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ABSTRACT

We present here a method that enables functional
screening of large number of mutations in a single
experiment through the combination of random
mutagenesis, phenotypic cell sorting and high-
throughput sequencing. As a test case, we studied
post-transcriptional gene regulation of the bacterial
csgD messenger RNA, which is regulated by a small
RNA (sRNA). A 109 bp sequence within the csgD 5'-
UTR, containing all elements for expression and
sRNA-dependent control, was mutagenized close
to saturation. We monitored expression from a trans-
lational gfp fusion and collected fractions of cells
with distinct expression levels by fluorescence-
activated cell sorting. Deep sequencing of mutant
plasmids from cells in different activity-sorted frac-
tions identified functionally important positions in
the messenger RNA that impact on intrinsic (transla-
tional activity per se) and extrinsic (sRNA-based)
gene regulation. The results obtained corroborate
previously published data. In addition to pinpointing
nucleotide positions that change expression levels,
our approach also reveals mutations that are silent in
terms of gene expression and/or regulation. This
method provides a simple and informative tool for
studies of regulatory sequences in RNA, in particular
addressing RNA structure-function relationships
(e.g. sRNA-mediated control, riboswitch elements).
However, slight protocol modifications also permit
mapping of functional DNA elements and function-
ally important regions in proteins.

INTRODUCTION

Forward and reverse genetics methods are valuable tools
to link phenotypes to DNA sequences. Forward genetics
identifies nucleotide changes that cause a phenotypic

change, and reverse genetics identifies the phenotype
associated with a particular mutation. In reverse
genetics, site-directed mutagenesis can be used to, for
example, pinpoint nucleotides in DNA/RNA sequences
at which regulators bind and can assess RNA structure—
function relationships [e.g. (1,2)]. Random mutagenesis by
polymerase chain reaction (PCR) under error-prone con-
ditions is a powerful method for creating large pools
of mutants (3). For instance, error-prone PCR followed
by fluorescence-activated cell sorting (FACS) analysis has
been used to generate variants of the green fluorescent
protein (GFP) with increased intensity and more efficient
folding (4). Related to the work presented here, error-
prone PCR followed by phenotypic screening has
identified base changes that affect expression and stability
of the small RNA (sRNA) MicA, as well as MicA-depend-
ent post-transcriptional regulation (5). Even though such
approaches have turned out to be successful in identifying
functionally important nucleotides, they are tedious and
suffer from low throughput, as each mutant needs to be
phenotypically assayed one by one.

To increase throughput in reverse genetics, several recent
articles have described methods for scoring effects on
gene expression from large numbers of sequence variants.
The RNA-ID method was designed to study cis-regulatory
RNA sequences in yeast; short random sequences were
inserted into an messenger RNA (mRNA), and effects
on translation efficiency were monitored by FACS of fluor-
escent protein expression (6). Kudla ez al. (7) used a library
of 154 synthetic variants of gfp to study gene expression
changes arising from synonymous mutations. Another
article reported on a multiple mutation-, FACS- and
high-throughput-sequencing method used for mapping
protein binding and its energetics in transcriptional regula-
tion (8). Two additional publications also describe similar
methods for transcriptional regulation (9,10) and use
mRNA abundance measurements as readout for gene
expression. However, changes in DNA sequences that
involve insertions (6) may introduce unwanted effects
arising from different sequence lengths of the analyzed
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variants. Additionally, mRNA abundance does not always
accurately report on a mutation’s effect on gene expression,
as mRNA and protein levels are not always correlated, and
protein expression often is predominantly regulated at the
post-transcriptional level (9,11). For instance, studies of
several bacterial mRNAs showed that sRNA-mediated
regulation can give altered protein levels without signifi-
cantly affecting mRNA levels (12,13).

For functional screening and mapping of high numbers
of mutations in single experiments, we present here a
method that combines saturation mutagenesis, phenotypic
cell sorting and high-throughput sequencing. This method
is particularly powerful for studies of post-transcriptional
regulation, but it is easily adaptable for studies of tran-
scriptional regulation as well. Our method does not rely
on insertion of sequences but generates nucleotide substi-
tutions, eliminating the risk of unwanted effects through
changes of sequence length.

