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In our current world, antibiotic resistance among pathogenic microbes keeps getting worse with few new anti-
biotics being pursued by pharmaceutical companies. Modern-day immunotherapies, reminiscent of the ser-
otherapy approaches used in the early days of antimicrobial treatments, are a potential counter-measure,
but are usually limited by the narrow spectrum against target antigens. Surprisingly, many multidrug-resistant
(MDR) bacteria share a common surface polysaccharide, poly-b-1,6-N-acetylglucosamine (PNAG). Natural anti-
bodies to PNAG are present in normal human sera, but are not protective. However, human monoclonal anti-
bodies (MAbs) or polyclonal antisera raised to a deacetylated glycoform of PNAG mediate opsonic killing and
protect mice against infections due to all PNAG-positive MDR pathogens tested. An MAb is currently in Phase
II clinical trials. These discoveries could lead to utilization of antibodies to PNAG for either therapeutic use in
patients infected by PNAG-producing MDR bacteria or prophylactic use in patients at risk of developing MDR
infections.
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The fate of the antibiotic miracle
At the beginning of the 20th century Dr Paul Ehrlich was search-
ing for magic bullets—substances that could be injected into the
blood to fight disease. He is credited with developing one of the
first chemotherapeutic treatments for an infectious agent,
namely salvarsan (followed later by neosalvarsan) for syphilis.1

While quite controversial at the time and certainly not without
serious toxicity, these arsenical compounds nonetheless proved
we could actually cure infectious diseases with small molecules.
Now, over 100 years later we are confronted with one of the
largest problems in healthcare—an inability to treat many
serious infections as pathogens become highly resistant to the
numerous magic bullets developed in the past century. Com-
pounding this problem is the absence from the drug pipeline of
new antibiotics, particularly those with novel mechanisms of
action.2

Broad-spectrum antibodies against
antibiotic-resistant pathogens
This situation warrants new types of treatments and/or
approaches to either prevent or treat infections due to
multidrug-resistant (MDR) bacteria. Such developments are ur-
gently required, now more than ever, with resistance to carba-
penems described in all major Enterobacteriaceae,3 and with
more and more settings where there are no antibiotics left to
treat patients infected with pan-resistant bacteria. Active

vaccination and passive immunotherapy are leading candi-
dates. Among the most common, and certainly the most suc-
cessful, bacterial antigens targeted by protective antibodies
are the surface polysaccharides. Excitingly, one of these, a
poly-b-1,6-N-acetylglucosamine (PNAG) antigen, has recently
been found as a surface polysaccharide on many serious
MDR bacteria, including methicillin-resistant Staphylococcus
aureus and extended-spectrum b-lactamase (ESBL)-producing
and carbapenemase-producing Enterobacteriaceae, as well as
less common pan-resistant bacteria such as Acinetobacter
baumannii and members of the Burkholderia cepacia complex
(BCC). Encouragingly, a fully human monoclonal antibody
(MAb F598) to PNAG4 has successfully completed a Phase I
safety and pharmacokinetic dose-escalation trial in healthy
adults,5 and is currently undergoing a Phase II trial, raising a
provocative question: can MAb F598, by targeting many of the
MDR and even pan-resistant bacteria, become the first known
broad-spectrum therapeutic antibody?

Pre-clinical studies of antibodies to PNAG
The protective value of antibodies to bacterial surface polysac-
charides has been strongly validated by successful use of this
strategy to produce vaccines effective against several bacterial
pathogens,6 including Streptococcus pneumoniae,7 Neisseria
meningitidis,8 Haemophilus influenzae type b9 and Salmonella
enterica serovar Typhi.10 However, with this approach, only the
specific bacterial capsule serotypes in the vaccines are targeted
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and none of the licensed vaccines are useful for any of the most
frequent MDR bacteria. In contrast, the antibodies raised to PNAG
isolated from S. aureus were not only able to mediate opsonic
killing and provide protective immunity against this pathogen
in murine blood and skin infections,11 but were also opsonic
and protective against Escherichia coli12 and BCC13 in a
murine model of peritonitis and against pneumonia caused by
A. baumannii (Table 1).14

Additionally, PNAG is often a major component of biofilms of
MDR organisms, another property contributing to virulence. In
staphylococci, synthesis of PNAG occurs via proteins encoded
by genes in the staphylococcal icaADBC locus (ica for intercellular
adhesin).15 PNAG is produced by E. coli using proteins encoded in
the related, but somewhat differently organized, pgaABCD locus
(pga for polyglucosamine).16 Strikingly, there is increasing evi-
dence that many of the MDR bacterial species involved in both
community- and hospital-acquired infections carry the genes
involved in PNAG synthesis (ica or pga loci) (Table 2).

