It can be shown that the definition of the surface
gradient is independent of the extension used on the right-hand side of (25).

Of particular interest is the opposite L:= −∇ n of the surface gradient ∇ n of n—called
the curvature tensor, which is a second-order tensor field defined on . The curvature tensor
is symmetric and has two scalar invariants: the mean curvature H and Gaussian curvature K
defined by
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(26)

(27)

If κ1 and κ2 are the two nontrivial eigenvalues of L, often called the principle curvatures,
then

(28)

(29)

A useful identity involving the curvature tensor is provided by the following result.

Lemma 2
For z in  and x in ,

(30)

Proof—Using the definition and symmetry of L, we have

(31)

Taking the surface gradient of both sides of (31) in the direction z, using the product rule,
and evaluating the result at x yields

(32)

which is (30).

From here on fix a point x in . It is possible to parameterize a small neighborhood of  at x
using a local curving f. Put := Tx  and := (Tx )⊥, and let  be an open neighborhood
of 0 in . A local curving f:  →;  of  at x has the following properties:

1. f(0) = x,

2. f(u) ∈  for all u ∈  ∩ ,

3. f(u) − (x + u) ∈  for all u ∈  ∩ ,

4. f(u + w) = f(u) + w for all u ∈  ∩  and w ∈  ∩ ,

5. ∇0f = 1.

The gradients of f at 0 describe the local shape of the surface at x. Consider the mappings
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(33)

(34)

(35)

defined by

(36)

(37)

(38)

The mapping F is a second-order tensor field while the quantities Λ and Γ can be viewed as
third- and fourth-order tensors, respectively. Using Item 3, it can be shown that

(39)

further, using Item 4, it can be shown that

(40)

It follows from (39)–(40) that

(41)

The curvature tensor L(x) is related to Λ by

(42)

It follows from (40) and (42) that

(43)

A.3 Useful approximations
In this subsection we delineate the key expansions that will be needed in the asymptotic
expansion of the energy. The three basic expansions, which follow from the results stated in
Appendix A.2, are

(44)
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(45)

(46)

Using (30) and (44)–(45), it transpires that

(47)

(48)

(49)

(50)

It can be shown that the cofactor Fc of F is given by (Gurtin et al. (2010))

(51)

Using (30), (41), (45)–(46), and (51), it follows that

(52)

Given a scalar-valued function W defined only on the surface, if we write

(53)

then

(54)

A.4 Expansion of the energy
Here we use the results of the previous two subsections to perform the expansion of (11) in
powers of ε. Since the domains of integration of the integrals (7)–(10) depend on ε through
d, this cannot presently be achieved. To proceed, we introduce a change of variables that
transfers this dependence to the integrand. To achieve this, we parameterize (x) using the
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notion of a local curving f introduced in Appendix A.2, which is made possible by (3). In
particular, it is convenient to introduce the set

(55)

where Tx  denotes the tangent space of  at x. Focusing on (7) and using using the
abbreviation (36), the change of variables y = f(εz) yields

(56)

Let us focus our attention on the quantity

(57)

For all 0 ≤ s ≤ ℓ, put

(58)

and

(59)

Using the expansions (47)–(50) and the notation (58)–(59), we have

(60)

where L = −∇ n denotes the curvature tensor of  (see Appendix A.2). Combining this
expansion with (52) and using the expansion (54) for W1 yields an expansion for the right-
hand side of (56):

(61)
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Similarly, the right-hand sides of (8)–(10) can be expanded in powers of ε, using notation
similar to that of (58)–(59). Putting these expansions together, we obtain

(62)

Notice that the first term on the right-hand side of (62) is independent of ε, while the others
are proportional to ε2. Of the terms involving ε, the first is linear is L and the second and
third are quadratic in L. The last term in (62) is independent of L. Using the identities (21)–
(24), the abbreviations

(63)

(64)

(65)

(66)

(67)

and motivated by the grouping in (62), we find (on suppressing explicit dependence on x)
that

(68)

Further, upon using (26)–(27) and the additional abbreviations

(69)

(70)

(71)
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(72)

allows us to write the expansion of the right-hand side of (11) as1

(73)

where the correction of o(ε2) has been neglected.

1See (26) and (27) for the definitions of the mean H and Gaussian K curvatures.
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Fig. 1.
Graph of s ↦ φ(s, a, b, c) for fixed a, b, and c.

Seguin and Fried Page 18

J Math Biol. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Depiction of a local curving for a surface  at x.
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