In bacteria such as Escherichia coli, small regulatory
RNAs play a major role as post-transcriptional regulators
of gene expression [reviewed in (14)]. By base pairing to
complementary sequences in target mRNAs, sRNAs
affect target mRNA translation, target mRNA stability
or both (14). In most cases, SRNA-regulation relies on
help by the RNA-binding protein Hfgq, which binds to
both sSRNAs and target mRNAs to accelerate their inter-
action [e.g. (15)]. In addition, many sRNAs are severely
destabilized in the absence of functional Hfq (12,16). We
have recently reported on the Hfq-dependent regulation of
CsgD protein expression by the two sequence-related
sRNAs OmrA and OmrB (12). Binding of these sSRNAs
to the 5-untranslated region (5-UTR) of the csgD
mRNA inhibits translation of CsgD, a transcription
factor involved in biofilm formation.

To test the method described in this article, we have
monitored expression from a large number of mutants
of ¢sgD in the absence or presence of OmrA. The results
presented here demonstrate the strength of the method in
defining sequence features important for translation and/
or stability of the selected model mRNA, as well as
delineating the sequences involved in sRNA-mediated
regulation.

MATERIALS AND METHODS
Chemicals, reagents and oligodeoxyribonucleotides

All chemicals and reagents used in this study were
purchased from Sigma-Aldrich or Fermentas unless other-
wise specified. Oligodeoxyribonucleotides were purchased
from Sigma-Genosys or Metabion and are listed in
Supplementary Table S1.

Strains and growth conditions

Escherichia coli TOP10 cells (Invitrogen) were grown aer-
obically in Luria broth (LB) at 37°C. Growth was spec-
trophotometrically monitored by measuring optical
density at 600nm. When appropriate, the growth
medium was supplemented with ampicillin (100 pg/ml)
and chloramphenicol (30 pg/ml).
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Cloning

To construct the translational fusion plasmid
pCsgD::GFP, a DNA fragment consisting of the pLtet-
O-1 driven translational csgD-gfp fusion was amplified
from plasmid pEH87 (12) by PCR using primers EHO-
560/EHO-561 (containing Haell restriction sites). The re-
sulting fragment was cut with Haell and ligated into
Haell-digested pSU2719 (17). To construct pOmrA,
pUCI19 was linearized by PCR (primers EHO-570/EHO-
571, containing EcoRI and BamHI sites, respectively), cut
with EcoRI/BamHI and ligated to an EcoRI/BamHI-
cleaved PCR product amplified from plasmid pEH67
(12) (primers EHO-572/EHO-573) containing the Ppj..o
promoter sequence followed by the omrA4 sequence.

Error-prone PCR

Error-prone PCR on plasmid pCsgD::GFP was carried
out in a two-step PCR reaction using the GeneMorph 11
EZClone Domain Mutagenesis Kit (#200552, Stratagene).
The first PCR reaction (Mutant Megaprimer Synthesis)
contained Mutazyme II reaction buffer, dNTPs (0.2 mM
each), 0.2uM each of primers EHO-522 and EHO-575,
Ing of plasmid pCsgD:GFP and 1.25 units of
Mutazyme II DNA polymerase in a total volume of
25ul. PCR program: initial denaturation step at 95°C
for 2min, then 30 cycles of a 30-s denaturation step at
95°C, 30-s annealing step at 52°C and 60-s elongation
step at 72°C. The PCR reaction was finalized by 10 min
elongation at 72°C. The PCR product was analyzed on a
1% agarose gel and purified with the PCR Purification Kit
(QIAGEN). The second PCR (EZClone reaction) con-
tained EZClone enzyme mix, 12.5ng of plasmid
pCsgD::GFP, 125ng of the PCR product from the first
PCR reaction (used as primers in this reaction) and
EZClone solution in a total volume of 25ul. Second
PCR program: initial denaturation at 95°C followed by
25 cycles of a 50-s denaturation step at 95°C, 50-s anneal-
ing step at 60°C and 6 min elongation step at 68°C. After
2min on ice, 1 pul of Dpnl was added for 2h at 37°C to
remove the template plasmid.