If antibodies to PNAG were to be extensively used, a legitim-
ate concern would arise regarding the consequences of a

decrease or loss of expression of PNAG during infection. Fortu-
nately, selection of strains deficient in PNAG production during
or after immunotherapy would probably be associated with a
loss of virulence and would lead to strains potentially unable
to produce a strong biofilm. Furthermore, S. aureus and E. coli
strains with mutations in the ica or pga loci had diminished viru-
lence in several different murine infection models.12,17 While
further studies are needed in this area, the conserved synthesis
of PNAG by genetically divergent Gram-positive and Gram-
negative pathogens implies this molecule has an important
role in microbial biology that has led to a positive selection for
maintenance of PNAG synthesis by diverse microorganisms.

Logically, as PNAG is produced by major commensal bacteria
of the gastrointestinal tract (E. coli) or the skin (Staphylococcus
epidermidis), we might expect antibodies to PNAG to be
present in most human sera. Indeed, all human sera tested to
date in various studies have natural antibodies to PNAG.18,19

However, the antibodies found in about 95% of these normal
sera bind predominantly to the highly acetylated glycoform of
PNAG produced by commensal microbes. These natural anti-
bodies do not appear to provide vigorous opsonic killing or
immune protection in vitro or in vivo.18 However, studies over
the past several years have validated that antibodies induced
by conjugate vaccines composed of carrier proteins bound to
either chemically deacetylated PNAG or a synthetic oligosacchar-
ide of non-acetylated glucosamines have opsonic and protective
effects comparable to those that mediate immunity to other
encapsulated bacteria.20 Similarly, the opsonic and protective
MAb F598 was identified initially by its ability to bind to both
native and deacetylated PNAG,4 and the immunological property
distinguishing the opsonic/protective from non-opsonic/non-
protective antibodies was determined to be the ability of the
functional MAbs to deposit complement onto the target bacterial
surfaces.4

Antibodies to PNAG: clinical studies
A potential use of antibodies to PNAG would be via therapeutic
intervention in the early stages of an infection to prevent the de-
velopment of a more serious sepsis, facilitating the immune
system’s ability to eliminate pathogens. In the case of MDR bac-
teria, PNAG-targeted immunotherapy might also compensate for
suboptimal antibiotic therapy. Another strategy for use of these
antibodies would be to give a preventive dose for patients with a
high risk of developing infections, such as critically ill individuals
in the intensive care unit (ICU). Addressing this approach, there
is an ongoing Phase II randomized, double-blind, placebo-
controlled trial to assess the pharmacokinetics, pharmaco-
dynamics and safety of MAb F598 in mechanically ventilated
patients in the ICU (http://clinicaltrials.gov/ct2/show/
NCT01389700?term=SAR279356&rank=1).

Defining the proper population of patients to target is a major
challenge in the clinical development of PNAG-specific immuno-
therapies, as predicting which individuals might develop an infec-
tion due to an MDR pathogen is quite difficult. But if clinical trials
are successful in finding an effective means to use MAb or poly-
clonal immunotherapy against the known and to be discovered
PNAG-producing pathogens, immunotherapy targeting PNAG
may have a broad spectrum of activity. Thus we might

Table 1. Antibodies to PNAG: in vivo activity against bacteria associated
with MDR infections

Bacterial species
Method of

immunization
Challenge

route Animal model

Staphylococcus
aureus

intravenousa intravenous kidney infection11

intravenousb intravenous bacteraemia20

intraperitonealb intraperitoneal lethality20

intraperitonealb subcutaneous skin abscesses21

Escherichia coli intraperitonealb intraperitoneal lethality12

Acinetobacter
baumannii

intranasalb intranasal pneumonia14

intravenousb intravenous bacteraemia14

Burkholderia
cepacia
complex

intraperitonealb intraperitoneal lethality13

aPassive and active immunization.
bPassive immunization.

Table 2. PNAG production by bacteria associated with MDR infections

Bacterial species
Genetic

locus Phenotype Publication

Staphylococcus aureus icaADBC biofilm formation 15

Escherichia coli pgaABCD biofilm formation 16

Acinetobacter baumannii pgaABCD biofilm formation 22

Klebsiella pneumoniae pgaABCD under investigation 13

Enterobacter cloacae pgaABCD under investigation 13

Burkholderia cepacia
complex

pgaABCD biofilm formation 23

Stenotrophomonas
maltophilia

pgaABCD under investigation 13
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realistically ask: will MAbs or antibodies to PNAG be a 21st
century version of Dr Ehrlich’s magic bullet?
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