Transformation

Escherichia coli TOP10 cells harboring either pUCI19 or
pOmrA were made competent by washing exponentially
growing cultures three times in 10% glycerol. In all, 50 pl
of competent cells were subsequentially transformed with
2 ul from the EZClone reaction by electroporation. After
recovery for 1h at 37°C in 1 ml of LB medium, cells
were spread on agar plates supplemented with ampicillin
(50 pg/ml) and chloramphenicol (30 pg/ml) and incubated
o/n at 37°C.

FACS

Ten thousand colonies obtained after transformation of
the mutant plasmid library were washed off the agar
plates with LB medium, pooled, divided in triplicates,
diluted in LB containing ampicillin and chloramphenicol
and grown in Erlenmeyer flasks o/n at 37°C with rotation
at 200 rpm. The o/n cultures were diluted 100-fold in fresh
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medium with antibiotics and grown at 37°C at 200 rpm.
When cultures reached an ODggy of 0.2, Sml of each
culture was withdrawn and pelleted by a 10-min centrifu-
gation at 4000 rpm. Cell pellets were resuspended in 10 ml
of sterile phosphate buffered saline. FACS was carried out
using a BD FACSAria cell sorter, and data analysis was
done using the FlowJo software. Sorted cells (~10° cells/
pool) were pelleted by centrifugation at 13000 rpm for
10 min and resuspended in 20 pl of sterile H,O.

High-throughput DNA sequencing

Each pool of sorted cells was used as template in a PCR
reaction to generate sequences to be analyzed by deep
sequencing. Before PCR, sorted cells were denatured for
Smin at 95°C. Each PCR reaction contained 2 pl sorted
and denatured cells, dNTPs (0.2 mM each), 0.4 uM each of
primers EHO-522 and EHO-575, HF PCR Buffer,
Phusion High-Fidelity DNA Polymerase (Finnzymes)
and sterile H,O in a total volume of 50ul. PCR
program: an initial denaturation step at 98°C, 30 cycles
with a 10-s denaturation step at 98°C, a 10-s annealing
step at 64°C and a 15-s elongation step at 72°C followed
by a final Smin elongation step at 72°C. PCR products
were analyzed on a 1% agarose gel and purified with the
PCR Purification Kit (QIAGEN)).

Sequencing libraries were prepared from 0.6 ug of PCR
product according to the TruSeq DNA sample preparation
guide #15005180 revC using reagents from the TruSeq DNA
sample prep kit set A and set B v2 (Illumina). Briefly, the
DNA fragments were end repaired followed by purification
using AMPure XP beads (Beckman Coulter). One A base
was added to the blunt ends of the DNA fragments and
adapters, and index tags for sequencing were ligated,
followed by purification using AMPure XP beads. The
DNA fragments and the library were size selected on a 2%
agarose gel, and the fraction containing the 285 bp adapter-
ligated fragments was excised from the gel, purified using a
QIAGEN gel extraction column (Qiagen) and PCR
amplified for 10 cycles, followed by purification using
AMPure XP beads (Beckman Coulter). The quality of the
library was evaluated using the Agilent Technologies 2100
Bioanalyzer and a DNA 1000-kit. The adapter-ligated frag-
ments were quantified by quantitative PCR (qPCR) using
the Library quantification kit for Illumina (KAPA
Biosystems) on a StepOnePlus instrument (Applied
Biosystems/Life technologies) before cluster generation
and sequencing.

A 16 pM solution of DNA libraries in equimolar
amounts was subjected to cluster generation on the cBot
instrument (Illumina Inc.) using the TruSeq PE cluster kit
v3. Paired-end sequencing was performed for 100 cycles in
a HiSeq2000 instrument (Illumina Inc.) using TruSeq SBS
chemistry v3, according to the manufacturer’s protocols.
Base calling was done on the instrument by RTA 1.13.48,
and the resulting .bcl files were converted to Illumina gseq
format with tools provided by OLB-1.9.0 (Illumina Inc.).
To separate samples and the PhiX control DNA
sequenced in the same lane as the sample libraries, the
gseq-files were de-multiplexed, allowing for one
mismatch. De-multiplexing was done with CASAVA
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1.7.0 (Illumina Inc.). Additional statistics on sequence
quality were compiled from the base call files with an in-
house script.

Site-directed mutagenesis

Site-directed mutagenesis was carried out using the Quick-
Change II kit (Stratagene). Mutagenic primers are listed in
Supplementary Table S1.

Fluorescence measurements in 96-well plates

Growth and fluorescence monitoring in 96-well plates was
done as described in (13).

Data analysis

Illumina reads were trimmed with cutAdapt (v0.9.5) (18)
with a phred quality filter 30 (—q 61) to remove reads of
low quality. Read pairs were merged into one read using
SeqPrep (http://seqanswers.com/wiki/SeqPrep) with at
least 30bp overlap (—o 30). All reads of incorrect
length, i.e. sequences with insertion, deletions or those
not properly merged, were removed from further
analysis. All remaining sequences were sorted based on
how many mutations they contained, the nucleotide
number(s) within the sequence and on the identity of the
nucleotide change. Only reads with one mutation, a total
of 474 (3 x 158), were kept for further analysis. Heatmap
and dendogram of single mutation distribution was
generated with heatmap.2 in the gplot library in R.
Differences in abundance for all single mutation between
two different conditions were analyzed using DEseq (19).

RESULTS
Description of the method

The aim of this study was to establish a method that, in a
single experiment, can associate all possible mutations in a
selected sequence with changes in gene expression. The
experimental setup of the described method is as follows
(Figure 1A). First, a gene of interest is translationally
fused to the gfp+ allele on a plasmid. Mutations are
introduced by error-prone PCR, and the mutant plasmid
library is transformed into E. coli cells. The resulting
transformants are pooled and subjected to single-cell frac-
tionation with respect to distinct fluorescence levels using
FACS. Finally, the mutant sequences present in each
fraction are PCR amplified and subjected to high-through-
put sequencing.

To test the method, we chose to analyze the effects of
nearly all possible mutations in a 109 bp long sequence on
the translational activity of the csgD mRNA in E. coli.
This mRNA is well suited for this purpose because its
translational activity is controlled both extrinsically and
intrinsically. Expression of csgD is highly regulated, both
at the transcriptional and post-transcriptional level. More
than 10 transcription factors have been shown to bind at
the csgD promoter and affect ¢sgD transcription (20-24).
In addition, at least four SRNAs bind to the csgD mRNA
to inhibit translation (12,25-27). Our previous work has
demonstrated that the SUTR of the csgD mRNA has two
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Figure 1. Method outline and model system (A) Flow chart of the mutagenesis and cell sorting strategy. (B) Sequence and secondary structure of the
csgD mRNA as deduced from structure probing experiments and phylogenetic conservation (12). Red nucleotides indicate the binding sequence for
the SRNA OmrA. The SD sequence and the start codon are shaded in gray. The structural elements SL1 and SL2 are indicated. (C) Base pairing
between csgD mRNA and OmrA. Red indicates the binding sequence for OmrA on c¢sgD mRNA, as in (B).

conserved structure elements, stem-loop 1 and 2 (SL1 and
SL2, Figure 1B). SL1 harbors a binding site for OmrA, an
sRNA that inhibits translation of CsgD, and SL2 is a
stem-loop that partially inhibits translation by sequester-
ing the Shine-Dalgarno (SD) sequence [Figure 1B and C,
(12)]. Thus, mutations that interfere with sSRNA binding in
SL1 (interaction sequence, Figure 1C), or destabilize the
SL2 structure, are expected to increase gene expression.
Accordingly, gene expression was monitored by GFP
fluorescence from cells carrying the translational fusion
plasmid pCsgD::GFP. In this plasmid, the constitutive
Piito promoter drives expression of the csgD 5'-UTR,
which is translationally fused to the gfp+ allele at codon
15 of ¢sgD. To map functionally important nucleotides
that either affect translational activity per se or sSRNA-
dependent repression, we mutagenized the 5-UTR of the
¢sgD mRNA on pCsgD::GFP close to saturation and
monitored effects of each mutation on translational
activity. The mutant plasmid library was constructed by

error-prone PCR of a selected DNA fragment in the csgD
5-UTR (109 bp, containing all elements necessary for
translation and OmrA-mediated regulation), which was
re-inserted into pCsgD::GFP. This library (pCsgD::
GFPm) was transformed into E. coli cells that harbored
either an OmrA overexpression plasmid (pOmrA) or a
control vector (pUC19). The resulting transformants
were pooled and sorted according to fluorescence by
FACS (in triplicates), where gates for sorting were set ac-
cording to the fluorescence levels in strains with the wild-
type pCsgD::GFP plasmid in cells harboring either
pOmrA or pUCI19. The percentage of cells with high or
low fluorescence in each sample before and after sorting is
shown in Figure 2.

Data analysis

After FACS sorting, sequences encompassing the mutated
regions in pooled extracted plasmids were PCR amplified
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and analyzed by high-throughput sequencing. After
merging and removing low-quality reads, all individual
sequences remaining in the library were identified.
Most reads in all samples had wild-type sequence.
Of the mutant sequences, most had one mutation
(3040%) and <5% had more than three (Figure 3A
and B). All sequences with single mutations showed
90% sensitivity and 90% specificity for the mutated
region, compared with the adjacent primer sequences
(Figure 3C and D).

To assure that the read counts of the different muta-
tions correlate with the FACS sorting, we clustered the
samples based on their single mutations patterns. For
most of the samples, the biological replicates for the dif-
ferent conditions clustered in the dendogram (Figure 4).
This indicates that the variation in read counts of the
different mutations between the samples depends on the
FACS sorting condition and is not caused by other
technical issues. The most distinct mutation pattern, i.e
the pattern that differed the most from the other
patterns, was found in high-fluorescence samples in
which OmrA was overexpressed; samples from unsorted
cells and those with wild-type levels of fluorescence
showed a more similar mutation pattern, indicating that
most mutations were phenotypically silent (Figure 4).
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Figure 3. Distribution of mutations. (A) and (B) Fraction of obtained reads with 0, 1, 2, 3 or 4 mutations in the indicated samples. Error bars show
the standard deviation from three replicate experiments. (C) The mean fraction of each single mutation in the unsorted sample based on three
biological replicates. The fraction of each mutation was calculated by dividing the number of reads of that mutation by the total number of reads
with a single mutation. Gray crosses represent mutations mapping to the primer region, and black crosses represent mutations within the mutated
region. The schematic on top of the graph indicates the region that has been sequenced and analyzed for mutations. (D) Cumulative distribution of
the mutation fraction pattern shown in (C) divided into the two subgroups with mutations in the primer regions (black dashed line) and the mutated

region (black continuous line).
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Compared with unsorted cells, significantly over- or
under-represented single mutations in each pool of
triplicates were identified by DEseq (19). The variance
of three biological replicates for each condition, the dif-
ference ‘between’ conditions and the total mutation count
determines the probability to obtain this difference by
chance. Finally, P-values were adjusted based on the
multiple testing problem, and all mutations with a
P value of <0.05 were kept for further analysis.
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Figure 4. Differences in mutation pattern between different samples.
Each column in the heatmap represents the mutation pattern of one
sample. Each sample is named according to the plasmid it carried
(pOmrA or pUCI19), which bin it was sorted into (high, low or all)
and which biological replicate it represents (1, 2 or 3). The dendogram
on top of the heatmap shows the hierarchical clustering of similarities
in the mutation patterns between the different samples. Each row in the
heatmap represents one mutation, e.g U-75A, and each cell is colored
from red (under-represented compared with the other cells in the same
row) to green (over-represented compared with the other cells in the
same row). Both stem-loops (SL1 and SL2) and the sRNA binding
region (SRNA BS) are indicated by bars on the left.
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Mutations in SL1

Mutations associated with loss of OmrA-mediated regula-
tion were expected in cells that despite the presence of
the repressing sSRNA displayed high GFP levels. Indeed,
mutations within the sSRNA binding site (—79 to —61,
Figure 5A and B) were highly enriched in high fluores-
cence samples compared with unsorted samples
(Figure 5A). Within this region, the bulged nucleotides
at which OmrA binding initiates were most enriched
(=61 to —67, Figure 5A and B). To evaluate the biological
significance of the obtained mutations, highly enriched
mutations were individually re-introduced into plasmid
pCsgD::GFP by site-directed mutagenesis. Fluorescence
measurement from these constructs confirmed the loss of
OmrA-dependent regulation for mutations in the binding
site, whereas fluorescence levels in the absence of OmrA
were unchanged (Figure 5C). Thus, these mutations do
not affect translation rates per se but cause insensitivity
to OmrA.

Interestingly, almost all enriched mutations in
SL1 outside of the sRNA binding site (47/51) disrupt
intramolecular base pairing (Figure 5A and B), suggest-
ing that correct folding and structural stability of SLI
(in both helical elements, Figure 5B) is a determinant
for efficient SRNA regulation. Structure-constrained pres-
entation of initiation sequences in a loop/bulge is known
to promote rapid binding of antisense RNAs (28).

Mutations in SL2

In contrast to mutations that entail loss of SRNA regu-
lation, higher fluorescence in cells that overexpress OmrA
may also reflect increased translation rate per se, e.g. by
mutations that increase expression of both the active and
repressed state. The SD sequence of ¢sgD is located
within the stable SL2 (Figure 5B) whose destabilization
increases translation (12). Accordingly, SL2-destabilizing
mutations were enriched in samples sorted for high fluor-
escence in the presence of OmrA (Figure 5A). Higher
expression owing to mutations in SL2 does not seem
to rely on loss of sRNA regulation, as OmrA can
regulate these mutants when re-created by site-directed
mutagenesis (Figure 5D). In general, mutations in SL2
that confer higher fluorescence disrupt base pairs,
whereas under-represented mutations create stronger
base-pairs (Figure 5A and B). The opposite is seen on
sorting for lower GFP expression in the absence of
OmrA, i.e. over-representation of mutations that create
stronger base pairs and under-representation of those
that break base pairs (Supplementary Figure S1). Also,
mutations in the AUG start codon were strongly under-
represented when sorting for higher fluorescence
but over-represented in the low fluorescence pool
(Figure 5A and Supplementary Figure S1). Mutations
that change the wild-type SD sequence (GGGG) to the
optimal GAGG or GGAG gave higher fluorescence,
whereas changes to poorly matching sequences
(AGGG, UGGG, CGGG, GUGG, GGGA, or GGGO)
were under-represented, even though several of these
disrupt base pairs in SL2, which otherwise increases
translation (Figure SA).
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Possible limitations of the method and
additional clarifications

Three potential limitations of our method need to be dis-
cussed. The first concerns the initial number of trans-
formants needed to cover all mutations in the sequence
of interest. Assuming random mutagenesis, simulated
data suggest that at 99.5% probability 3000 transformants
with single mutations should be sufficient to cover each
mutation at least once, and that on average, 90% of the
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mutations would be covered five times (Figure 6A). The
second important issue concerns that the chosen high-
throughput sequencing method should produce reads
that cover the entire region with high base calling at suf-
ficient depth (Figure 6B). In each of our experiments, we
obtained at least 2 million reads with a phred score cut-off
of 30, i.e. a base call accuracy of >99.9%, suggesting
>80% of our reads should have the same sequence
as the sequenced DNA molecule. Assuming that wrong
base calls are independent or systematic between
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Figure 6. Mutation distribution simulations. (A) Simulated data of 1000 runs on single mutation random mutagenesis of 3000 transformants with a
109 nt sequence represented with boxplots. Each boxplot represents the distribution of the fractions of single mutations covered (y-axis) as a function
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numbers of single mutation transformants. (D) Simulated data of 1000 runs on double mutation random mutagenesis, plotted as in (C), but all

symbols here refer to double mutation transformants.

experiments, our coverage of >2000 reads per cell should
be sufficient to amplify the true signal above the noise. In
practice, we recovered >90% of the mutations with suffi-
cient specificity. Third, an additional possible limitation
lies in the fitness cost that can be associated with overpro-
duction of a fluorescent protein at high levels. We tested
this by sorting mutants associated with high levels of GFP
expression and could confirm that these mutants were
under strong counter selection (data not shown). Thus,
it is of great importance to optimize the ratio of expression

levels so that all populations one aims at analyzing are
present in the culture used for sorting.

Although this study presents data for sequences with
single point mutations, an extended study could also
include an analysis of sequences with two mutations.
A combined analysis of single versus double mutations
is expected to identify sequence positions that individually
alter the phenotype but in combination restore wild-type-
like behavior. This is particularly powerful in identifying
RNA structure motifs, e.g. reflecting disruption and



PAGE9 oF 10

restoration of intramolecular base pairing. The limiting
factor for an analysis of double-mutation data sets is the
need for correspondingly high numbers of transformants.
Although the need for transformants in single mutation
analysis is linear with sequence length, it is quadratic for
double mutations (cf. Figure 6C and D). There are also
limitations in the length of the sequence that can be con-
veniently analyzed by this method. For longer sequences,
when analyzing single point mutations, the number of
transformants is not limiting, but the requirement for
long enough high-quality reads is. Even at a 99.9% base
call accuracy, 50% of all reads may be incorrect in a 500 nt
long sequence (Figure 6B). This asks for an increase in
sequencing depth to handle the smaller signal-to-noise
ratio. With improved methods that improve sequence
read quality and increase read length, this method will
be applicable to both longer sequences and double-
versus-single mutation analysis.

DISCUSSION

This study describes a new method for massively parallel
mutational analysis in one experiment. By combining sat-
uration mutagenesis, phenotypic cell sorting and high-
throughput DNA sequencing, almost all possible point
mutations in a 109 bp DNA sequence encoding the
S'UTR of a bacterial mRNA were linked to translational
activity and to susceptibility to regulation by an sRNA.
In contrast to classical genetics, this method reveals
not only positions crucial for gene regulation or expres-
sion but also identifies all phenotypically silent mutations
and thus is a powerful tool for in-depth mapping of
sequence—function relationships in any RNA of interest.
For example, cis-acting elements such as riboswitches can
be analyzed without substantial changes in our protocol.
This method can also be used to identify functionally
important residues in DNA elements or proteins.
Depending on the question at hand, FACS based on
GFP signals can be substituted by other suitable pheno-
typic sorting methods.

We have tested this method by mutagenizing the SUTR
of the ¢sgD mRNA and monitored fluorescence from a
mutant library of a csgD-gfp translational fusion. In
accordance with previous work (12), the method success-
fully identified regions within the mRNA that are import-
ant for translation. Mutations in SL1 that weaken or
abolish the interaction with the SRNA OmrA, as well as
mutations that destabilize SL2, led to increased GFP
levels, underscoring the importance of these elements for
csgD expression. In contrast to the expected mutations in
SL1 and SL2, the data revealed mutations that are not
easily explained by our current knowledge on csgD expres-
sion. Tentative speculations on the reason for enrichment
of these mutations might be effects on mRINA stability or
changes in a putative Hfg-binding site. In addition, some
of these mutations might reflect changes in long-range sec-
ondary structure interactions within the csgD SUTR, as
well as changes in tertiary structure. Such interactions
could potentially be discovered in a comparative analysis
of sequences with single or double mutations as discussed
earlier in the text.
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We propose that our method is of particular value in
studies of functional RNA modules, especially when two-
mutation data sets are included. Additionally, this strategy
will work well when adapted to many other aspects of
gene expression and its control.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Table 1 and Supplementary Figure 1.
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